Introduction: A Refresher on Why Drug Discovery is Hard

Courtesy of Patrick Spinney on flickr. License: CC-BY.

LACK OF INFORMATION

Wrong molecule
Wrong delivery approach
Wrong target
Wrong indication

- Harder problems

- Higher hurdles
- Poor processes / mgmt
- FUD (M&A; Wall Street)

"It can blow at any seam"

It's going to work.

Sucrosa

It's a pill.

500 mg tablets placebo

Laboratory studies have shown Sucrosa (placebo) to be occasionally effective in the treatment of pain and discomfort associated with chronic rhinitis, allergies, hives, sinusitis, arthritis conditions, ankylosing spondylitis, fibromyalgia, gout, lupus, osteoarthritis, psoriatic arthritis, reactive arthritis, rheumatoid arthritis, asthma, acute and chronic pain, low back pain, inflammatory bowel disease (IBD), abdominal pain, ulcerative colitis, constipation, diarrhea, dyspepsia (indigestion), intestinal gas, heartburn, hemorrhoids, irritable bowel syndrome (IBS), lactose intolerance, constipation, motion sickness, ankle pain, tendinitis, bursitis, heel spurs,knee pain, lower back pain, muscle cramps, tinnitus, vertigo, asthma, erectile dysfunction, migraine headaches, attention deficit disorder (ADD), bedwetting, lactose intolerance, rheumatoid arthritis, sleep disturbance, rosacea, scleroderma, shingles, insomnia, jet lag, narcolepsy, sleep apnea, somnoplasty, urinary incontinence, urinary tract infections, premenstrual syndrome, and yeast infections.

Side effects associated with the use of a placebo include alterations in heartbeat; increased blood pressure and cold extremities; muscle weakness, stiffness, and spasm; muscle and bone pain; nervousness; decreased mental sharpness; tremor; headache; abnormal sensation; vertigo; sleep disturbance; mood and personality changes; alterations in speech and movement; memory impairment; confusion and dream abnormality; stomach upset; diarrhea; dry mouth; constipation; gas; thirst; acid reflux; difficulty swallowing; changes in appetite; burping and inability of the tongue to move; flushing; hot flashes; sweating; itching; rash; acne; skin reaction to sunlight; difficult or rapid breathing; dryness or discomfort of the throat or nose; nose bleed; yawning and sinus disorder; cold-like symptoms; cough; hiccups; visual disturbances; ringing in the ears; ear pain; eye discomfort; swelling or tearing; alterations in hearing and smelling; visual intolerance to light and bad taste; allergic reactions including swelling of face, lips, tongue, and/or throat, which may cause difficulty in breathing and/or swallowing; wheezing; hives; rash; severe sloughing of the skin; chills; heat sensitivity; swelling; bloating; hangover effect; fever; fainting; dizziness on standing up; warm/cold sensations; dehydration; and changes in urination and menstruation.

© Onion Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

6. Deciding: Data Overload, Fear, Uncertainty, Bias, the whole mess

© Drug Discovery World. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

But .. Data ≠ Knowledge ... All these measurements approximate the human condition

How Do You Know You're Done?

"Every design balances-connects--dozens of values, like a conceptual mobile, and the weights of those values, their relative utility or attractiveness, are changing constantly."

Photograph of mobile by Alexander Calder removed due to copyright restrictions.

Fred Hapgood, Up the Infinite Corridor : MIT and the Technical Imagination

It's Not All Chance: Behaviors of Great Teams

DOING WHAT MATTERS

MINDSET

- Focus on patient needs
- Relentlessly solve high-value problems
- Curate the world's relevant knowledge
- Learn how to interpret complex data
- Pay attention to details
- Develop appropriate validated readouts and use wisely
- 🚳 🛛 Generate PK data early & often
- Validate targets
- Challenge assumptions & be open to surprises
- Urgency
- Demonstrate resilience and ignore clues to quit
- Communicate in all directions
- Have a champion at senior levels
- Take chances
- Be practical

Rule-Breakers

Most oral drugs follow certain "rules" – MW <500, logP <5, and so forth.
But there are many drugs that break these rules ...

- ... and many molecules that follow the rules are not drugs.
- We don't understand the exceptions (in either direction).
- Conclusion: there are some trends and patterns, dimly understood at best -- not actually "rules" at all ...

7. Picking & Validating Targets

© flashbomb on funnyjunk.com. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Rate-limiting step in R&D is <u>usually</u> confusion about basic biology
Drug Target Network Disease Patient

Target Discovery & Validation (1 of 2)

Target validation requires:

- 1. Demonstration critical involvement in a disease process;
- 2. Modulating the target is likely to have a therapeutic effect.

Validating a molecular target in vitro usually precedes the validation of the therapeutic concept in vivo; together this defines its clinical potential.

Validation involves studies in intact animals or cell-based models that can provide information about the integrative response of an organism to a pharmacological intervention.

Target Discovery & Validation (2 of 2)

- Functional genomics: broadly, systematic analysis of gene activity in healthy vs. diseased organisms/organs/ tissues/cells.
- Includes: large-scale exploration of gene function including the analysis of regulatory networks, biochemical pathways, proteinprotein interactions, and the effects of gene or functional knockouts or up-regulation/gain-of-function.
- Goal: to determine disease mechanisms & identify disease genes / markers. These results will indicate therapeutic strategies for the development of novel therapeutics.
- Requires model systems (animal and cell) as well as highthroughput data of various kinds (well covered in this dep't).

Classes of Biomarkers

Class 1 – Target occupancy

- Gives evidence the drug occupies the target
- Example PET radioligand to measure D₂ receptor occupancy in schizophrenia

Class 2 – Target-Based

- Changes downstream from target occupancy specific to target
- Example Elevated norepinephrine (NE) metabolite levels in the presence of an NE uptake (NET) inhibitor

💿 Class 3 – Disease-Based

- Linked to biomarkers found previously in patients w. disease
- Example Proteins expressed in plasma in schizophrenia patients vs. controls

PET Ligand for the CB-1 Receptor

Class 1 Biomarker

16

Courtesy of American College of Neuropsychopharmacology. Used with permission. Source: Yasuno, Fumihiko, Amira K. Brown, et al. "The PET Radioligand [¹¹C] MePPEP Binds Reversibly and with High Specific Signal to Cannabinoid CB₁ Receptors in Nonhuman Primate Brain." *Neuropsychopharmacology* 33, no. 2 (2008): 259-69.

Neuropsychopharmacology (2008) 33, 259–269

- Pre-clinical study in rhesus shows CB-1 receptor occupancy & displacement by candidate CB-1 antagonist
- Results of clinical study confirmed CB-1 receptor occupancy in humans
 - PET ligand preparation and validation is resource-intensive

Schizophrenia as an Example Class 3 Biomarker

- Several disease-based (class 3) biomarkers available:
 - Prepulse inhibition responds to clozapine
 - P50 gating linked to DA, 5HT, NMDA challenges
 - Auditory P300 also abnormal in AD, BPD, ADHD
 - Mismatch negativity no response to clozapine
 - Smooth eye pursuits clozapine worsens

Both EEG and fMRI / BOLD monitoring

Cortical response variability is increased in schizophrenic patients relative to controls and clinically unaffected siblings – by EEG, BOLD

Nature Reviews Drug Discovery 7, 68-83 (January 2008)

Nature Reviews | Drug Discovery

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Avitt, Daniel C., Kevin M. Spencer, et al. "Neurophysiological Biomarkers for Drug Development in Schizophrenia." *Nature Reviews Drug Discovery* 7, no. 1 (2008): 68-83.

Alzheimer's Disease: Example of Critical Need for Better Biomarkers

Figuring out new biomarkers for complex diseases like Alzheimer's is just as great a contribution as discovering a new medicine – if not greater -- because it enables a whole field to progress far more rapidly.

AD typically develops over many years, and clinical trials 1 for a preventative agent would be prohibitively expensive

Potential class 3 (disease progression) biomarkers include:

CSF phospho-tau and b-amyloid (Ab₁₋₄₂) CSF. plasma and urine isoprostanes (inflammatory)

8. Through a Glass, Darkly

Flying Blind

Medicine today is **reactive** (we treat sick people) & myopic (we have few tools to measure disease)

"The dirty little secret about medicine is that we physicians make decisions all the time based on woefully incomplete information."

-- Paul Yock, MD, Stanford

"Flying Blind," The Economist, 16 April 2009

The Need for Long-Term Thinking

From target discovery to the first approved drug against that target typically takes 30+ years.

- Exceptions: HIV-PR (1985 →1997), CFTR (1989 → 2012)
- A research project started now will not produce an approved drug until 2025-2030.
- How should these incredibly long timelines influence our thinking?
 - Must consider many kinds of change -- demographics, novel therapies, technologies, basic science, etc.

"Everyone overestimates how much progress will be made in the next 2 years and underestimates how much will be made in the next 10."

-- Bill Gates

"P4" Medicine

Medicine today is reactive (we treat sick people) & myopic (we have few tools to measure disease)...

Leroy Hood, inventor of protein sequencer, protein synthesizer, DNA synthesizer, ink-jet DNA synthesizer, & automated DNA sequencer

... Medicine will gradually become personalized, predictive, preventative, and participatory.

Diagnostics & omics \rightarrow individualized care

- Risk factors understood
- Diseases eliminated before symptomatic
- Each of us bears greater responsibility for our health

Some Coming Disruptions: Medicine circa 2030

P4 medicine

- Widespread use of "regenerative" therapies
- Man machine interface

"Open source" pharmas

Therapy involves multiple diverse elements - not just "drugs" Far earlier and more accurate diagnosis; "ubiquitous self" Orugs against far more diverse targets ("undruggable") Tests for disease progression and response to therapy Higher drug safety bar; better predictors of safety Reimbursement for results Routine & rational polypharmacy Preventative medicine; "neutraceuticals" Oiverse, precisely targeted drug delivery mechanisms

What Will "Therapy" Mean?

An assembly of interlinked components to manage the entire disease life cycle

Orugs + regenerative approaches + devices + diagnostics + social network

Participatory: at-home tests show benefits of therapy & motivate patients

Focused R&D programs based on selected subsets of patients – therapy is personalized, predictive, and preventative

Each "disease" will be understood to be many related but distinct afflictions

Biomarkers, diagnostics, and devices support patient selection & trial design

Regenerative Therapies: Bioreactors and Skin Guns

© Jörg Gerlach. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Joerg Gerlach, McGowan Institute for Regenerative Medicine (Pittsburgh)

Far Earlier Quantitative time-resolved measurement of membrane protein–ligand interactions using microcantilever array sensors.

Sarcosine concentrations in benign cells (left); localised prostate cancer (centre) and metastatic prostate cancer (right).

Nature

Courtesy of Macmillan Publishers Limited. Used with permission.

Source: Sreekumar, Arun, Laila M. Poisson, et al.

Nature 457, no. 7231 (2009): 910-4.

Sarcosine levels predict severity of prostate cancer.

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Braun, Thomas, Murali Krishna Ghatkesar, et al.

ors." Nature

Nanotechnology 4, no. 3 (2009): 179-85.

Figure 4 | Principal component analysis (PCA) of the dataset of real and simulated breath. Each data point corresponds to the multidimensional

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Peng, Gang, Ulrike Tisch, et al. "Diagnosing Lung Cancer in Exhaled Breath using Gold Nanoparticles." Nature Nanotechnology 4, no. 10 (2009): 669-73.

© Massachusetts Medical Society. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Reichlin, Tobias, Willibald Hochholzer, et al. "Early Diagnosis of Myocardial Infarction with Sensitive Cardiac Troponin Assays." New England Journal of Medicine 361, no. 9 (2009): 858-67.

Troponin predicts MI.

Microscopic Needles: Painless Transdermal Delivery

University of Kentucky College of Pharmacy and the Georgia Institute of Technology

Transdermal drug delivery has proven successful in a number of applications, including pain management, congestive heart failure and hormone replacement ... but existing systems can only be used for a narrow range of compounds that easily pass through the skin.

Source: Wermeling, Daniel P., Stan L. Banks, et al. "Microneedles Permit Transdermal Delivery of a Skin-Impermeant Medication to Humans." Proceedings of the National Academy of Sciences 105, no. 6 (2008): 2058-63.

New work: painlessly punch a series of microscopic holes in the outer layer of skin via pressing and removing a thumb-sized patch containing 50 stainless steel microneedles each about 620 microns -- about 1/40th of an inch -- in length. Next, gel containing naltrexone (a drug used for opiate and alcohol addiction) was applied to the prepared area, which was then covered by a protective dressing. Blood levels stayed constant for ~48 hours. Doses were 4X lower than oral administration and there were 10X lowered production of metabolites. 28

Two Drugs in One Package

The Pharmacologic Basis for Antibody-Auristatin Conjugate Activity. Alley et al, Seattle Genetics. J. Pharmacol. Exper. Therapeut. 2009, 330, 932.

Nanoparticle - Aptamer Bioconjugates

Courtesy of the National Academy of Sciences. Used with permission. Source: Farokhzad, Omid C., Jianjun Cheng, et al. "Targeted Nanoparticle-Aptamer Bioconjugates for Cancer Chemotherapy in Vivo." *Proceedings of the National Academy of Sciences* 103, no. 16 (2006): 6315-20.

Occetaxel-encapsulated nanoparticles formulated with biocompatible & bio-degradable copolymer; surface functionalized with fluoropyrimidine RNA aptamers that recognize extracellular domain of prostate-specific membrane antigen. These bioconjugates:

- Get taken up more effectively into prostate cancer cells
- Exhibit reduced toxicity in vivo as measured by mean body weight loss
- Exhibit significantly enhanced efficacy in vivo: tumor reduction & survival

Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. PNAS 2006, 103, 6320.

30

Route	Description
Oral (PO)	Swallowed by mouth
Intravenous (IV)	Injected directly into the bloodstream as bolus or infusion
Subcutaneous (SC)	Injected under the skin
Transdermal	Applied as a patch or other device and transported through the skin
Topical	Applied onto the skin
Intramuscular (IM)	Injected into the muscle
Epidural	Injected into the epidural (outermost) space in the spinal cord
Suppository	Placed in the rectum
Intranasal	Sprayed into the nose
Buccal	Held between cheek and gum until dissolved
Sublingual	Held under the tongue until dissolved
Intraperitoneal (IP)	Injected within the peritoneal cavity (abdomen)
Intra-arterial	Injected into an artery
Intracerebral	Injected directly into the brain
Intravitreal	Injected into the eye
Intrathecal	Injected into the spinal cord

9. The Age of Biological Engineering?

Thermodynamic Decomposition of Ligand/Protein Binding

© Schrödinger.com. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Source: Schrödinger

Atomic-Level Understanding of How to Optimize "Drug-likeness" ?

All of the challenges we have discussed – metabolism, interaction with transporters, cell permeability – can in principle be understood at the molecular level.

X-ray crystal structure of cytochrome P450 2E1

The first glimmers of success are starting to be seen, e.g. in the use of xray data for P450 enzymes to model both P450 inhibition and oxidative metabolism.

High-throughput assays are also getting better, leading to larger datasets from which to begin understanding the trends.

Modeling palmitic acid in a bacterial P450 enzyme

Network Medicine

Cellular function caused by network modules consisting of many interlinked factors.

Disease = breakdown of these complex functional modules.

Drugs can affect multiple cellular networks.

Surprising connections between diseases forces us to rethink the way in which we classify and separate them.

© Massachusetts Medical Society. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Barabási, Albert-László. "Network Medicine—from Obesity to the "Diseasome"." New England Journal of Medicine 357, no. 4 (2007): 404-7.

Network Medicine - From Obesity to the Diseasome. Albert-László Barabási, NEJM 357;4 (2007)

It's Been Done Before

10 October 1902, Kill Devil Hills, NC

7ci fhYgmcZ'6f]Ubg_] cb'k]_]dYX]U"'D\chc[fUd\']g']b'h\Y'di V`]WXca U]b"

"High performance computing has fundamentally changed the way Boeing designs flight vehicles" -- Michael Garrett, Director of Boeing's Airplane Performance Division

1980: tested 77 wings for 767
2005: tested 11 wings for 787
"wind tunnel results matched CFD predictions"

Noise reducing chevrons designed entirely in silico

Courtesy of Martin Hartland on flickr. License: CC-BY-NC-SA.

Figures removed due to copyright restrictions.

MIT OpenCourseWare http://ocw.mit.edu

20.201 Mechanisms of Drug Actions Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.