
3STEADY-STATE OSCILLATIONS 
IN NONLINEAR SYSTEMS 

3.0 INTRODUCTION 

The preceding chapter introduced the notion of a sinusoidal-input describing 
function (DF). Some of the implications of this type of linearization are 
discussed there. Here we apply the D F  to the study of steady-state oscilla- 
tions. For D F  utilization to be meaningful, certain conditions must be ful- 
filled by the nonlinearity, and also by the system in which the nonlinearity is 
present: 

1. The nonlinear element is time4nvariant.l 
2. No subharmonics are generated by the nonlinearity in response to a 

sinusoidal input. 
3. The system filters nonlinearity output harmonics to the extent that only a 

trivial quantity is fed back. 

Condition 3 is the so-called$Iter hypothesis. We shall have a great deal to 
say about it in this chapter, for this heuristically motivated requirement is 
certainly a basic factor underlying DF success or failure. 

Certain periodically varying nonlinearities are also admissible. 
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Three types of steady-state oscillations are of interest: 

1. Forced oscillations 
2. Conservative free oscillations 
3. Limit cycles 

For our present purpose a forced oscillation is taken to be a systematic 
response whose frequency is precisely the forcing signal frequency and 
whose amplitude depends on the forcing signal amplitude. Forced oscilla- 
tions are encountered in the study of frequency response, in which connection 
we find a useful application for the DF. The next two oscillation types are 
behavioral modes of unforced systems. A conservative free oscillation is an 
initial condition-dependent periodic mode associated with nondissipative 
(conservative) systems. A continuous range of conservative-free-oscillation 
amplitudes and frequencies may be possible in a given system. Limit cycle 
denotes an initial condition-independent periodic mode occurring in dissipa- 
tive (nonconservative) systems. Only a discrete set of limit cycle amplitudes 
and frequencies may exist in a given system. We shall find the D F  a most 
powerful tool for the study of both types of unforced behavior of nonlinear 
systems. 

3.1 DETERMINATION OF LIMIT CYCLES 

The limit cycle phenomenon is deserving of special attention since it is apt to 
occur in any physical nonlinear system. A limit cycle can be desirable, for 
example, by providing the vibration (dither) which minimizes frictional effects 
in mechanical systems. In fact, it can be absolutely necessary for proper 
system performance, as we shall see when studying a certain adaptive control 
scheme in Chap. 6. On the other hand, a limit cycle can cause mechanical 
failure of a control system (destructive limit cycle) or operator discomfort 
and other undesirable effects, as in an aircraft autopilot. 

Although precise knowledge of the waveform of a limit cycle is usually not 
mandatory, knowledge of the existence of a limit cycle, as well as its approxi- 
mate amplitude and frequency, is a prerequisite to good system design. 

T H E  DF LINEARIZED SYSTEM 

Consider a physical nonlinear system as represented by Fig. 3.1-la. To 
effect a limit cycle study, the nonlinear element is characterized by its DF, 
and the linear element by its frequency response function L(jw). N(A,w)  
is used to describe the effect of the nonlinearity on the closed-loop system as 
we are about to seek the presence of an oscillation which is sinusoidal at 
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Figure 3.1-1 (a)  Single-nonlinearity closed-loop system. (b) Corresponding linearized 
system for DF limit cycle study. 

station x due to  the filtering qualities of the loop linear part. This yields the 
quasi-linearized system of Fig. 3.1-lb, which, for constant A, is a constant- 
coefficient linear system. 

Linear theory is now applied to the quasi-linearized system,.and points of 
neutral stability are sought. Any undamped oscillations so arrived a t  are 
interpreted as limit cycles in the original nonlinear system. 

The equation defining undamped oscillations of the D F  linearized system 
is readily obtained. Since the input is taken to be zero, the following loop 
relationship is apparent: 

X(jw) = -L(jw) Y(jw) (3.1-1) 

Treating the D F  as a linearized gain between x and y gives 

Writing these two equations in matrix notation results in 

which possesses a nontrivial solution only if the determinant of the square 
matrix is zero. Thus 

Solutions of this equation yield the amplitudes and frequencies of the loop 
limit cycles. 
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Before proceeding to both algebraic and graphical solutions of Eq. (3.1-3), 
we digress to present a different method, which centers attention directly on 
the characteristic differential equation of the DF linearized system. 

ANALYTIC ROUTH-HURWITZ TEST 

The Routh-Hurwitz stability criterion for linear systems is well known (cf. 
Refs. 21,29, 104). It  is a means for determining conditions under which the 
linear system is neutrally stable. Equation (3.1-3), written as a polynomial 
in descending powers of s ,  is the characteristic equation to which this criterion 
is presently applied. In the case of a third-order system we have, for 
example, 

s3+ a2s2+ a,s + a, = 0 (3.1-4) 

The stability boundary is given by 

provided that a,, a,, and a, are positive. We now have one relationship in 
the unknowns A and o,. The remaining relationship is a result of the fact 
that the characteristic equation must contain an undamped second-order 
factor, the limit cycle. Hence we have 

(s2 + oO2)(s+ b) = 0 (3.1-6) 

Expansion yields 

s3+ bs2 + wO2s+ boo2= 0 

whence we observe by comparison with Eq. (3.1-4) that 

This is the second of the required relationships. The limit cycle parameters 
can now be determined algebraically. 

For non-phase-shifting nonlinearities Eq. (3.1-5) is a function of A alone. 
Once having solved for A ,  w, follows immediately from Eq. (3.1-7). In order 
to use this method with phase-shifting nonlinearities, the proportional plus 
derivative DF formulation [Eq. (2.2-30)] must be employed. Solution of the 
resulting equations in this case, however, is apt to require graphical assistance 
since Eq. (3.1-5) is no longer an equation in the single variable A .  Simul-
taneous nonlinear algebraic equations must be dealt with. Table 3.1-1 
summarizes the results of this technique as applied to second-, third-, and 
fourth-order characteristic equations. All ai must be positive. 

The application of this technique for limit cycle determination is demon- 
strated by the following example. 
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TABLE 3.1-1 R O U T H - H U R W I T Z  
L IM IT  CYCLE DETERMINATION 

Characteristic equation Limit  cycle equations 

UlUeU3 - a,' - aoa32= 0 
sd + aJSS + a2s2+ a,s + a, = 0 w," 5 

a3 

Example 3.1-1 Use the Routh-Hurwitz test to determine all possible limit cycles of the 
relay control system of Fig. 3.1-2. 

The DF for a relay with dead zone, given by Eq. (2.3-141, is repeated below for con- 
venience ( A  > 6). 

Thus the characteristic equation of interest, 1 + N(A)L(s) = 0, is representable as 

The coefficients ai are given by 

It  follows from the second entry in Table 3.1-1 that the limit cycle frequency is exactly the 
undamped natural frequency of the second-order part of L(s),  

0, = 0, 

and, additionally, that 

Figure 3.1-2 Example relay control system. 
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The last of these equations may be solved for the possible limit cycle amplitudes A,. 

It is worthwhile to make several observations regarding these results. First, since the 
limit cycle amplitude must be a real quantity, we see that no limit cycle is possible for 6 in 
the range 

KD
6 > - condition for no limit cycle 

7T5% 


Second, when 6 is not in the above range, two limit cycles are possible, corresponding to 
the two choices of sign under the radical in the solution found for A,. We shall see in 
Sec. 3.2 that of these two limit cycle states, only one is stable. 

ALGEBRAIC SOLUTION O F  T H E  LIMIT CYCLE EQUATION 

An algebraic solution of Eq. (3.1-3) can be effected directly by expressing 
N ( A , o )  in its complex form. 

This relationship is satisfied when the real and imaginary parts on both sides 
are equated. The following pair of equations result. 

Real : n,(AO,wO)Re [L(jwo)l- n,(Ao,wo)Im [L(jwo)]= - 1  (3.1-8a) 

Imaginary: n,(Ao,wo)Im [L( jwo)]+ n,(Ao,wo)Re [L(jwo)]= 0 (3.1-8b) 

These two equations in the two unknowns defining the limit cycle are solved 
simultaneously. When the linear elements are of low order and the DF 
expressions are relatively simple, analytic solutions for A, and w, are readily 
achieved. 

Example 3.1-2 Find the limit cycles displayed by the relay control system of Fig. 3.1-2 
by analytically employing Eqs. (3.1-8a) and (3.1-86). 

The D F  for a relay with dead-zone nonlinearity, given by Eq. (2.3-14),is repeated here 
for convenience (A > 6) :  -

The real and imaginary parts of L(jw) are 

From Eq. (3.1-8b)we conclude that 

Im [L(jw,)]= 0 
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This implies that the limit cycle frequency is equal to the natural frequency of the second- 
order part of L(jw). 

0, = 0,  

Inserting this value into Eq. (3.1-8a) gives 

wo solutions: 

. ~ Z K D  1- i /~5wn6\~  

These results are identical with those derived in Example 3.1-1. 

An alternative formulation of Eq. (3.1-3) in terms of magnitudes and 
phase angles rather than real and imaginary parts is 

Angle : (3.1 -9b) 

for n = 0, 1 , 2 ,  . . . . This formulation is clearly equivalent to that of Eqs. 
(3.1-8a)and (3.1-8b),although one or the other may be more convenient to 
apply to a specific system. 

Example 3.1-3 Determine the limit cycle amplitude and frequency for the nonlinear 
time-lag differential equation 

which occurs in the study of cycles in the shipbuilding industry (Ref. 78), nonlinear 
oscillators with time delay, and certain process control applications. 

The block diagram for this system is shown in Fig. 3.1-3. Note that the time-lag 
behavior is simply represented by the factor e-", the Laplace transform of an ideal delay. 
The equation for a limit cycle is 

where the D F  for a cubing operator, N(A) = PAZ,has been employed. Writing angle and 
magnitude conditions, we get 

n 

---w,T = -n - 2n7r

2 

which results in the determination that 

and 
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Figure 3.1-3 Nonlinear time-lag system. 

which implies 

Hence, for values of 6 in excess of 7r/2T, a limit cycle is predicted. Experimental results 
substantiate this lower bound. We shall encounter this example once again in Chap. 4. 
At that point a more detailed discussion of limit cycle behavior is presented. 

For systems with linear elements of high order or with relatively complex 
DFs, and particularly when various nonlinearities are to be studied, the 
graphical procedure described next is usually found the most expedient means 
to limit cycle determination. 

GRAPHICAL LIMIT CYCLE DETERMINATION 

The closed-loop characteristic equation for linear systems with a variable-gain 
parameter K is usually written in the form 

KLUw) = -1 (3.1-10) 

where the$xed point (- 1,O) takes on the significance of the stability bound- 
ary demarcation. Polar plots, Bode plots, gain-phase plots, and (although 
more indirectly) root-locus plots of familiar linear theory are all graphical 
mechanisms to focus attention on the relative positions of the system linear 
elements' locus and the stability point. Equation (3.1-10) may be written, 
alternatively, as 1 

L(jo) = --
K 

(3.1-11) 

in which case the stability point is (-l/K,O), a variable quantity depending 
upon the gain K. In this form the effect of the parameter K on the system is 
singled out. Similarly, a particularly useful form for the characteristic 
equation of a nonlinear system [Eq. (3.1-3)] is1 

As pointed out by Gibson (Ref. 29, p. 348), this analogy is not to be viewed as an extension 
of the Nyquist criterion, it being based on a contour integration around the right half-plane. 
Equation (3.1-12) has been arrived at by other reasoning. 
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In concept, N(A,w) replaces the linear gain K, although it may be both 
amplitude- and frequency-dependent. 

Whereas satisfaction of the equality of Eq. (3.1-11) implies an undamped 
second-order oscillation, corresponding satisfaction of Eq. (3.1-12) indicates 
a limit cycle. By plotting L(jw) and -l/N(A,w) loci on the same set of 

Limit cycle 
point -

f 
Phase, degrees 

,737
Limit cycle 

point \ -&1 

Figure 3.1-4 Graphical limit cycle determination. L(jw) is third-order, 
and N(A)  is a phase-shifting function (corresponding to a relay with 
hysteresis). Amplitude-phase plot (a)  and polar plot (b) representations. 
A, and w ,  are the limit cycle amplitude and frequency, respectively. 
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coordinates, possible limit cycle solutions are made to occur as the intersec- 
tions of two curves. Since one curve represents the loop linear elements and 
the other represents the nonlinearity, the variation of limit cycle amplitude 
and frequency with parameter changes of either the linear or nonlinear ele- 
ments is available with a minimum amount of work by simply altering the 
appropriate curve. 

Limit cycle behavior can be studied in either amplitude-phase (gain-phase), 
polar, or root-locus coordinates. No limit cycle information exists in any 
one of these coordinate systems which is not also present in the other two. 
Since the root-locus construction for phase-shifting nonlinearities is more 
cumbersome than either of the corresponding gain-phase or polar-plot 
constructions, it is abandoned here as a working tool. 

Typical limit cycle determinations involve constructions such as are shown 
in Fig. 3.1-4, where third-order linear elements and a phase-shifting DF 
have been assumed. Arrows indicate the direction of increasing A on the 
-l/N(A) locus, and increasing w on the linear elements' frequency locus. 
The frequency of the indicated limit cycle is read from the calibrated L(jw) 
locus and its amplitude is read from the calibrated -I/N(A) locus. 

Whether the polar or amplitude-phase plot is used for this construction is 
a matter of individual preference. It is the authors' preference to use the 
amplitude-phase-plane representation, in part because of the general avail- 
ability of templates for use in linear compensation, and at least in some part 
because it seems to be a more appealing data presentation. 

Example 3.1-4 Graphically identify the two limit cycles found as the solutions to Example 
3.1-1. 

The nonlinearity is non-phase-shifting; hence -l / N ( A ) lies along the -180" line on the 
amplitude-phase plot. From Fig. B.l we observe that N ( A )  is not a monotonic function 
of A ;  it peaks at exactly A = 1/26. For this reason the amplitude of the - 1 / N ( A )  locus 
starts at +co,comes down to a minimum at A = 1/%, and returns to +co,as A increases 
from zero. In order to illustrate this behavior, the plot of - l / N ( A )has been distorted, 
as shown in Fig. 3.1-5. 

Both predicted limit cycles are evident as the intersections of L ( j o )  and - l / N ( A ) .  The 
possibility of no limit cycle is also apparent from this illustration. All that is required is 
a choice of parameters such that the curves do not intersect at all. As an exercise the 
reader may formulate this condition from the geometry of Fig. 3.1-5 and compare the result 
with that calculated in Example 3.1-1. 

Limit cycle determination in systems with amplitude- and frequency- 
dependent DFs is, in principle, quite simple. In practice, the graphical 
procedure can be tedious. Basically, what one does is to plot several repre- 
sentative members of the family N(A,w), each at a$xed value of w. Inter-
sections between L(jw) and the various -l/N(A,w) loci are examined to 
determine those for which the frequency label of -l/N(A,w) and the fre- 
quency calibration of L(jw) match. Such intersections denote the limit 
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Figure 3.1-5 Determination of the limit cycles of an example relay 
control system. 

cycles. Figure 3.1-6 illustrates limit cycle determination in the case where 
L(jo) is third-order and the nonlinear characteristic is a hypothetical relay 
with frequency-sensitive rectangular hysteresis. At o = o, the frequency 
markings on both curves coincide; hence that is the limit cycle frequency. 

We can now determine all possible limit cycles according to D F  theory. 
As pointed out in the text, some of these are stable, others are not. 

3.2 LIMIT CYCLE STABILITY 

The question of limit cycle stability is posed in terms of the behavior of a 
theoretical limit cycle state following amplitude and/or frequency perturba- 
tions. If the limit cycle returns to its original equilibrium state it will be 
called stable, whereas if either its amplitude or frequency grows or decays 
until another equilibrium state is reached, it will be called unstable. The 
possibility of theoretically unbounded amplitude or frequency growth is 
included in the definition of instability by considering the state at infinity to 
be an equilibrium state. 
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Figure 3.1-6 Graphical limit cycle determination for a frequency-
sensitive nonlinearity. L ( jo )  is third-order, and N(A,w) is phase-
shifting. Limit cycle freguency is o, radiansltime. 

In terms of the behavior of small perturbations, the question of limit cycle 
stability is a question about a transient oscillation. In that sense it is most 
properly treated in Chap. 4. Nevertheless, by making what we shall call 
"quasi-static" arguments,l it will be possible to account for limit cycle stability 
in the great majority of cases. Analytical and graphical quasi-static stability 
tests proceed easily within the framework already established. 

ANALYTICAL STABILITY DETERMINATION 

The stability of a limit cycle under small perturbations about an equilibrium 
state is readily studied in terms of the DF linearized system characterized by 
Eq. (3.1-3). We follow Loeb's discussion (Ref. 61) of a method originally 
due to Cahen (Ref. 13). Identical results have been obtained from a geometri- 
cal argument by Popov (Ref. 88, p. 586). 

That is, arguments ignoring terms involving rate of change of frequency and rate of 
change of damping. See Chap. 4. 
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Calling A, and w, the amplitude and frequency of an equilibrium limit 
cycle state, respectively, we have seen that the following identity holds: 

The explicit complex form of this equation can be obtained by expressing the 
quantities N(A,,w,) and LCjo,) in terms of their real and imaginary parts, 
resulting in 

U(Ao,wo)+jV(Ao,wo) = 0 (3.2-2) 

where the definitions of U and V are evident. Let us now allow small per- 
turbations in the limit cycle amplitude, rate of change of amplitude, and 
frequency by introducing the following changes in Eq. (3.2-2): 

The perturbation in the rate of change of amplitude has been associated 
with the frequency term, a device which becomes clear upon thinking of the 
limit cycle in the form A, exp (jw,t). That is, Ao = -AIA. Hence we have 

By definition, AA, Aw, and Ao are small quantities. The Taylor series 
expansion of Eq. (3.2-4) about the equilibrium state, valid to first-order 
terms, becomes, after removal of the quiescent terms [Eq. (3.2-2)], 

Satisfaction of this equation requires that its real and imaginary parts sepa- 
rately vanish. 

Eliminating Aw from this set of equations yields a single relationship which 
can be put in the form 

auav auav 
(?Z&-E~)AA= (3.2-7)[fgJ+(Z7lao 

For a limit cycle to be stable, a positive increment AA must lead to a positive 
Ao, and similarly, a negative AA must cause a negative Au. In other words, 
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the sign of AoIAA must always be positive for a stable limit cycle condition 
to exist. Hence, for the proposed limit cycle equilibrium condition to be 
stable, it is necessary that 

auav auav 
>0

aA am aw aA 

Example 3.2-1 Determine the stability of each of the limit cycles found in Example 3.1-1. 
The equation to which we shall apply the analytic stability test is, after simplification 

(s =j4, 

the real and imaginary parts of which are U and V, respectively. Taking the required four 
partial derivatives and evaluating them at (A,,w,) results in 

Inserting these values into Eq. (3.2-8) immediately yields, as the requirement for a stable 
oscillation, the condition that 

or equivalently, 
A, > &a 

We have already ascertained in Example 3.1-4 that, of the two limit cycles which are 
predicted, one corresponds to A, > and one to A, < 4%. From the above 
analysis it is clear that only the larger-amplitude limit cycle is stable. 

GRAPHICAL STABILITY DETERMINATION 

The stability of a limit cycle state may be assessed graphically, under the same 
qualifications which apply to the analytic tests. The argument is borrowed 
from linear-system stability theory, namely, if the limit cycle amplitude per- 
turbation is positive, we require a stable system configuration in which energy 
is dissipated until the amplitude decays to its unperturbed value; whereas if 
the amplitude perturbation is negative, we require an unstable system con- 
figuration in which energy is absorbed until the amplitude grows to its 
unperturbed value. This behavior guarantees a locally stable limit cycle 
state. 

Figure 3.2-1 illustrates amplitude-phase, polar, and root-locus plots for a 
nonlinear system with a single-valued saturating nonlinearity [N(A)  is real , 

and decreases with increasing A] .  In the root-locus plot the entire quantity 
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Figure 3.2-1 Amplitude-phase plot (a), polar plot (b), and root-locus plot (c) of a nonlinear 
sysiem displaying two stable and one unstable limit cycle modes. 

N(A)L(s) is dealt with [corresponding to KL(s) in the totally linear case]; 
the arrow on the root-locus branch illustrates pole migration for increasing 
A. Limit cycles in this construction are determined by intersections of the 
locus of roots and the jo axis. Now, by the argument described above, we 
find that limit cycle states 1 and 3 are stable (convergent), whereas limit cycle 
state 2 is unstable (divergent). Consider the high-frequency intersection, 
state 3, for example. A positive perturbation in limit cycle amplitude 
(A, -+ A, + AA) places the stability point [-I/N(A, + AA), 0] to the left 
of the equilibrium state in the polar-plane representation and up in the ampli- 
tude-phase-plane representation, and puts a closed-loop root in the left half 
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of the s plane, each of which would correspond to a stable configuration in 
the totally linear case. Conversely, a negative perturbation in A, leads to an 
unstable system configuration. Hence, for small perturbations, the resultant 
limit cycle converges to its original state with increasing time; it is locally 
stable (convergent). 

Example 3.2-2 Determine the stability of each of the limit cycles found in Example 3.1-1. 
Inspecting pertinent Fig. 3.1-5, it is clear from the argument above that only the larger- 

amplitude limit cycle oscillation is stable. 

Returning to the system of Fig. 3.2-1, we note that if this system is turned 
on with zero initial condition at c(t) ,the amplitude will grow until state 3 is 
reached, at which time a stable limit cycle will exist. For positive amplitude 
perturbations of sufficient magnitude so that state 2 is reached and exceeded, 
however, the amplitude will eventually converge to state 1 rather than return 
to state 3. This is a result of the divergent nature of equilibrium state 2. 

Physically, limit cycle amplitude perturbations can result from command 
or disturbance input transients as well as system parameter perturbations. 
Thus a large transient input to the above system in limit cycle state 3 can cause 
it to fall into limit cycle state 1 .  Similarly, a transient decrease in the linear 
elements leading phase contribution1 in the frequency band from o, to o,, 
sufficiently large tc temporarily cause only one intersection near the frequency 
w,, will also result in the limit cycle falling from state 3 into state 1, provided 
that the parameter transient is of sufficient duration. This is an irreversible 
situation, since termination of the parameter transient with the system in limit 
cycle state 1 will not return it to state 3. Clearly, other situations can be 
proposed which are reversible; that is, removal of the parameter transient 
restores the original system state. A rigorous study of such situations can be 
found in Bautin (Ref. 6).  

3.3 FREQUENCY RESPONSE OF NON-LIMIT-CYCLING 
NONLINEAR SYSTEMS 

Although the frequency response data of a nonlinear system cannot be in- 
verted as in the linear case to obtain the exact time response to any given 
input signal (linear superposition is invalid), for weakly nonlinear systems 
this process will yield useful approximate results. Further, despite the fact 
that control systems do not generally receive purely sinusoidal inputs, for 
certain specific cases sinusoidal response data may be quite significant. These 

Caused by either an increase of lagging phase or a decrease of leading phase in the 
constituents of L(s). 
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include a periodic, although nonsinusoidal, input and a nonlinear subsystem 
within the control loop of a larger system which is either lightly damped (i.e., 
whose transient response is highly oscillatory) or which displays a limit cycle. 
Thus, for one reason or another, the sinusoidal response description of a 
nonlinear system is desirable. It  will be shown that the D F  may be used to 
represent nonlinearity behavior in a harmonically excited system, leading to a 
frequency response solution. 

Frequency response as calculated with the D F  has significance only if the 
system under consideration is not in a limit cycle state. It  turns out that 
certain non-limit-cycling systems break into a limit cycle oscillation when 
forced by a sinusoidal input; limit cycles in certain other systems are quenched 
by the introduction of a sinusoidal input. It  is therefore necessary to examine 
the state of a sinusoidally forced system to determine whether a limit cycle can 
exist. This requires the use of a two-sinusoid-input describing function, as 
we shall see in Chap. 5. Similarly, testing the stability of a DF-derived 
frequency response solution requires methods discussed in Chap. 5. For the 

Clegg integrator 

Figure 3.3-1 (a )  System containing a Clegg integrator. (b) lts closed-loop frequency 
response. (Levinson, Ref. 60, pt. 4, p. 132.) 
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moment, however, we assume D F  study of frequency response to be valid 
wherever applied. 

Example 3.3-1 Determine the frequency response of the nonlinear system containing a 
Clegg integrator, shown in Fig. 3.3-la. 

Since the DF for the Clegg integrator depends on frequency alone [cf. Eq. (2.4-15)], one 
proceeds as in the linear case to arrive directly at a closed-form solution for C/R(jo). 
Thus 

The magnitude and phase angle determined above are plotted in Fig. 3.3-16. Note the 
lower closed-loop phase than would be associated with the corresponding purely linear 
system. 

In general, the DF is a function of both A and o. It is the dependence 
upon A which forces the use of more complicated means for determination of 
frequency response. Referring to Fig. 3.3-2, let r(t) represent the simple 
harmonic excitation 

r ( t )  = M, sin wt (3.3- 1) 

Assuming x( t )  to be a sinusoid of amplitude A and frequency o,the transfer 
function to c ( t )  becomes 

where the nonlinearity is represented by its DF. This is the basis for a 
frequency response derivation. In this notation, applicable to all system 
variables, capitals are used to designate frequency-domain-transformed 
quantities of otherwise lowercase-designated time functions. Continuing, 
we observe that the transfer function relating C to R is dependent upon A 

Figure 3.3-2 General nonlinear control system considered. 
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and o, the descriptors of an as yet unknown X. One may negotiate this 
circular difficulty by working with the related transfer function 

-
X 

(jo,A) = 
L1( 

R 1 + L1( jo)N ( A,w)Lz( jw)Ld jo) 
(3.3-3) 

and considering A and o as the independent variables (Ref. 68). At any 
given input frequency o, let us assume a value of A. This procedure, which 
specifies all of X but its phase, also defines the ratio X/R by virtue of Eq. 
(3.3-3). Working with the magnitude of X/R, the value of M, corresponding 
to A is immediately determined as 

(3.3-4) 

The value of A corresponding to a particular combination of M, and o 
can be found routinely by inspecting accumulated data derived as above. 
At this point the transfer function C/R [Eq. (3.3-2)] may be determined (for 
a particular M,), thus defining the frequency response of the system. It is 
clear that all frequency response plots such as either IC/RI versus o or 
/C/R versus o must carry the value of M, for which the plots were derived. 

In order to generate a complete set of data relating C to R for the range of 
expected input amplitudes and frequencies, one must use all the data that 
relate N(A,w) to R in the repeated solutions of Eq. (3.3-3). A systematized 
procedure making substantial use of available graphical aids for transfer 
function evaluation renders this approach worthwhile (Ref. 44). 

A C O N S T R U C T I O N  F O R  FREQUENCY RESPONSE 

For circumstances under which it is desirable to study directly the effects of 
a variety of nonlinearities on the closed-loop frequency response, linear 
elements remaining fixed, a different solution to the frequency response prob- 
lem is available. Let us make the following definitions: 

Functional dependence of p,, p,, 8,, and 8, upon o, and of p, and 8, upon 
both o and A, are omitted for convenience. Considering the absolute 
magnitude of each side of Eq. (3.3-3), we may write 
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which can be put in an alternative form, 

This equation may be used to get a graphical solution for the frequency 
response. Both sides can be separately plotted as functions of A, w remaining 
fixed. Intersections of the plotted curves represent solutions to Eq. (3.3-3). 

For systems with nonlinearities whose DFs are non-phase-shifting, 
ON = 0, and Eq. (3.3-7) reduces to 

which is relatively simple to investigate.' To begin with, the right-hand 
side of this equation is not a function of the DF. Hence changing the non- 
linearity does not alter this part of the construction. For a fixed value of 
frequency, A is the only independent variable of this equation. It is readily 
established that a plot of the right-hand side versus A is an ellipse. 

To facilitate the graphical procedure, the key points defining this ellipse 
are shown in Fig. 3.3-3. Ordinate and abscissa intercepts are indicated. 
Coordinates of the maximum ordinate and abscissa excursions serve to locate 
approximately the tip of the ellipse. Consider, for a moment, that in the DF 
study of frequency response, the system involved is required not to limit- 
cycle. Where single-valued nonlinearities are present, this restriction implies 
that 8, lies in the range -.rr < 8, < 0 (cf. Sec. 3.1). Since csc 8, is negative 
throughout this range, the association of -csc 8, with coordinates of the tip 
of the ellipse in Fig. 3.3-3 is explained. Because the cot 8, term also appears, 
we see that for the semimajor axis of the ellipse to actually fall in the first 
quadrant (as shown), it is required that 0, lie in the range -rr < 8, < -7712. 

Example 3.3-2 Qualitatively determine the character of the harmonically forced response 
of the system illustrated in Fig. 3.3-4a. 

First we observe that the DF for the system nonlinearity is non-phase-shifting. For this 
system we have 

K 
Ll(s) = L&) = I and L&) = -

s(s + 1) 

which imply 
PI = 1 6 ,  = 0 

We follow Levinson's original work (Ref. 58) in this presentation. 
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Right-hand 
member of 
Eq. (3.3-8) 

P I  M r  -2pl M, cos 62 Af tP I  M ,  cot $2 -PI M ,  csc 62 

Figure 3.3-3 A frequency response construction aid, M, and o constant. 

Utilizing Fig. 3.3-3, a group of ellipses corresponding to various input frequencies can be 
drawn. The result of this construction for a single value of M, is shown in Fig. 3.3-46. 
Since p, = 1, all ellipses pass through the point (M,,O). 

The quantity ApN is simply the amplitude of the nonlinearity output fundamental. In 
terms of increasing A, the plot of ApN is like a gain-changing function. This can be shown 
exactly by referring to the DF calculation for the gain-changing nonlinearity available in 
Chap. 2, or by noting the limiting results 

from which a rough plot of ApN(A)can be made. Generally speaking, the shape of ApN 
closely resembles the nonlinear characteristic itself, with all sharp corners rounded 
off. 

The magnitude of pN can now be found on a point-by-point basis. For example, at 
w = w,, it follows that A = A,, and hence that pN(A,) is known. For certain values of 
w ,  this point-by-point process is unique. Other values of w result in multiple intersections 
in Fig. 3.3-46, indicating a multivalued solution. Utilizing all values of p~ found graphi- 
cally, amplitude and phase plots of C/R(jw)can gradually be built up. Figure 3.3-5 
illustrates such a solution for the particular M ,  of Fig. 3.3-46. 
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Gain-changing Second-order 
nonlinearity linear elements 

r ( t )  = M, sin of K - c(t) 
s m 

-

Figure 3.3-4a Example system for frequency response study. 

A 5 A 

( b )  

Figure 3.3-4b Frequency response construction for example system. 
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Figure 3.35 Closed-loop frequency response curves for a partic- 
ular M,. Amplitude and phase jumps occur. 

The closed-loop frequency response curves of the example system appear 
to exhibit a hysteretic behavior. They indicate discontinuities in the ampli- 
tude and phase response for an input frequency either increasing and sur- 
passing w, or decreasing and falling below w,. This form of discontinuous 
closed-loop frequency response has been appropriately labeled jump resonance. 
It  is unlike any response provided by a linear system, and is due to the gain- 
changing character of a system nonlinearity. As a result of the jumps for 
increasing and decreasing frequency, a portion of the triple-valued amplitude 
and phase response curves is apparently never traversed. This portion of 
the curves may therefore be considered as representing unstable steady-state 
solutions. In fact, this portion cannot be observed experimentally. Proof 
of such an instability has been demonstrated by Stoker (Ref. 99) and Bonenn 
(Ref. 10). 

Generally speaking, the amplitude resonance peak bends to the left for 
saturating nonlinear characteristics and to the right for increasing gain 
characteristics. This is illustrated in Fig. 3.3-6. As implied before, arrows 
indicate permissible motion along the locus in question. 
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Figure 3.3-6 Decreasing (a),increasing (b),and combination (c) non- 
linear gain characteristics shown with typical system amplitude jump 
responses. 

Note that for a linear device ApN is directly proportional to A ;  it follows 
that a construction similar to that of Fig. 3.3-43 will yield only single inter- 
sections with each ellipse. The amplitude resonance peak in this instance is 
neither to the left nor to the right; jump resonance cannot occur. 

CRITICAL JUMP RESONANCE CURVE 

A curve which encloses a region of the complex plane such that jump reso- 
nance can occur if the open-loop frequency response locus of the system linear 
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part passes into this region is called a critical jump resonance curve. It is 
derived in the following discussion after a method due to Hatanaka (Ref. 43). 
The nonlinearity is restricted to be a single-valued odd static 0perator.l 

Recall that at the jump resonance point lC/Rl is discontinuous. It follows 
that IX/RI is also discontinuous. That is, considering the input amplitude 
M, to be a function of the error amplitude A for a fixed angular frequency o, 
the same value of M, corresponds to different values of A. If the nonlinearity 
DF is differentiable with respect to A and possesses a continuous first deriva- 
tive, the condition under which jump resonance occurs is thus 

= 0 at the jump resonance point (3.3-9) 

This condition prevails at points 1 and 2 of Fig. 3.3-7, which is a typical plot 
of A versus M, (at fixed w )  for the system illustrated. Further, corresponding 
to the region between points 1 and 2, the requirement for unstable forced 
responses is that the slope of the curve be negative (Ref. 10). 

< 0 for region in which jump resonance occurs (3.3-10)Elw=cornt 

Using the above results, we can proceed to the derivation of interest. 
First, note that by use of the definition 

one can put the magnitude of the system error transfer function 

in the form 
1 

(3.3-1 1) 

Taking the partial derivative of M, in accordance with Eq. (3.3-9) yields 

where N* is defined by 
N*(A) = N(A) + AN1(A) (3.3-13) 

and the prime indicates differentiation with respect to A. From Eq. (3.3-12) 
we see that contours in the polar plane for constant values of A at the jump 

1 Another treatment of this problem, including results for the case of a nonlinearity with 
memory, can be found in Ref. 25. 
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x ( t )  = 
r ( t )  = M ,  sin o r  A sin (of+ 0 )  dl) 

I 

Figure 3.3-7 Steady-state error amplitude us. forcing amplitude in a system 
exhibiting jump resonance. 

resonance point are a family of circles. Denote this family of contours 
f (U,  V,A) = 0. 

We now seek the envelope of the family of contours f(U,V,A) = 0. It is 
proved in calculus that such an envelope satisfies the relationships 

af ( U ,V,A)
f ( U ,V,A) = 0 and = 0

aA 

Operating on Eq. (3.3-12) in accordance with Eqs. (3.3-14) results in 

which is the desired critical jump resonance curve specified parametrically 
in A .  
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Example 3.3-3 Find the critical jump resonance curve for the nonlinearity y = x3. 
From Eqs. (3.3-15) we directly obtain 

Eliminating A yields 

where it is understood that U takes only negative values. This locus is plotted in Fig. 3.3-8. 
Crosshatching indicates the interior of the region in which jump resonance occurs since 
everywhere within this region Eq.(3.3-10) is satisfied. 

The critical jump resonance curves for a gain-changing nonlinearity, 
derived as above, are shown in Fig. 3.3-9. We shall have occasion to recall 
these results in Chap. 5, where they are again derived, albeit from quite a 
different point of view. 

The methods discussed for obtaining the frequency response of a nonlinear 
system can be applied as well to nonlinear subsystems such as were treated in 

resonance can occur Y/////////h 

Figure 3.3-8 Criticaljump resonance curve for cubic nonlinearity. 
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Figure 3.3-9 Critical jump resonance curve (b) for gain-
changing n o n h e a r i ~  (a). (Hatanaka, Ref. 43.) 
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Sec. 2.4. In particular, we now have additional means for D F  derivation 
in the case of implicit dynamical nonlinearities. Before leaving the topic 
of nonlinear-system frequency response, one additional system is well worth 
considering, the time-optimal computer control system. 

3.4 APPLICATION T O  A TIME-OPTIMAL 
COMPUTER CONTROL SYSTEM 

A time-optimal control system is one in which the error and its n - 1 deriva-
tives (where n is the order of the controlled process) are simultaneously 
returned to zero in the shortest possible time. For a I/sn plant, the system 
input is characterized by an n-term Taylor series. To demonstrate D F  
utilization for frequency response investigation, we shall choose a simple l/s2 
controlled process in the system configuration of Fig. 3.4-1. An ideal relay 
is the controlled-process driver, as in all time-optimal systems. This follows 
from the desire to achieve either maximum load acceleration or maximum load 
deceleration in a correspondingly maximum control effort operation. The 
computer receives all system inputs and outputs, operating on them in such a 
way as to switch the ideal relay according to the requirements for time-optimal 
control. Examples of the controlled-process and relay-driver combination 
depicted include an interplanetary vehicle driven for attitude control about 
each of two axes by a two-position continuously operating microrocket (Ref. 
25), an acceleration-switching hydraulic servovalve (Ref. 38), etc. Sparacino 
(Ref. 96) has treated this and other second-order processes. The method to 
be described closely follows his presentation. 

The control law implemented by the computer must be derived as a prelude 
to D F  evaluation. In order to do this we utilize the fact that for an nth-order 
system with real poles the error and its n - 1 derivatives may be returned to 
zero time optimally, with at most n - 1switchings. We thus require but one 

.= switching. The system error trajectory will therefore be comprised of two 
parts, the second part necessarily going through the origin of the phase plane 
(the coordinates of which are error rate versus error). 

Ideal relay Pure inertia load 

r ( t )  Time-optimal -1 -- control computer s2  

4 

Figure 3.4-1 Time-optimal control scheme for a second-order controlled process. 
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Assuming that the system input may be represented by a two-term Taylor 
series, the equation of motion for the second-order process at hand during the 
last (second) trajectory may be written as 

e = e, + C,(t - t,) --
d 

(t - tJ2 for t > t, (3.4-1)
2 

where d is the ideal-relay output (+D or -D), 

and e, is the final value of e for the initial trajectory. We now impose the 
requirements of time-optimal control, namely, 

where T is the shortest time in which Eq. (3.4-3) can be achieved. Figure 
3.4-2 illustrates a typical input, output, and corresponding error trajectory. 
Solving Eqs. (3.4-1) and (3.4-3) by eliminating time gives 

We must therefore switch when the error satisfies Eq. (3.4-4), for in that case 
the iast trajectory will be perfectly executed, having begun with the proper 
initial conditions. The control computer therefore chooses the sign of d 
according to (sgn = signum = "sign of") 

C2 

sgn d = sgn (e + -sgn P 

2D 

We are now in a position to derive the D F  for the computer and relay, in 
combination. Since the computer acts upon the quantity r - c, the system 
of Fig. 3.4-1 may be redrawn as in Fig. 3.4-3. N(e,C) represents the dynamics 
implied by Eq. (3.4-5). In particular, the output of N is a square wave of 
amplitude D (first harmonic 4Dln) and phase shift 0, (see Fig. 3.4-4). 
Assuming a sinusoidal input 

e = A sin cot (3.4-6) 

it follows from Eq. (3.4-4) that the switching criterion is 

cos2 cot 
A sin cot = -

2d 
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'C -st 
trajectory-

Figure 3.4-2 Typical time history of the input, output, and 
error in a time-optimal control system. 

The substitutions wt = -8, and d = D, indicated by Fig. 3.4-4, yield 8, 
in the form 

sin 8, - Aw2 

cos28, 2 0  

or equivalently, 

The D F  for the computer-and-relay combination is therefore given by 

which is amplitude- and frequency-dependent. Nevertheless, the frequency 
response of this time-optimal control system can now be obtained by applica- 
tion of the methods of Sec. 3.3. 
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Figure 3.4-3 Equivalent system for the frequency response analysis. 

Another avenue to the frequency response of this system was found by 
Sparacino (op. cit.), who observed that the open-loop transfer function of this 
system, N(A,w)L(jw), could be written in terms of a single parameter, which 
we shall call F; namely, 

N(A,w)L(jw)  =-exp j -rr + s i r 1  [--r A w 2  ( {  ADw2+ JEFN4D 

Am2
where F = -

D 

This definition for F obviates the need for construction of a family of graphs 
in determination of the system frequency response, a quite desirable aspect. 
Such a manipulation is clearly not always possible. 

We may now adopt the viewpoint that N(A,w)L(jw) ,  or, as it were, 
NL(F), is a new nonlinearity N' in a closed-loop system wherein all linear 

Figure 3.4-4 Sinusoidal response of N for the time-optimal control of a pure inertia load. 
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elements have unity amplitude transfer and zero phase shift. Thus, from 
Eqs. (3.3-5), 

Equation (3.3-6), governing the appropriate graphical construction, now 
becomes 1A -

M?' 4 1  + 2pN, cos ON' + (PN')~ 
(3.4-14) 

where, as before, M,. is the magnitude of the system input sinusoid. Multi-
plying and dividing the left-hand member of Eq. (3.4-14) by w2/D,  

A F-
M,. M p 2 /D 

A plot of the left- and right-hand members of Eq. (3.4-14) yields solution 
points at observed intersections. The complicated right-hand member as a 

Figure 3.4-5 Graphical construction yielding AIM, for a time-
optimally-controlled pure inertia load. (Adapted from Sparacino, 
Ref.96.) 
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Figure 3.4-6 Frequency-amplitude response of a time-optimally-
controlled pure inertia load. (Adapted from Sparacino, Ref. 96.) 

function of Fneed be drawn but once, with the left-hand straight-line member 
drawn for a variety of values of M,02/D, its reciprocal slope. Figure 3.4-5 
illustrates these constructions. Note that MTo2is the peak input acceleration 
and that, for the l / s2linear elements, D represents the peak output accelera- 
tion. Thus M,02/D is the ratio of peak commanded acceleration to peak 
output acceleration capability, a physically significant quantity. Changing 
the slope of the left-hand member of Eq. (3.4-14)thereforedirectlycorresponds 
to sweeping out all the input dynamics-system dynamics possibilities. From 
another point of view, for fixed system dynamics the act of changing MTw2/D 
directly corresponds to changing the command input. With either point of 
view the entire system harmonic response is immediately evident fromtheplot. 

For values of MTo2/Dless than 0.56, one intersection occurs at F = 0. 
This implies that A = 0, or that the system follows the sinusoidal input with 
zero steady-state following error. For values of MTo21Dbetween 0.56 and 
1.27, three intersections occur. An abrupt transition from the previous state 
is indicated, with the system now displaying finite steady-state following 
error. For MTo2/D> 1.27, two intersections exist, one of which is nonzero. 
Figure 3.4-6 summarizes these results by displaying the error response vs. the 
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quantity MTw2/D. Since it is both the frequency response (input amplitude 
constant) and amplitude response (input frequency constant), it has been so 
labeled. Arrows indicate possible motion of the solution along the frequency- 
amplitude response locus. The trivial solution for MTw2/D> 1.27 has been 
removed from expected possibilities, based on the physical reasoning that 
for MTw2/D> 1 a following error would have to exist. 

Experimental results reported (Sparacino, op. cit.) confirm the presence of 
jump resonance as well as the entire frequency-amplitude response of Fig. 
3.4-6. The critical values of MTw2/Dso determined were approximately 
0.60 and 1.15 as compared with 0.56 and 1.27 determined by the D F  method. 
We may therefore conclude that the D F  study predicted all the salient har- 
monic response behavioral patterns for the time-optimal controlled pure 
inertia load, with less than 10 percent error in determination of all critical 
parameter values. 

3.5 LINEAR A N D  NONLINEAR LOOP COMPENSATION 
TECHNIQUES 

The conventional compensation problem is to choose a network which, when 
inserted in a control loop, causes the overall loop (including fixed elements) to 
meet specifications. One fixed element is usually the loop final element; 
that is, its output is the controlled variable c(t). Others, of course, are 
possible, any of which can be either linear or nonlinear. An inherent loop 
nonlinearity is referred to as unintentional (or incidental); examples are out- 
put member backlash, power element saturation, and feedback element 
threshold. Intentional nonlinearities include nonlinear compensation net-
works such as those discussed later on in this section. 

Steady-state requirements for loop compensation commonly are (1) to 
rid an otherwise limit cycling system of its limit cycle (as in the case of a 
position servo with motor-load backlash), (2) to decrease the limit cycle 
amplitude to some acceptable value where its complete elimination is impos- 
sible (as in an on-off aircraft autopilot system), or (3) to permit control of the 
limit cycle amplitude and/or frequency (as in a vibration controller). Com-
pensation selection for steady-state requirements is readily accomplished 
via D F  usage. 

Transient response specifications such as percent overshoot and settling 
time are difficult to deal with in non-limit-cycling systems. In totally linear 
systems it is well known that feedforward lead compensation tends to shorten 
the transient response time, whereas feedforward lag compensation increases 
transient response time. Moreover, feedback lag compensation has an effect 
somewhat equivalent to feedforward lead, and vice versa for feedback lead 
compensation. In non-limit-cycling nonlinear systems it is true that there 
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is often a certain qualitative agreement between the effect of linear compensa- 
tion on the actual transient response and that described above for the totally 
linear case. Because of the inapplicability of linear superposition to these 
nonlinear systems, however, such equivalences are weak, and should at most 
be used as a rough guide in design. Chapters 4 and 8 are directed toward 
the study of transient phenomena, and further inferences regarding compensa- 
tion for transient response can be drawn from material presented there. 

Transient response characteristics of limit cycling systems are readily 
compensated, as we shall find in Chap. 6. With the aid of a dual-input de- 
scribing function, it will be shown there that theabove-mentionedequivalences 
are no longer weak. The reader is asked to temporarily accept this statement 
without proof. 

Many theories are available to assist in the choice of loop compensation 
for totally linear systems. Such is not the case for nonlinear systems, espe- 
cially of third and higher order. In this section we briefly examine several 
means of compensating these nonlinear systems, using D F  theory as a guide 
to compensation selection. 

LINEAR C O M P E N S A T I O N  

Here we presume the existence of a nonlinear fixed element, unintentional or 
otherwise, and inquire of the use of linear loop compensation. 

The steady-state effects of both lead and lag networks on a linear system 
are conveniently displayed on the amplitude-phase plane, where linear 
compensation is easily carried out. Let us assume that a system with a third- 
order transfer function also contains an odd memoryless nonlinearity, whose 
DF lies on the -180" line in the amplitude-phase plane (see Fig. 3.5-1). 
The compensation network has the transfer function 

ars + 1 
Ll(s) = - lead network for a > 1, lag network for a < 1 

7s + 1 

for which the insert in Fig. 3.5-1 illustrates the frequency locus in log magni- 
tude vs. phase coordinates. We recall that in the process of linear compensa- 
tion of linear systems the lag network is used for its attenuation characteristic 
a t  high frequencies (relative to  l/ur), whereas the lead network is used for its 
phase-lead characteristic at low frequencies (relative to 117). These portions 
of the amplitude-phase loci of L,(jw) have been darkened in the insert. 

The limit cycle resulting from the use of Ll(s) as a lead network has a 
higher frequency and smaller amplitude than the limit cycle in the uncompen- 
sated system (A,,w,,). The lead network has been chosen to supply maximum 
phase lead in the vicinity of w,. When Ll(s) is a lag network, a (slightly) 
lower-frequency and smaller-amplitude limit cycle is seen to result. The lag 
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Lag compensated 

/ /Uncompensated 

compensated 

Log 
magnitude 

Q 

Phase 

Y 

Phase, degrees 

Figure 3.5-1 Efect of linear lead and lag compensation networks viewed on the am-
plitude-phase plane. 

network chosen has its upper breakpoint well below w,, so that in the vicinity 
of w,,only its attenuation, and not its phase lag, predominates. 

Quite commonly the system designer is constrained to place a compensa- 
tion network at locations between the system output and the nonlinearity 
input. In a control loop for a pulse-rebalanced accelerometer, for example, 
compensation must be placed in the feedback path since the feedforward path 
is physically inaccessible. Referring to Fig. 3.5-1, if we assume L,(s) to 
be located between the system output and the nonlinearity input, it follows 
that the limit cycle amplitudeat the system output issmaller when lead compen- 
sation is used than when lag compensation is used. 

To see this, recall first that the limit cycle amplitude solved for graphically 
is that which appears a t  the nonlinearity input. The amplitude at other 
stations around the loop must be found by working forward or back from 
this point. Also, the lead network presents a higher-than-unity gain to the 
limit cycle, whereas the lag network presents a lower-than-unity gain. Thus, 
for roughly equal limit cycle amplitudes a t  the nonlinearity input (as indicated 
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by Fig. 3.5-I), it must follow that the output limit cycle amplitude is smaller 
in a lead-compensated system. 

The effect of a linear gain Kis simply to raise or lower a frequency response 
locus on the amplitude-phase plane. This operation, which does not affect 
limit cycle frequency in the case of non-phase-shifting DFs, is shown in Fig. 
3.5-2. 

Between the use of linear lead, lag, and pure gain networks, limit cycle 
amplitude and frequency can theoretically be altered as desired to meet 
specifications. The prevention of limit cycles (where possible) without 
unnecessarily dropping the loop gain is usually a matter of supplying sufficient 
phase lead to  avoid the crossing of the -l/N(A,o) locus by the L(jo) locus 
(see Fig. 3.5-3). Because of familiar noise and saturation considerations, 
however, a practical upper limit on a of the lead compensation network is 
about 10. 

An additional linear compensation technique occasionally used to achieve 
a specified limit cycle amplitude a t  a particular point in a control loop is to 

Phase, degrees 

Figure 3.5-2 Eflect of h e a r  gain. 
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Uncompensated @ear 
elements locus 

(limit cycle present) 

,
Compensated linear 

elements locus 
(limit-cycle absent) 

Phase, degrees 

Figure 3.5-3 Lead compensation to remove a limit cycle in a 
high-order system containing a relay with dead zone and 
hysteresis. 

insert a lead (lag) network, followed elsewhere by the reciprocal lag (lead) 
network. The net effect of this reciprocal network pair is to alter the limit 
cycle amplitude at all stations between the networks, but not its frequency. 
If one network is in the forward path and its reciprocal is in the feedback 
path, loop command response characteristics are clearly affected and must 
be accounted for. 

NONLINEAR MODEL FEEDBACK 

One of the interesting procedures available for synthesizing a nonlinear 
compensation network is based on what has been called complementary 
model feedback (Ref. 73). In its basic form, nonlinear model feedback 
serves to linearize a nonlinear feedback system by providing a signal, which, 
when added to the nonlinearity output, renders its net output a linear function 
of its net input. The addition of signals does not actually take place a t  the 
nonlinearity output, however, since that would require a nonlinear compensa- 
tion network operating a t  high power levels in all cases in which the original 
nonlinearity is a power element. The signal addition, as a result, concep- 
tually takes place in the feedback path (Fig. 3.5-4b), although it can be imple- 
mented in the feedforward path (Fig. 3.5-4c) 

Consider the case of exact model feedback, N* = N, L,* = L,. The 
complementary nonlinearity 1 -N* becomes 1 -N. In the case where N 
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Figure 3.5-4 Nonlinear model feedback. (a)  Original system; (b) system with model 
feedback; (c) equivalent nonlinear compensator. 

is an abrupt saturation nonlinearity, for example, 1 -N is a piecewise-linear 
dead zone, and vice versa. I t  is clear that 

which implies that the transfer function from X(s) to E(s) is independent of 
N, viz., 

E Y1(s)Lz(s)+ y,*(s)L,*(4
- (s) = -
X X(s> 

Stability of this totally linear loop is therefore governed by the equation 
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Figure 3.5-5 System requiring the use of inexact model compensation. (Adapted from 
Mishkin and Braun, Ref. 72,p. 209.) 

independent of the loop nonlinearities. DF approximations have not, as yet, 
entered our discussion. The exact output in response to any input is ob- 
tained by solving for x( t )  on a purely linear basis, 

operating on the resulting time function by N, and passing the output of N 
through L,(s). 

It is possible that either or both of N* and Lz will be different from Nand 
L,, respectively. This can be due either to an inaccuracy in the model ele- 
ments or to the use of an intentionally inexact model (Ref. 72). As an 
example of a situation where an inexact model should be intentionally 
employed, consider the system of Fig. 3.5-5, subject to a ramp input r ( t )= Mt. 
As a consequence of the integration in L,(s) [hence in L,*(s)],the output 
signal c( t )will remain at rest if the following relationship holds: 

for in this instance a constant value of x less than 6 results, which never 
exceeds the threshold of N. The difficulty, of course, is due to the integra- 
tion in L,*(s). System response degradation is perhaps at an all-time high; 
the use of an inexact model is certainly indicated. A first choice for LE(s) 
might be an approximate integration, L;(s) = K/(Ts+ 1 ) .  Certainly the 
steady-state ramp response problem would be avoided. Note that this 
example points out the need for calculation of the system input-output 
response properties, independent of the fact that the loop transfer may be 
linear and possess suitable stability. 

To investigate loop stability under any of the circumstances for which 
N* # N and/or L: # L,, we employ the DF representation for N and 
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1 - N, which we denote, as usual, by N(A,w) and 1 - N(A,w), respectively. 
Representing the errors and/or inaccuracies in L: and 1 -N* by additive 
terms (denoted by A) as follows: 

L;(s) = L,(s) + AL,(s) 
1 -N*(A,w) = 1 -N(A,w) -AN(A,w) 

(3.5-7) 

it is easily demonstrated with reference to Fig. 3.5-46 that loop stability is 
now governed by the equation 

The long term in braces can be treated as some new amplitude- and frequency- 
dependent nonlinearity, with D F  analysis proceeding as described in previous 
sections of this chapter. 

Generally speaking, the design with exact models is unnecessary, perhaps 
difficult, and can lead to severely degraded system performance unless care 
is taken to avoid situations such as the one described above. The use of 
intentionally inexact models, however, represents an attractive area for non- 
linear compensation. 

OTHER NONLINEAR NETWORKS 

Linear minimum-phase networks are such that input-output gain and phase 
relationships are themselves related. Therefore choice of one constrains the 
form of the other. Linear non-minimum-phase networks display more phase 
lag than the corresponding minimum-phase networks (i.e., for the same 
attenuation characteristics), and thus they are of little use in system compen- 
sation. Nonlinear networks can be synthesized, however, where D F  gain 
and phase relationships are chosen separately to suit the designer (Ref. 59). 
An example of one such circuit is the nonlinear Clegg integrator discussed in 
Sec. 2.4. It  was shown to have a D F  with an amplitude vs. frequency 
characteristic identical with that of a linear (minimum-phase) integrator and 
an associated D F  phase of -38" as opposed to -90' for the linear integrator. 
This phase characteristic is certainly a desirable feature for loop compensa- 
tion purposes, in which excessive phase lag can cause degraded or even 
unstable system behavior. 

Systems with saturation in a tachometer feedback path may be unstable 
at large-feedback-signal levels. A useful compensation network would 
reduce the loop gain to large signals. Large-amplitude oscillations can 
occur in a conditionally stable system (where a gain reduction leads to 
instability). This behavior can be compensated by the use of a nonlinear 
network which provides phase lead at large-signal levels. Systems with 
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backlash all too often display low-amplitude limit cycles. A network 
providing phase lead at low-amplitude signals can be used for stabilization in 
these instances. Networks providing phase lead at low amplitudes are also 
useful in the stabilization of systems with spring-coupled coulomb friction 
(Ref. 60).  Mechanizations for the three nonlinear networks indicated above 
are illustrated in Fig. 3.5-6. Note that the mechanizations indicated are not 
unique; many other useful forms can be developed. 

The first of the networks illustrated is simply a gain-changing element 
drawn in a feedback mechanization. As such, the D F  for this network 
can be derived directly as shown in Sec. 2.3. We shall present an approximate 
DF derivation, however, which will find real use when applied to the non- 
linear networks of Fig. 3.5-6b and c, for which the exact D F  cannot be 

Figure 3.5-6 Nonlinear networks providing (a)gain reduction aflarge-signal levels; (6)phase 
lead at large-signal levels; (c)phase lead at small-signal levels. 
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found in any convenient analytic way. Let NO(A) represent the D F  for the 
feedback dead-zone element in Fig. 3.5-6a. Now assume a sinusoidal output 
(we have already used this artifice in the study of implicit dynamic non- 
linearities in Sec. 2.4) 

y = A sin o t  (3.5-9) 

Since for this network there is no internal phase shift, a first-harmonic loop 
balance (ignoring fed-back harmonics) is achieved when 

[Ain sin o t  -ANO(A) sin o t ] K  = A sin wt (3.5-10) 

from which the frequency-invariant input-output D F  is found to be 

Several observations are in order. First, the D F  is a function of A (at the 
output) as opposed to Ain. This presents no particular difficulty in its use, 
of course; one need only recognize that a given magnitude of the D F  
corresponds to a particular value of A. Second, the formulation, although 
approximate, does yield exact results in the limiting cases A,, +0 [where 
N(Aout) = K)]  and A,,, -+ co [where N(AOut) = K/(l + K)], with small 
errors elsewhere. For example, in the case where K = 1 and 6 = 1, the 
maximum error in the approximate D F  referred to the exact D F  is less than 
2 percent. Third, and most important, in application of this D F  the filter 
hypothesis must be reversed. That is, for perfect D F  results we require 
certain harmonics a t  x (the residual is now associated with the input), 
which must be generated by the passage of a pure sinusoid through a linear 
system (the loop linear elements). Obviously, this is a physically unrealizable 
requirement. Hence perfect results cannot be achieved using this D F  model 
except at signal levels causing only linear operation. Nonetheless, useful 
results can be achieved. In this connection, Smith (Ref. 95, p. 461) points 
out that reversal of a cause-effect relationship is sometimes physically 
indicated. For example, in the analysis of magnetic amplifiers with parallel 
ac windings or with a zero-impedance bias source, the flux is essentially 
sinusoidal. Therefore the D F  should be formulated in terms of flux input 
and magnetomotive force output, although the physical phenomenon is 
usually described as magnetomotive force for cause and flux for effect. 

Perhaps the best means of determining N(A,w) in the case of frequency- 
variant nonlinear networks is actual laboratory testing of a piece of hardware 
or a computer simulation of the network. Alternatively, an approximate 
means of calculation such as demonstrated in this section can be employed. 
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Following the approximate DF calculation procedure, it is easily shown that 
the approximate D F  for the network of Fig. 3.5-66 is given by 

Similarly, the approximate DF for the network of Fig. 3.5-6c is identical 
with the expression above, with the replacement of NO(A) for dead zone by 
NO(A) for saturation. Note the phase lead of each of these DFs, as required 
at either large- or small-signal levels. 

3.6 T R E A T M E N T  O F  MULTIPLE N O N L l N E A R l T l E S  

It is quite possible that nonlinearities will be present at more than one station 
around a control loop. In a typical active satellite attitude control system, 
for example, both the stabilizing (on-off) gas jets and the error transducer 
(perhaps a sun sensor) are quite decidedly nonlinear. In a synchro-controlled 
heavy-gun positioning system, both synchro error transducer and (saturating) 
hydraulic motor are again nonlinear, although in this case both nonlinearities 
are apparent only at large-signal levels. In fact, the particular combination 
of nonlinear error transducer and nonlinear power element are common 
occurrences in control-system applications. Thus it is fitting that we 
examine the possibility of using DF techniques in the study of multiple 
nonlinearity systems. 

GENERAL MULTIPLE NONLINEARITY SYSTEMS 

By a general two-nonlinearity system is meant one such as is illustrated in 
Fig. 3.6-1, where Nl(xl,ii.,) and N2(x,,i2), as well as Ll(s) and L,(s), are 
different. Let us replace the two nonlinearities by their respective DFs, 
Nl(Al,w) and N2(A2,w). The frequency response of this system can be 
determined by solution of the equation 

provided that the use of the DF for linearization is permissible. Clearly, 
one requirement for this to be true is that Ll(jw) and L2(jw) are each low-pass 

Figure 3.6-1 General two-nonlinearity systenz. 
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filters, so that the periodic inputs to both of the nonlinearities are nearly 
sinusoidal. 

Equation (3.6-1) can be solved in a manner very similar to the first solution 
discussed in the one nonlinearity case, Sec. 3.3. By choosing values of A, 
and w, Nl(Al,w) is determined and A, is, as a consequence, also determined. 

Thus the corresponding value of N2(A2,w) is established, and Eq. (3.6-1) is 
soluble for Xl/R.  This approach is in essence the same as considering the 
quantity Nl(Al,w)Ll(jw)N2(A2,w) equivalent to a new nonlinearity, N(Al,w), 
and proceeding as in earlier discussions of the single nonlinearity case. 

Limit cycle study for this system corresponds to the determination of 
nontrivial solutions to the set of four relationships 

or equivalently, 

which reduces to the single equation 

Of course, we come to the same conclusion by setting the denominator of 
Eq. (3.6-1) to zero, corresponding to writing the characteristic equation for 
the purely linear case. Equation (3.6-4) can be solved by any of the tech- 
niques for limit cycle determination discussed in Sec. 3.1 by treating the 
quantity Nl(Al,w)L,(jw)N2(A2,w) as an equivalent single nonlinearity 
N(A,,w). When Ll(jw) is a low-pass function, this simplified approach will 
be in small error. On the other hand, should Ll(jw) turn out to be a lead-lag 
or similar non-low-pass compensation network, the simplified approach 
could lead to large error. 

A more accurate solution to both the frequency response and limit cycle 
problems can be had by computing the DF for the complete chain 
Nl(xl,il)Ll(jw)N2(x2,i2).
This is accomplished by determining the actual 
first harmonic in y, when xl is a pure sinusoid. It is, of course, a more 
difficult approach. Regarding this approach, observe that even if N, and 
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N, are only amplitude-dependent, N will be both amplitude- and frequency- 
dependent because of the presumed frequency dependence of L,. Thus, in 
general, the treatment of multiple nonlinearity systems is bound to be some- 
what more laborious than the treatment of single nonlinearity systems. 

Example 3.6-1 Calculate the limit cycle frequency for the two-nonlinearity system of 
Fig. 3.6-2. 

As N, is multiple-valued, it is convenient to seek a solution of Eq. (3.6-4) in the form 

The phase-shifting elements in this equation are L,(jw)L,(jw) and N,(A,). Thus, given 
values of w must imply specific values of A, such that an appropriate loop phase shift 
occurs. Noting this phase requirement, we plot Ll(jw)L,(jw)and - I  /N,(A,) on amplitude- 
phase coordinates, as illustrated in Fig. 3.6-3. Any vertical line on this plot intercepts 
appropriatepairs of values (A,,w). 

A, is now expressed as 
A1 = A, INz(Az)I lLdjw)l 

and is calculated for several pairs of the values (A,,w). This allows the calculation of 
several values of IN,(A,)I. Adjoining the resulting magnitudes (expressed in decibels, 
since this allows for graphical addition) to Ll(jw)L,(jw)at corresponding frequencies gives 
the constructed locus, whose intersections with - l /N,(A,)  satisfy both steady-state oscilla- 
tion amplitude and phase-shift requirements, and hence yield the limit cycle solutions of 
interest. Figure 3.6-3 details the determination of one point on the constructed locus 
corresponding to the values A, = 10, w = 3.9. 

By this process we observe as the limit cycle solution, 

This compares extremely well with the analog computer solution 

particularly in view of the simplifying approximations employed. 

LIMIT CYCLES IN SYMMETRIC MULTIPLE NONLINEARITY SYSTEMS 

This section presents a method for transformation of a symmetric multiple 
nonlinearity system to a single nonlinearity system for the study of single- 
frequency limit cycle behavior. It is conjectured that there need be no 

Figure 3.62 Example two-nonlinearity system. 
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Figure 3.6-3 Graphical limit cycle solution in example two-nonlinearity system. 
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Figure 3.6-4 (a)  Symmetric two-nonlinearity single-loop system. (b) Single-nonlinearity 
equivalent for limit cycle study. 

restriction on the form of the linear elements, but that the nonlinearity is 
required to be odd. The resulting transformation, which apparently can be 
used for multiple- as well as single-loop systems, is exact. We first consider 
single-loop systems. 

The essence of the matter is simply to observe that in a single-loop 
symmetric multiple nonlinearity system, any limit cycle which propagates 
must preserve its waveform at certain stations around the loop. Hence 
nonlinear operations on the limit cycle have a net effect identicalwith linear 
time delay (Ref. 27). 

Consider the closed loop of Fig. 3.6-4. There is no input; we wish to 
study unforced oscillations. As the illustration implies, we have assumed a 
symmetric system in the sense that the two nonlinearities and the two linear 
elements are identical, respectively. It  is plausible to argue that if the loop 

Figure 3.6-5 (a )  Symmetric n-nonlinearity single-loop system. (b) Single-nonlinearity 
eyuivalenf for limit cycle study. 
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does support a limit cycle, then, except for phase, the waveforms x l ( t )  and 
x,(t) must also be identical. In order to sustain a limit cycle we must have 

where Tois the limit cycle period. This follows from the requirement for a 
loop phase shift of -360" in order to sustain an oscillation and the fact that 
the summing junction provides -180" of phase. Thus each of the pairs NL 
effectively provide a phase shift of one-quarter period, or -90". Hence it 
is argued that an equivalent representation for the system of Fig. 3.6-4a is 
as shown in Fig. 3.6-43. Further, it is argued that this representation must 
be exact for limit cycles of the assumed form. 

By a continuation of the same argument, we conclude the results depicted 
in Fig. 3.6-5 for a symmetric n-nonlinearity single-loop system. 

Example 3.6-2 Determine the functions wo versus ((w, = 1) and wo versus wn(( = 0.5) 
for a three-nonlinearity single-loop system with identical linear elements given by 

and identical ideal-relay nonlinearities. 
In the single nonlinearity equivalent for the three-nonlinearity case, the loop linear 

element is L(s) exp [-j(2n/3)]. Hence L(jwo) must supply 60"of phase lag, as follows: 

Theoretical and experimental results are plotted in Fig. 3.6-6. 
As can be seen, the theoretical results are quite good. By observing simulated outputs 

of the linear elements, the theoretical phase shift of -60" per block (NL constituting a 
block) is verified. The slight discrepancy between theoretical and experimental results 
for high ( is a consequence only of the approximations in describing function theory (i.e., 
waveforms in this region are highly nonsinusoidal). Exact analyses of the equivalent 
single-nonlinearity systems must lead to the exact limit cycle predictions. During simula- 
tion it was noted that all results were initial-condition-independent, as expected. 

It is possible to extend these results to the cases of coupled multiple-loop 
systems. Linearly coupled nonlinear loops and nonlinearly coupled linear 
loops can both be studied, although only the latter case leads to unique 
results. Before discussing the possibility of nonuniqueness, let us first 
obtain the equivalent single-nonlinearity system. 

Consider the system of Fig. 3.6-7a, where L, and L, are linear networks 
and N is a nonlinear operator. The symmetry in this system is apparent. 
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T h e o r e t i c a l  curve 
0 Experimental point 

w o  vs. ! , (u rn=1 )  

I I I I 1 1 1 1 1 I I 1 I I l l 1 1 

Figure 3.6-6 Experimental results for a symmetric three-nonlinearity single-loop 
system. wo= limit cycle frequency. 

Following the argument presented earlier, we should assert that x,(t) and 
x,(t) are identical in waveshape, but possibly of different phase. Since the 
phase shift from x, to x, and back to x, must be -360" or a multiple thereof, 
and since the phase shift from x, to x, is identical with that from x,  to x,, 
we should argue that in order for the coupled system to oscillate at one 
frequency with a repeated waveshape, the phase shift from x, to x, must be 
a multiple of -180". Hence we obtain the equivalent system of Fig. 3.6-7b. 
It is of the single-loop variety, with an equivalent linear element L,(s) f L,(s). 

Other cases can be treated in a similar manner. Nonlinearly coupled 
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Figure 3.6-7 (a) Symmetric two-nonlinearity multiple-loop system. (6) Single-nonlinearity 
equivalent for limit cycle study. 

linear loops, for example, degenerate to the single-loop case presented in the 
first part of this discussion, provided that one of the coupling elements 
contains a sign-changing term. In this situation any limit cycles which occur 
must couple both linear loops, and the results so obtained are unique. 

As an example of a possibility for which this model is incomplete, 
consider the case where N and L,(s) are of such forms that each of the two 
loops present when L,(s) = 0 can sustain two or more stable limit cycles. 
Now let us take the situation where both loops are supporting different limit 
cycles and L,(s) is small. The equivalent representation of Fig. 3.6-73 fails 
to account uniquely for this situation, indicating only that two stable limit 
cycles can indeed occur for sufficiently small values of L,(s). The equivalent 
representation does allow study of limit cycle behavior, but it excludes some 
of the possible limit cycle cases. 
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3.7 ACCURACY O F  T H E  DF APPROXIMATION1 

As is so often the case in work with various types of describing functions, 
accuracy estimators are not part of the theoretical bundle from which the 
describing function itself is formulated. Additional means must be sought 
out, with which to provide accuracy estimates. These schemes must 
inevitably take cognizance of the residual, that part of the nonlinearity output 
ignored in the actual describing function development. In the case of the 
sinusoidal-input , describing function, the residual consists of the entire 
sinusoidally forced nonlinearity output, minus the fundamental component. 
These harmonics, along with the linear elements, determine whether, and to 
what degree, D F  solution of a problem will be successful. 

In a number of text examples thus far, we have seen that results obtained 
through use of the D F  approximation have been quite successful from a 
qualitative point of view, and that quantitative results have as well been 
generally excellent. It  is also possible to demonstrate that both qualitative 
and quantitative conclusions can be in gross error, as shall be done later in 
this section. By examination of a few selected examples, we shall see that 
satisfaction of thefilter hypothesis requirement is indeed the keystone of DF 
success. Moreover, we shall be in a position to estimate the accuracy of DF 

The text discussion throughout this chapter is based on the filter hypothesis, namely, 
that the loop linear elements attenuate nonlinearity output harmonics to  the point that the 
nonlinearity input waveform is very nearly sinusoidal. Aizerman (Ref. 1) points out 
that for nonlinearities characterized by y = mx + pp(x) ,  where p is a small parameter, 
if for ,u = 0 the resulting closed-loop system has a complex pair of very lightly damped 
poles, the nonlinearity input will also be very nearly sinusoidal. He calls these the con- 
ditions of the autoresonance hypothesis. 

In the case of autoresonance we can postulate beforehand that the limit cycle frequency 
is very nearly equal to the natural frequency of the lightly damped pole pair. Call this 
frequency w*. Then a small correction to w*, called 80, is found from the expansion of 

Graphical solution of this equation is readily implemented. 
Aizerman (op. cit.) argues that when N(A)  is real, Sw = 0, and both the autoresonance 

hypothesis and the filter hypothesis lead to identical results. However, when N(A)  is a 
complex function of A,  the employment of the autoresonance hypothesis in the study of 
systems which satisfy thefilter hypothesis can lead to considerable error. On the other 
hand, use of thefilter hypothesis in situations where the autoresonance hypothesis is satisfied 
does not lead to contradictory results, and in fact gives a more accurate solution. For 
these reasons and the additional fact that in problems of automatic control the auto- 
resonance hypothesis is rarely satisfied, we shall pursue this topic no further. 
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results a priori, an essential feature of DF theory, based upon casual 
inspection of system linear elements and nonlinearities. 

An independent discussion of the filter hypothesis is presented in Appendix 
G. 

IMPORTANCE OF HARMONICS 

This topic is profitably pursued fist  by example, and later by discussion. 
We shall examine five different systems in some detail, emphasizing the role 
played by harmonics in D F  success or failure. 

The first three examples are studies of a conservative second-order system 
with various nonlinearities: piecewise-linear preload, harmonic, and odd 
polynomial characteristics, in that order. The first example could arise 
physically from an imperfect electronic amplifier simulation (finite output 
impedance) of an ideal relay controlling a motor of negligible time constant 
with a pure inertia load. The second example is a study of large-amplitude 
oscillations of an ideal pendulum. The last of the first three examples could 
have its physical origin in the behavior of a mass on a nonlinear polynomial 
spring. Exact solutions are derived, along with DF solutions for these 
examples, in order that percent error in D F  utilization can be established. 
The fourth example is a brief study of a pulse-excited damped clock pen- 
dulum, with the exact solution also given. The last example concerns a 
temperature control loop and the apparent reasons for which DF analysis 
fails to predict behavior of this system appropriately. 

Example 3.7-1 Determine the free-oscillation relationships which exist in the conservative 
second-order nonlinear system of Fig. 3.7-1. N(x )  is the preload nonlinearity. 

The differential equation governing the behavior of this system is 

By defining a new quantity z = i and writing x in the form z dzldx, we can separate 
variables to obtain 

z dz = -y(x) dx 

Integrating this result from A,, the peak value of x at which z is zero, to the literal value x ,  
we pet 

If the nonlinearity is odd, the free-oscillation waveform will be symmetric with respect to 
a quarter cycle. Using the above solution for z, we can establish To,the oscillation period, 
as four times the interval during which x grows from 0 to A,. 
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Figure 3.7-1 Nonlinear conservative second-order system. 

The free-oscillation frequency is therefore determined exactly as 

We can now specialize this result to the case of a preload nonlinearity. Proceeding as 
required, 

which yields, as the solution for wo 

Ao dx 

l / ( m / 2 ) ~ , ~+ DAo - (m/2)x2-

Observe that this system does not limit-cycle; in contrast, it supports a conservative free 
oscillation, the difference between the two being that whereas the former corresponds to a 
single discrete equilibrium state of the system over some finite range of initial conditions, 
the latter corresponds to a continuous spectrum of equilibrium states dependent directly 
on the initial conditions. 

For comparison let us obtain the frequency of oscillation by DF usage. In D F  
application the differential equation of motion of the system is written in the linear form 

from which it is immediately evident that the frequency of oscillation is 

v
where N(A) is as calculated in Sec. 2.3. 
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rn
Normalized oscillation amplitude g A ,  

Figure 3.7-2 Conservative-free-oscillation frequency vs. amplitude in a doubly integrating 
second-order system with a preload nonlinearity. 

Figure 3.7-2 is a plot of w o l d ;  for both the D F  and exact oscillation frequency calcula- 
tions. The maximum error in D F  approximation over the entire range of mAo/D is 
1.6 percent, occurring in the limit as mA,/D -t 0. In this region the preload nonlinearity 
is indistinguishable from an ideal relay. As mAo/D-. co, the purely linear case is ap- 
proached, and the error goes to zero. The free-oscillation frequency curves are indistin- 
guishable. 

Example 3.7-2 Determine the oscillation frequency of a simple pendulum of length I in 
a constant gravity fieldg. 

The equation with which we are concerned is well known, namely, 

With the aid of the identity 
X 

cosx = 1 - 2sine-
2 

and the definition for p,, 

the exact solution can be obtained from Eq. (3.7-I), in the form 

wo,-ct, = 2-4[ K  (sin $11 
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where K(arg) is the complete elliptic integral of the first kind. For k < 1, 

7712 dp,
K(k) =1 d l - k 2 s i n a p ,  

Another form of this integral appears in Eq. (2.3-29). 
For comparison, the D F  solution is obtained directly by use of Eq. (2.3-23). 

where Jl(A) is the Bessel function of order 1 and argument A. 
The normalized frequency of conservative free oscillations obtained by each of these 

methods is plotted versus A, in Fig. 3.7-3. The percent error in approximation is also 
shown. From this curve we see that for oscillation amplitudes less than 75" the error in 
approximation is 0.1 percent. By way of contrast, the error at 75" obtained by linearizing 
the sine function for small angles (sin x -X )  is 10 percent. At an amplitude of 130°, 
the error in D F  approximation is 2 percent, and the linear approximation is in error by 
32 percent. 

For completeness we mention that the DF-predicted oscillation amplitudes for 
which the linearly predicted oscillation frequencies are in error as indicated above are 
themselves in error- by 1 percent (at an exact amplitude of 75") and 4 percent (at an 
exact amplitude of 130"). 

Example 3.7-3 Compare the D F  and exact free-oscillation frequency solutions for a 
conservative second-order system with a one-term odd polynomial nonlinearity. 

The odd nonlinearity is defined by 

xn n odd 
Y = (  

xn-I 1x1 n even 

Proceeding as in the previous examples, the exact solution is found in the form 

For values of n less than 3, the definite integral above can either be evaluated directly 
(n = 1) or expressed in terms of standard elliptic integrals (n = 2,3). Values of n in 
excess of 3 can be accommodated by numerical integration. The D F  solution is, by virtue 
of Eq. (2.3-20). -

WO,D.) = ~ N ( A ~ )  

As both solutions for oscillation frequency display identical dependences upon A,, the 
percent error attendant on D F  utilization can be assessed with a single calculation. Table 
3.7-1 lists the result of this calculation for various nonlinearity powers from 1 (y = xl, 
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Oscillation amplitude, degrees 

Figure 3.7-3 Conservative-free-oscillation parameters for a simple pendulum. 

linear case) to 9 (y = x9). Also tabulated is the ratio IA,/A& at the input to the nonlinearity. 
This ratio is computed by taking the harmonic amplitude ratio IA,/A,I, at the nonlinearity 
output (having assumed a sinusoidal input) and multiplying by ), the amount by which the 
linear element attenuates the third harmonic relative to the first harmonic. 

A very significant, albeit quite expected, conclusion can be drawn from this tabulation, 
namely, that the DF solution accuracy improves with decreasing third-harmonic magnitudes 

TABLE 3.7-1 FREE-OSCILLATION RESULTS IN A CONSERVATIVE 
SECOND-ORDER SYSTEM W I T H  A N  O D D  POLYNOMIAL 
NONLINEARITY 

Describing Harmonic 
function Exact amplitude 

result result Percent error ratio at x-I-----
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at the nonlinearity input. For values of the ratio IA,/A,I, less than 5 percent, it is seen that 
DF results are accurate to better than 5 percent. This result is quite representative of D F  
accuracy in second- and higher-order systems. 

Example 3.7-4l Determine the limit cycle amplitude of a pulse-excited clock pendulum 
with damping ratio 5. The velocity variation resulting from impact is a constant, V. 

The equation we are dealing with is 

where the nonlinear characteristic is as shown in Fig. 3.7-4. By assuming a sinusoidal 
input, x = A sin wt, and computing the DF,  we find 

Sincef(x,R) is a narrow pulse, it follows by integration of the differential equation of motion 
over the pulse duration that the change in velocity is equal to  the pulse area. That is 
(r  = pulsktime duration), 

v =  70 

Continuing, the velocity of the assumed sinusoidal oscillation in the vicinity of t = 0 
[1(0) = Aowo] times the pulse-time duration must equal 26, the nonlinearity "on" width. 

Combining these equations, we get for the linearized nonlinearity the D F  representation 
[Eq. (2.2-14)] 

n,(Ao,wo) . 2 V  .
f(x,b) = n,(Ao,wo)x + ---x = - x  

~ A o  

Inserting this into the original equation of motion yields 

from which it is clear that we get a steady-state oscillation only if 

The subscript D F  is used to distinguish this result from the exact limit cycle amplitude 
found by Magnus (op. cit.), 

Figure 3.7-5 is a plot of exact and approximate solutions as well as percent error in DF 
solution versus 5. For low 5 the pendulum is nearly undamped and oscillates almost 
sinusoidally. The error in this region is small. The D F  solution percent error is seen to 

This is one of many examples investigated by Magnus (Ref. 65) in an excellent paper on 
DF theory. 

"'0 
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f ( x 9 i )  I 

Figure 3.7-4 Nonlinear characteristic of clock-pendulum pulse 
exciter. 

Damping ratio 5 

Figure 3.7-5 Solution for limit cycle amplitude of a pulse-excited clock 
pendulum. 
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increase with increasing 5. We note here that with increasing b the oscillation becomes 
more nonsinusoidal. This is due to failure of the loop to attenuate higher harmonics 
sufficiently, relative to the fundamental. 

Example 3.7-5 Investigate the limit cycle behavior of a temperature control system for 
which the block diagram is as shown in Fig. 3.7-6a. 

Using DF methods, we immediately conclude that no oscillation is predicted to take 
place. The graphical construction pertinent to this conclusion is shown in Fig. 3.7-66. 
The DF result is obviously in complete error, since a limit cycle must occur in this on-off 
system if DK > 6. Why, then, we may ask, does the DF formulation yield such poor 
results? 

Thermostat 
with 

Phase, degrees 

( b )  

Figure 3.76 (a) Temperature-regulating system. (b) DF amplitude-phase-plot limit cycle 
construction. 
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The answer to this enigma becomes evident if the exact limit cycle waveform is considered. 
This has been illustrated in Fig. 3.7-6a, and is seen to consist of matched single-exponential 
segments. The waveform suffers slope discontinuities twice during each limit cycle period, 
and is, generally speaking, hardly sinusoidal. It is waveform harmonic content which is 
responsible for the DF failure. 

Without knowledge of the exact waveform, however, these poor results can be and should 
have been anticipated. A simple calculation demonstrates this point. The third- to 
first-harmonic amplitude ratio has been shown to be # at the nonlinearity output. The 
linear elements attenuate each of the harmonics by the factor dl + n P ~ o P ~ x ,where n is 
the harmonic number. Thus, at the input to the nonlinearity, we have 

Without specifying the value of W,T it is clear that the following limiting inequality holds: 

That is, at the input to the nonlinearity, the third-harmonic amplitude is somewhere 
between 11.1 percent and 33.3 percent of the fundamental. As a result of this large 
amplitude at x, the unaccounted for phase shift of the third harmonic is sufficient to upset 
the original input zero-crossing assumptions (in this on-off relay problem only the input 
zero crossings, not its detailed waveshape, are influential on limit cycle behavior), and thus 
negate the D F  calculation. 

That the D F  approach fails in the last example is not of the slightest 
consequence; there are better ways to study this low-order system.' What 
is important is the fact that clear indication exists which shows the basic 
assumptions of D F  theory to be unsatisfied. We shall pursue this point 
further. 

IMPORTANCE OF HARMONICS (CONTINUED) 

Reviewing each of the foregoing examples, we can make one consistent 
observation, namely, that D F  solution accuracy was always degraded by an 
increasing harmonic content at  the input to the nonlinearity. 

It  is not sufficient merely to know the harmonic content at the nonlinearity 
output; the filtering influence of the linear elements must also be assessed. 
From what we have seen so far, a doubly integrating linear filter provides 
sufficient attenuation of higher harmonics to yield very reasonable D F  results 

Exact solution by matching exponential waveforms at  the switching boundaries, for 
example. Another method of study, the phase plane (see Chap. I), is of general use for 
the efficient and complete study of first- and second-order nonlinear systems. Still another 
method, Tsypkin's exact method, is of use in the study of limit cycles in relay systems and 
is examined in some detail later in this chapter. At that time Example 3.7-5 is treated in 
a most satisfactory manner. 
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for a wide variety of nonlinearities, whereas a first-order linear lag filter 
insufficiently attenuates these harmonics and can lead to ineorrect D F  results. 
Many other examples have been studied along the same lines. The results 
indicate clearly that as the order1 of the linear portion of the system increases, 
the error in D F  application is reduced. This is an interesting situation since 
the phase plane and other related techniques are well suited to the study of 
second- (and occasionally third-) order systems. In this light the D F  ought 
to be considered as an adjunct to these methods, for use in studying third- 
(and occasionally second-) as well as higher-order systems. That higher- 
order systems are more amenable to simple D F  analysis is indeed a happy 
circumstance, being quite the opposite of a trend one normally anticipates in 
system work. The reason for this is simply that repeated integrations of any 
periodic waveform of frequency w eventually reduce that waveform to a 
sinusoid of frequency w.  Consider an arbitrary periodic function y(t) 
expressed in its complex Fourier series representation. 

Let us integrate this expression m times and dispose of zero-frequency terms. 

The superscript denotes the number of integrations performed. If we 
form the ratio of kth harmonic to first harmonic and let m --t co, we see 
indeed that only the first harmonic remains. 

The study of repeated integrations on a square wave points out dramati- 
cally how the fundamental square-wave frequency is eventually singled out. 
Figure 3.7-7 is a demonstration of this process, with each successive integral 
normalized in amplitude and freed of the bias resulting from integration. 
After the second integration the (parabolic) waveform already looks quite 
sinusoidal. After an infinite number of integrations, a pure sinusoid is 
converged upon. We hasten to point out that this exercise is meant only 
to lend physical credence to the accuracy development. Replacement of the 
pure integrations by first-order-lag filters would tend to slow down the 
convergence to a sinusoid, etc. 

More specifically, the excess of poles over zeros in the frequency region up to 5wo. This 
presumes no lightly damped pole pairs at the frequency of nonlinearity output harmonics. 
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First normalized integration -047-
Second normalized integration * 

Figure 3.7-7 Effect of repeated integration on a square wave 
(normalized). 

The use of asymptotic Bode plots is very convenient for determining the 
attenuation of all harmonic frequencies by the loop linear elements. Of 
course, the same information also exists on amplitude-phase and polar 
plots, but these plots are parametrized by o,and hence must be carefully 
examined to ascertain actual attenuation ratios. Figure 3.7-8 shows the 
amplitude-phase plots for two different linear open-loop systems. Were the 
loops to be closed by the insertion of a non-phase-shifting nonlinearity, one 
ought to feel secure in his estimation that DF analysis would yield superior 
results in case a as opposed to case b, simply because of the observation that 
third- and higher-harmonic filtering is more pronounced in this case. 

A word of caution with regard to the accuracy expected in graphical 
interpretation of DF solutions is in order. When the loci L ( j o )  and 
-1/N(A,w)  indicated on the amplitude-phase plot are nearly orthogonal at 
the limit cycle intersection, results are ordinarily of 5 percent to 10 percent 
accuracy. Nearly parallel loci at intersection are apt to yield substantially 
poorer results. Low-frequency limit cycles often exist when the two loci 
approach each other at low frequencies but indicate no intersection. Such 
limit cycles can occasionally be determined by making a second-order 
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attenuation 

Phase, degrees 

attenuation 

( b )  Phase, degrees 

Figure 3.7-8 Estimation of the importance of 
harmonics by use of the amplitude-phase plane. (a)  
Less important; (b) more important. 

approximation to the linear elements and studying the resultant system by 
phase-plane techniques. At any rate, in the latter instance it is desirable to 
determine a higher-order DF approximation as a check on DF accuracy. 
One such approximation is presented next. Another can be found in 
Popov (Ref. 88). 

REFINED DF APPROXIMATION 

Refining the DF formulation implies accounting for some of the higher 
harmonics comprising the residual, heretofore neglected. The means for 
achieving such DF refinement must be uncomplicated, for without this 
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constraint all the benefit of DF usage will be mitigated. We shall proceed 
with this point of view. 

What we are after is essentially a new DF which describes the fundamental 
gain of the nonlinearity in the presence of the fundamental and simultaneously 
some of the higher harmonics. In Chap. 5 we shall see that exact calcula- 
tions for one such DF are indeed possible, but quite complicated. Even 
then only the third harmonic is considered. Although such calculations 
definitely have their own domain of utility (study of subharmonic responses, 
for example), we should still like to seek out a DF second approximation, 
whose primary function is to serve as an accuracy check in areas of question- 
able DF results. 

A consideration of the significance of feedback in linear systems provides 
us with the direction to follow, in order to find a scheme for DF refinement. 
Consider a unity feedback linear system with forward-path elements L(jw) 
and input R(jo). The output C(jw) can be constructed by tracing the input 
around the loop an infinity of times. Thus, when the input is first applied, 
the output is, for an instant, R(jw)L(jw). Presently, some feedback occurs, 
and the output is reduced by the amount -R(jo)L2(jw). Additional feed- 
back occurs, and the following series can be constructed (IL( jo)] < 1): 

C(jw) = R( jw)L(jw) - R( jw)L2(jw) + R( jw)L3( jo )  - - - . 
= R(jw)L(jw)[l - L(jw) + L2(jw) - - .] 

This, of course, is the familiar linear-system closed-loop transfer function 
result. We now make the observation that if L(jw) is a low-pass function, 
higher powers of L(jw) tend to zero in the frequency range of interest. 
Under this condition the transfer function can be approximated by taking 
only the first few terms of the series, namely, 

This process is tantamount to considering only the first portion, as it were, 
of an infinite series of feedbacks. The same approach has been adopted for 
synthesizing a refined DF approximation (Ref. 34). 

Suppose that by means of DF theory the nonlinear system of Fig. 3.7-9 has 
been found to oscillate at a frequency o. In this first DF approximation, 
the input to the nonlinearity, x,,,(t), has been taken as a pure sinusoid. All 
higher harmonics were ignored. As a second approximation we now take 
the input to the nonlinearity to be the pure sinusoid calculated above plus 
the fed-back quantity comprised of the filtered residual. We now compute 
the output of the nonlinearity in response to the second-approximation 
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residual 

First approximation: x( , ) ( t )= A sin or 
Second approximation: x(,Jt)= A sin ot  -2 Ak I ~ ( j k o ) lsin (kot+ +k + / ~ ( j k o ) )  

k = 2 

Figure 3.7-9 Formulation of a refned DF approximation. 

input x(,)(t), and define the second-approximation DF in the conventional 
manner as the complex ratio of output first-harmonic term to input first- 
harmonic term. The effect of higher harmonics is implicit in this formula- 
tion, although they have by no means been accounted for exactly. To 
obtain corrected results, one then uses the refined D F  and performs other- 
wise ordinary DF calculations. The technique is deinonstrated in detail by 
the following example. 

Example 3.7-6 Determine the refined D F  solution for the limit cycle displayed by the 
third-order ideal-relay control system of Fig. 3.7-10. Relay drive levels are D. 

The first D F  solution for the limit cycle frequency and amplitude is easily found to be 

Hence the first-approximation nonlinearity input is 

The residual consists of the odd harmonics associated with a square wave of amplitude D,  
as shown in Fig. 3.7-10. By passing this residual through L(jw), we find as the second 
approximation to the nonlinearity input 

~ ( z , ( t )-sln w,t= 
2DK . 

-
* 4 0  

IL(jkw,)l sin [kw,t + /L(jkon)l
775wn C 

k=3.5, .  . . 
where the amplitude and phase transfer of L(jkw,) are (k  > 1 )  
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residual 

sin /mot 

Figure 3-7-20 Third-order ideal-relay control system, first D F  approximation. 

and 

Let us now restrict our attention to the third harmonic only. In principle, additional 
harmonics can be carried along, but for demonstration they serve only to clutter the issue. 
Thus k = 3, and xo,(t)can be simplified to the following form: 

With this as the new input to the nonlinearity, the output will again be a square wave with 
fundamental-component amplitude 4018. For this reason the magnitude of the refined 
D F  is unchanged, remaining 4DlnA. The phase shift of the refined D F  is different from 
zero degrees, however, because of the presence of the third harmonic at the relay input. 
Presuming that the first D F  approximation was not in great error, the sign of x,,,(t) will 
change at some value o f t  which is small (t - 0), allowing for an expansion of xt2,(t) in 
the vicinity o f t  = 0. Performing this expansion and setting x,,,(t) to zero yields 

w,r -
3641  + (3514)2 

cos tan-' - - 3wnt sin (tan-' - = 0C :I Y 
Solving for oat ,  we find 

25a n t  = 
9(8 + 55') 

Since the solution indicates apositive value for t, the phase shift associated with the refined 
D F  is lagging. Thus the refined DF, designated No,(A), is 

The refined approximate system for limit cycle study is illustrated in Fig. 3.7-11. It is 
impractical to observe the effect of N(,,(A) on the loop graphically, since the maximum 
phase shift involved is only 1.1" (at 5 = 42). The condition for loop oscillation can be 
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Figwe 31-12 Third-order ideal-relay control system, refined DF approximation. 

studied analytically, however. We require an open-loop phase shift of -18O0, at the new 
limit cycle frequency wo;thus 

or 

Continuing, 

25 
= cot 

9(8 + 55') 

9(8 + 55') 
25 

Solving for w,, we finally obtain 

To a second approximation we find that the limit cycle frequency does indeed depend upon 
5. In the region of high 5, the frequency correction term is largest. Such an outcome is 
reasonable, since it is precisely in this region that the limit cycle waveform harmonic 
content is greatest. 

The first-order DF solution for w,, as well as the second-order and exact solutions, are 
illustrated in Fig. 3.7-12.' The exact solution for the limit cycle frequency is the implicit 
relationship 

-I
sin ( 2  t a r 1  F)sinh (9s

/,d-"A
2 tan-' s)


- "'0 

5% cosh (G)+ cos 

5 

(,-\/I 
oo 
- i2wn) 

which can be obtained by the method of piecewise solution of differential equations and 
boundary condition matching or Tsypkin's method (Sec. 3.8), among others. As can be 

Note the expanded ordinate scale in this figure. 
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Figure 3.7-12 DF and exact limit cycle frequency solutions for example third-order relay 
system. 

seen, it is a rather awkward expression, and is most reasonably dealt with by digital 
computer. 

In the range 0 < 5 < I ,  the first D F  approximation has a maximum error of 2.3 percent, 
whereas the second D F  approximation error is less than 0.6 percent. Over the semi-infinite 
range in 5,  the first D F  approximation is in maximum error of 10.3 percent (5 -. co), 
whereas the second D F  approximation has a maximum error of 4.9 percent ( 4  -t co). 
From these data it is clear that the second approximation does yield qualitative results 
missed by the first approximation, namely, the 5 dependence of o,. 

Note that in the region of high 5,  an amplitude-phase plot would show the - l / N ( A )  
and L(jo)loci to be nearly parallel at intersection. It was pointed out earlier that under 
this circumstance the accuracy of D F  results is expected to be degraded somewhat. The 
validity of this rule of thumb is redetermined consistently, as in the above example. 

DF ACCURACY A N D  VALIDITY STUDIES 

Up to this point we have attempted to both justify the validity of DF usage 
and assess DF accuracy by way of examples. To a certain extent this 
procedure has led us to develop various rules of thumb which permit exploita- 
tion of the DF as a device for nonlinear system study. However, as must 
certainly be the case, the rules of thumb are primarily stated qualitatively. 
There exist, on the other hand, several fairly general approaches to the 
accuracy and validity questions. These, we shall see, lead to quantitative 
statements concerning accuracy and validity. 
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The systems to which we are likely to apply D F  methods are commonly 
quite complex. Therefore it will probably be no surprise to learn that the 
quantitative statements which we shall be able to make in literal terms will be 
cumbersome and of little value in actual analysis and design. Nevertheless, 
such statements, and the theories from which they are derived, do form a 
concrete mathematical basis for D F  usage. It is for this reason alone that 
they are important in the context of our work and worthy of mention. 

In what follows, because of space limitations, we present only the rudi- 
ments of several important accuracy and validity studies (along with source 
references). The interested reader is encouraged to follow up this presenta- 
tion, especially since each of these studies is of some interest in its own right. 

Bogoliubov and Mitropolsky (Ref. 8) extended the mathematical founda- 
tions upon which the earlier work of Krylov and Bogoliubov (Sec. 2.1) was 
based. One important result of their work was a recursive method for 
obtaining an asymptotic series solution of the autonomous equation 01 
is a small parameter) 

i+ oO2x= pf (.x,i) (3.7-1 3) 

The series solution is asymptotic in the sense that the error of the nth 
approximation is proportional to the (n f 1)st power of the small parameter 
P-

The form of the series solution is 

where y = mot + 0 ,  and x(j) are periodic functions of y,  with period 27. 
Further, A and y are required to satisfy the following differential equations: 

This formulation excludes the appearance of secular terms in the solution, 
which arise in the usual method of expansion in powers of a small parameter. 
Using Eqs. (3.7-14) and (3.7-15), one seeks a solution of Eq. (3.7-13). That 
is, one wants to find di)(A ,y), A(')(A), and Y("(A), which, simultaneously, 
lead to a solution of Eq. (3.7-13) to prescribed accuracy. The procedure to 
be followed is analogous to that used in the perturbation method (Sec. 2.1). 

Bogoliubov and Mitropolsky (op. cit.) point out that only the first two or 
three terms of Eq. (3.7-14) can be computed in practice, because of the 
complexity of the formulas involved. Hence the practical applicability of 
the method is governed by the asymptotic properties of a few-term solution 
as p -+ 0, rather than the actual convergence of Eq. (3.7-14). It  is readily 
shown that the first series term in this recursive solution is the same as that 
originally developed by Krylov and Bogoliubov. 
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Among many examples considered by Bogoliubov and Mitropolsky is the 
simple pendulum, for which we have already obtained D F  and exact solu- 
tions (Example 3.7-2). The D F  solution, of course, is identical with the 
first-approximation solution of Bogoliubov and Mitropolsky. This follows 
since we have already indicated the equivalence of their solution to that of 
Krylov and Bogoliubov, and have earlier shown (Sec. 2.2) the relationship 
of the Krylov-Bogoliubov method to the D F  method. For an oscillation 
amplitude of 160" we have seen that the first approximation to the oscillation 
frequency is in error by about 8 percent (Fig. 3.7-3). The second approxi- 
mation, including the term x( l ) (A,y ) ,is reported (Ref. 8, p. 64) to be in error 
by only 3 percent. Considering the degree of nonlinearity present at  such a 
large oscillation amplitude, we should conclude that these results are 
excellent and, in particular, that the second-order asymptotic solution can 
indeed represent a substantial improvement over the first-order solution. 
Unfortunately, we note that these results are applicable only to second-order 
systems. 

Johnson (Ref. 48) studied the problem of D F  accuracy directly. His 
work is based on earlier studies of Bulgakov (Ref. 12), and is addressed to 
the determination of the.second term in a series for which D F  analysis 
provides the first term. This additional term, once found, is used to correct 
D F  results and to indicate D F  solution accuracy. As we have already noted, 
general calculations of this sort are complicated and seldom of use in practice. 
Since this turns out to be the case here, we indicate Johnson's principal 
results without discussing his method in any detail. 

Consider a single nonlinearity system to be in an oscillatory state. For a 
related hypothetical system define the input amplitude to the nonlinearity 
x and the oscillation frequency w in terms of the following series: 

where p is an artificially introduced parameter multiplying the nonlinearity, 
for which the value y = 1 reduces the hypothetical system to the original 
system. In Eqs. (3.7-16), called the generating solution, x, and w, are the 
D F  solutions to the original system; xi(i 2 1) and Ai(i 2 1) constitute the 
D F  correction terms. 

One of Johnson's main results was the determination that A, = 0; i.e., 
the first frequency correction is zero. He also provided formulas for the 
first amplitude correction and the second frequency correction, although the 
accuracy estimates they provide depend upon the (unknown) radius of 
convergence of his power series. Bass (Ref. 3) states, appropriately, that 
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"Johnson's real accomplishment was to produce a new heuristic motivation 
for the [DF] method; one seeks for the linearized differential equation a 
linear equation possessing a 'generating solution' whose first frequency 
correction vanishes when it is perturbed in the 'direction' of the given 
nonlinear equation." 

In his paper (op. cit.), Johnson studied a second-order system with friction- 
controlled backlash, for which the DF method results in limit cycle amplitude 
and frequency errors of 2.50 and 0.97 percent, respectively. Applying his 
second-frequency and first-amplitude corrections, he was able to reduce these 
errors to 0.28 and 0.23 percent, respectively. Similar order-of-magnitude 
reductions in DF errors were obtained in second-order ideal-relay- and 
ideal-velocity-limited servos. These results are outstanding, particularly 
in view of the fact that the linear elements' transfer function is only of 
second order. They not only tend to bear out the validity of Johnson's 
work but also provide further evidence that DF accuracy is on the order of 
5 to 10 percent for a rather wide class of nonlinear systems. 

Bass (Ref. 5) attempts to give a rigorous treatment of the mathematical 
validity of the describing function method by use of topological arguments. 
He starts with a physical system whose behavior is governed by a nonlinear 
vector differential equation of the form 

x =f(x,f) where f(-x, -f) = -f(x,i) (3.7-17) 

Then, with the definition 8 = vt (V = 2.rr/T, T being a period, if one exists; 
he is essentially normalizing the problem), Eq. (3.7-17) becomes 

which is then broken into its linear and nonlinear parts to give the final form 
of the physical-system equation. 

Proceeding along typical DF technique lines, he defines the vector xo(B), 
which is just the fundamental harmonic term in the Fourier series of x(B), 
and obtains what he terms the "hypothetical tractable system" equation 

The "describing function problem" is then to determine the circumstances 
under which, if Eq. (3.7-19) has precisely one periodic solution, the physical 
system of Eq. (3.7-18) will also have at least one periodic solution. 
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What Bass does show is that if @(x,i) is smooth, then under appropriate 
conditions a periodic solution to Eq. (3.7-19) implies a periodic solution to 
Eq. (3.7-18). If @(x,i) is piecewise-smooth, he is able only to show the 
conditions under which there are periodic solutions to Eq. (3.7-19), and not 
what this implies in respect to the physical system, Eq. (3.7-18). For 
Q(x,2) piecewise-smooth, he shows that Eq. (3.7-19) has the appropriate 
periodic solution if and only if a 2n-dimensional ( x  is an n vector) system of 
implicit equations is satisfied. The necessity of this condition is derived 
from consideration of the Fourier coefficients of x(0) quite easily, though the 
sufficiency involves more work. 

It  might be remarked that Bass does not expect an engineer to verify 
theoretically all the requirements he states for his results to hold; that would 
be a very large and difficult undertaking. He is attempting to put the 
technique on a mathematically justifiable basis, not to give methods for 
calculations. Unfortunately, the requirement that @(x,i) [and consequently 

f(x,i)] be smooth leaves out a large class of important nonlinear control 
problems; however, he does supply these rigorous results for a "smooth 
forcing function" system. An important result of this work is a rigorous 
verification of the filter hypothesis of conventional DF usage, a t  least for 
smooth systems. 

Sandberg (Ref. 91) considers the operator equation 

where x = a vector function, 
L = a linear operator, 
N = a nonlinear operator, 
r = a periodic forcing function, 

and the equivalent linearization approximation 

in which Zextracts the fundamental component of the Fourier series expan- 
sion of LN(x + r) and xo is a periodic solution. Sandberg's analysis is 
carried out in the space of periodic functions square integrable over a period. 
His method is to determine conditions that guarantee that an operator 
derived from L N  is a contraction mapping in the whole space. He presents 
conditions under which there exists a unique periodic response to an 
arbitrary periodic input with the same period, as we11 as an upper bound on 
the mean-squared error in using equivalent linearization. He also gives 
conditions under which subharmonics and self-sustained oscillations cannot 
occur. 

Holtzman (Ref. 45) treats essentially the same problem as Sandberg (op. 
cit.). His approach differs from Sandberg's in that Holtzman tries to obtain 
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a contraction mapping only in a neighborhood of x,, and thus avoids global 
Lipschitzian type of requirements which often limit the applicability of the 
contraction mapping theorem. However, his analysis is not applicable to 
piecewise-linear nonlinearities as a result of requiring differentiability. In 
his work there are applications to time-lag systems and subharmonic 
oscillators. 

In a different study, Holtzman compares the jump resonance criteria 
given by the D F  method and the circle criterion, the latter being a mathe- 
matically rigorous sufficient condition for the absence of jump phenomena in 
nonlinear feedback systems. The result of that study, stated briefly, is that 
the circle criterion does not contradict the D F  criterion. This can be con- 
strued as providing another favorable piece of evidence relative to validity 
of the D F  method. 

V. M.  Popov (Ref. 89) studied the stability of a class of closed-loop non- 
linear systems by using direct analytical methods. He succeeded in establish- 
ing certain general results which can be interpreted in terms of the system 
linear elements' frequency response and the loosely defined shape of the 
nonlinear characteristic. It  is of considerable interest to examine DF 
analysis in view of these results. 

The class of systems considered by Popov contains a single static memory- 
less nonlinearity which is sufficiently smooth to ensure the existence of a 
unique solution of the governing differential equations, and a linear part 
with only lagging phase. In one special case his results can be interpreted as 
follows: For nonlinear characteristics lying entirely within the first and 
third quadrants (shaded area of Fig. 3.7-13a), the system is stable provided 
only that the linear-part phase shift is always lagging and takes values 
between 0 and -180". 

Figure 3.7-13 Region of allowable nonlinear characteristics (a )  and typical linear-part polar 
plot (b) for stability, according to V. M. Popov's criterion. 
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Consider a D F  analysis of this class of systems. As the nonlinear 
characteristic is single-valued and bounded by the lines x = 0 and y = 0, 
it follows (cf. Sec. 2.6) that N(A) is real and of magnitude 0 < N(A) < co. 
The polar plot of -l/N(A) is thus the negative real axis. We immediately 
conclude that for all linear elements with phase lag never exceeding -180" 
the nonlinear systems are stable, that is, no limit cycle takes place. This 
is in complete agreement with Popov's result, although, according to D F  
analysis, no restriction on allowable phase lead is required (except that it 
must be less than 180"). 

A generalization of Popov's criterion for lagging phase shift has been 
accomplished in the determination of stability conditions when the nonlinear 
characteristic lies in the sector between the lines x = 0 and x = Ky (Ref. go), 
and this work has been extended to  certain cases, including leading phase 
shift, by further restricting the shape of the nonlinear characteristic (Ref. 
115). Since there presently exists no neat polar-plane interpretations of these 
results, they are not further pursued here. One does observe from such 
work, however, the hint that D F  analysis may be in error when applied to 
systems in which large phase lead occurs at low frequencies. Experimental 
results1 appear to verify this point. 

It  is further worth noting that, because of their generality, results based 
upon extensions of Popov's criterion are always more conservative than the 
corresponding D F  statements. 

3.8 E X A C T  M E T H O D S  F O R  RELAY C O N T R O L  SYSTEMS 

A control system in which the power amplifier is a relay device is called a 
relay (alternatively, on-off, contactor, bang-bang, bistable, etc.) control 
system. The relay amplifier is desirable because it can be simple, rugged, 
compact, and relatively cheap, while meeting high load-power requirements. 
Examples of symmetrical characteristics of four relay amplifiers are shown 
in Fig. 3.8-1, where 6, and 6, indicate hysteresis and dead-zone switching 
levels, respectively, and the associated drive levels are fD. The relay as a 
control-system component is enjoying an increasing popularity in both old 
and new control problems. Home temperature control systems, aircraft 
and missile adaptive control systems, and space-vehicle attitude control 
systems constitute typical applications. We have already seen the use of a 
relay for time-optimal control (Sec. 3.4). The range of variety in relay 
controller utilization is, in fact, enormous. 

The actual design of relay control systems is a matter elsewhere discussed 

Brought to the authors' attention by R. W. Brockett, Massachusetts Institute of 
Technology. See Prob. 5-20. 
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Ideal relay Relay with dead zone 

Relay with hysteresis Relay with dead zone and hysteresis 

Figure 3.8-1 Common relay characteristics. 

in this and other texts. Of importance here is the fact that relay control 
systems frequently either sustain limit cycles, are required to operate in the 
non-limit-cycle mode near a region of possible limit cycle behavior, or (less 
frequently) are subjected to near-harmonic forcing. Precise knowledge of 
steady oscillatory behavior is therefore desirable. It  turns out that for 
systems incorporating relay-type devices, exact methods for steady-oscillation 
determination are available. Tsypkin's method is presented in some detail, 
because of its utility as a rapid check on DF results. Inasmuch as this 
method is of limited value in actual control-system design, it is treated as a 
DF validity test. As such, some discussion here is devoted to its analytical 
application, as opposed to its conventional graphical application. The 
emphasis in presentation is on application to low-order systems since we are 
perhaps at this time convinced of the reliability of DF results as applied to 
high-order systems. Although the development to follow deals only with 
symmetric two- or three-output-level devices, it is readily extended to 
asymmetric and other multiple-output-level devices. 



E X A C T  M E T H O D S  F O R  R E L A Y  C O N T R O L  SYSTEMS 187 

PERIODICITY CONDITIONS 

Consider a steady-state situation in which the closed-loop system of Fig. 
3.8-2 sustains an oscillation. Sufficient conditions for the existence of this 
oscillation can be deduced, quite generally, from an observation of the 
periodic requirements on x(t) .  For convenience we set a time origin a t  the 
instant of a positive switching (y becomes +D) and call To the oscillation 
period (To= 2rr/o0). 

In the absence of any input r( t ) , the oscillation will be symmetric about the 
origin for all symmetric relay characteristics. Thus conditions relating to 
periodicity need be written only over the half-cycle. 

1. Ideal relay. The conditions sufficient for a periodic waveform are, in 
this case,l 

.(%) and e(5)= 0 dt 2 < 0 

since switching takes place at the zero crossing point for x. Equation 
(3.8-I),geometrically motivated, merely states that the value of x at the 
half-period equals the value of x at the period outset and that the slope is 
reversed at these instants. These conditions follow from the assumed 
"mirror-image" symmetry, familiar from Fourier series study. 

2. Hysteretic relay. As in the case of the ideal relay, there are only two 
switchings per cycle. Sufficient conditions for periodicity are 

e(5)
x - d , and dt 2 < O  

which can be argued in a manner similar to that presented above. 
3. Relay with dead zone. For this nonlinearity there are four switchings per 

limit cycle period, or two over the half-period. The first switching occurs 
some time before the half-period, denoted pT,,/2, with 0 < p < 1 .  The 
second switching occurs at the half-period. Both sets of conditions, 
which must simultaneously be met for possible oscillatory behavior, are 

= dd and 

also 

( ) and e(5)dt 2 c0 (3.8-3b) 
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4. Hysteretic reIay with dead zone. Again there are two switchings per 
half-period. The sufficient conditions for oscillatory behavior are 

also 

e(5)and dt 2 < 0  (3.8-43) 

where, as before, 0 < p < 1. 

Having noted the geometric prerequisites for oscillation sustenance, it is 
now possible to establish conditions on the linear loop elements L(s), so as 
to satisfy these prerequisites. One method of accomplishing this task, 
introduced by Tsypkin, is discussed next. 

TSYPKIN'S METHOD 

Assume the system of Fig. 3.8-2 to be in a steady oscillatory mode. For 
the sake of discussion, assume the relay to have drive levels fD and switch- 
ing levels f6,. L(s) is assumed rational in s ,  having all its poles in the left 
half-plane, with at least as many poles as zeros. When oscillating, the relay 
is assumed to  flip every half-cycle. Then, for any oscillation waveform, the 
nonlinearity output y(t) will be a square wave.' 

The Fourier series belonging to this periodic function is, for t > 0, 

=9 5 sin kwot 
7r k o d d  k 

4 0  " 1 ---2 - Im (ejkoot) 
7r kodd  k 

Following Bergen (Ref. 7), we note that since c(t) and C ( t )  are not necessarily 
continuous, it is convenient to define a function L,(s) by 

u(t - 7) is the displaced unit-step function of value 1 for t 2 7 ,  0 for t < 7. 
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Figure 3.8-2 Closed-loop nonlinear system. 

where Ll(s) necessarily has more poles than zeros, and L(m) is a constant. 
Since L(s) has all its poles in the left half-plane, it follows from Eqs. (3.8-6) 
and (3.8-7) that 

c(t) = 
4 0  
- 2 " 

-
1 

Im [Ll(jkwo)ejkwot 1 + L(m)~( t )  (3.8-8) 
rr kodd k 

With Ll(s) low-pass, the discontinuities in c(t) appear only in the second 
term. 

Limit cycles Since there is no loop input, x(t) = -c(t), and the position 
periodicity condition [first part of Eq. (3.8-2)] at t = 7;;/2 leads to 

" 2 1 
- Im [Ll(jkwo)] = 

kodd k 

For the velocity periodicity condition we require C ( t ) ,  which is derived by 
differentiating Eq. (3.8-8) with respect to time. 

4Dw0 
k ( t )  =-2 Re [Ll(jkwo)ejkwot] + L(m));(t) (3.8-10) 

7-r kodd 


In evaluating C(t) care must be taken to account for possible discontinuities 
contributed by Ll(s). [The delta function due to p(t) occurs after the relay 
action and may be discarded.] Discontinuities will appear if 

lim sLl(s) 
S+ m 

is nonzero, and the magnitude of each discontinuity is 

= -2D lim sLl(s) 
s-r m 

The Fourier series of a piecewise-continuous function converges to the 
midpoint of each finite discontinuity; hence 

4Dw0 " 
=-- 2 Re [Ll(jkwo)] + D lim sLl(s) (3.8-12)c -'(7) 77 ,odd S+ W 
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Noting that i ( t )  = --C(t) in the absence of an input, the velocity periodicity 
condition [second part of Eq. (3.8-2)] becomes 

m 7r
2 Re [L,(jkw,)] c - lim [sL,(s)] (3.8-13) 
k odd 400 8-m 

The periodicity equations derived above may be summarized by defining the 
so-called Tsypkin locus, T(jw), as 

T(jw) = 2 Re [L,(jkw)] fj 2 1Im [L,(jkw)] (3.8-14) 
k odd k0dd k 


The Tsypkin locus is a plot of T(jw) as w is varied over the range zero to 
infinity. We may restate the necessary conditions for a symmetric limit 
cycle oscillation a t  some frequency w, in terms of the Tsypkin locus, as 
follows : 

7r 

Re [T(joo)] < - lim [sL,(s)] 

4w0 s-m 

In the case for which L(s) has at least two more poles than zeros, Eqs. (3.8-15) 
reduce to the more common form of the Tsypkin conditions 

Forced oscillations Let us assume an input of the form 

r(t) = R sin (w,t + q) 
and a corresponding loop forced oscillation at the frequency w,. Then 
x(t) = r(t) - c(t), and the position and velocity periodicity conditions, 
derived in a manner completely analogous to that presented above, are 

-R sin p, + 2 " 
-
1 

Im [L,(jkw,)] 
kodd k 

= :]~ [ ~ ( r n )-
4 


(3.8-17) 

These conditions can be rewritten in terms of the Tsypkin locus T(jw) as 
follows : 

-R sin p, + Im [T(jo,)] = 

" (3.8-18) 

-R cos y + Re [T(jw,)] < - lim [sL,(s)] 
4% 8 - ,  
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Stability of periodic oscillations We have thus far been successful in 
determining whether a relay control system is mathematically capable of 
sustaining a periodic oscillation. The question now relates to whether in 
the presence of a small perturbation any given oscillating system will return 
to its original oscillatory state. The answer to this question will provide us 
with knowledge of the local asymptotic stability of an oscillatory mode in a 
physical relay system. Tsypkin (Ref. 106) describes a simple stability test 
based on the theory of sampled-data systems, the results of which we restate 
here :' 

A limit cycle mode in a relay control system is stable if the quantity 
d{Im [T(jw,)])/dw, is positive, and conversely, unstable if that quantity 
is negative. 

The sign can be obtained either directly by inspection of the Tsypkin locus 
or analytically. 

A forced oscillatory mode in a relay control system is stable if the 
operating point lies to the left of T(jw,), and conversely, unstable if it 
lies to the right. 

Stability in this case is determined graphically. 

GRAPHICAL APPLICATION OF TSYPKIN'S METHOD 

In order to apply this method graphically, one must construct the Tsypkin 
locus T(jw), defined by Eq. (3.8-14). This construction can proceed either 
from the amplitude-phase-plane plot of Ll(jw) with the aid of an overlay 
(Ref. 80) or directly from the polar plot of Ll(jo). The latter alternative is 
rather easily executed, making the polar plot a particularly convenient 
representation for this method (see Fig. 3.8-3). 

As a result of the low-pass nature of Ll(jw), the Tsypkin locus coincides 
with the polar plot of L,(jw) at high frequencies. This decreasing importance 
of higher harmonics is the basis of first-harmonic linearization, and leads 
to the generalization that DF limit cycle prediction tends to be more reliable 
in the higher limit cycle frequency region. Just what constitutes a higher 
frequency region of course depends upon the particular linear elements in 
question. We might also observe that although any linear elements' polar 
plot and its corresponding Tsypkin locus may tend toward the same trajectory 
in the polar plane, the frequency calibration for each will necessarily be differ- 
ent (Prob. 3-19). 

Graphical construction for study of limit cycles follows from Eqs. (3.8-15). 
The study of forced oscillations is also readily accomplished graphically. 
Recalling that Eqs. (3.8-18) must be simultaneously satisfied in order for a 

The derivation may be found in Gille et al. (Ref. 30, Chap. 26). 
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Frequency locus 
L Liw) \ 

Figure 3.8-3 Obtaining the Tsypkin locus from the transfer locus L,(jo). T(jwi) is computed 
from Ll(iwi), L,(j3wi), L,(j5wi) according to Eq. (3.8-14). (Adapted from Gille, Pilegrin, 
and Decaulne, Ref. 30.) 

forced oscillation to be possible, one is led to the construction of Fig. 3.8-4. 
By drawing a circle of radius R centered at the point on the Tsypkin locus 
given by w = w,, all mathematical solutions are determined. In the 
illustration we see that two solutions of different phase appear possible. 
Based upon the stability test, however, we see that the solution labeled r,  
(to the left of w,) is the only stable solution, and that r,  is in fact physically 
unrealizable. One may present some justification for the above argument 
at this point by noting that as R + coy q~,+ 0 ,  whereas v, -+ rr. 

Certainly, we should expect the output to be in synchronism with the input 
in this limiting case, as the first solution indicates. 

This graphical construction points out an interesting forced response 
pattern common to nonlinear systems, namely, regionalsynchronous behavior. 
As is evident from Fig. 3.8-46, at a given input frequency w, for all input 
amplitudes below a certain value Rmin, no solution of Eqs. (3.8-18) is 
possible. The system actually sustains neither a limit cycle nor an oscillation 
a t  the frequency w,. Rather, a complex combination of the two occurs. 
For all values of R in the region R > Rmin, however, the system does indeed 
lock onto the input frequency, thus displaying regional synchronous behavior. 



Figure 3.8-4 Graphical solution of the forced response equations (a). 
Construction of region of synchronism forfixed input frequency (b),for 

fiwed input amplitude (c). 
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Viewed differently, for a fixed input amplitude R and varying input frequency 
o r ,  there will be some frequency region o
,,,,, > o,> in which 
synchronous action can occur. Outside of this region, however, no such 
input-output synchronism is possible (Fig. 3.8-4c). 

ANALYTICAL APPLICATION OF TSYPKIN'S METHOD 

The problem we now face essentially reduces to the requirement for summing 
series of the form 

m 

as encountered in Eq. (3.8-14), in terms of known functions. It  happens 
that a summation procedure is available which solves this problem, having 
its basis in the theory of functions of a complex variable. By replacing a 

m 
series of the form 2 f(n) with an appropriate contour integral, it is possible 

-m 

TABLE 3.8-1 SUMMATION OF CERTAIN INFINITE SERIES 

77 XU 77 na -tanh - -- tanh -
4w0 2w0 4a 20,  

[sinh (z) [b sinh (z)x - (b  - a)] - WO(b -

X - nz(a - bl)[Z sinh e)g2 k l b 2 sinh (E) 
b.) tanh 

-

(z)
. 

(a - b l )  x 

- b2)tanh (2)x (a  - x (a 
-. 

+ 277 - (2a - b, - b,) 
"'0 I 

Note: A useful relationship in applications of this table is 

-3 
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to evaluate the series by application of the Cauchy residue formula. This 
manipulation, described elsewhere (Ref. 26), results in the formation of 
Table 3.8-1. In order to use this table, a given L,(s) is represented by its 
partial fraction expansion, and the terms are summed individually. Single-, 
double-, and triple-order poles can be accommodated by the three entries of 
the table. 

Let us now consider the application of Tsypkin's method to a first-order 
relay control system which cannot be studied by the D F  method (cf. 
Example 3.7-5). 

Example 3.8-1 Investigate the possibility of limit cycle oscillations in the system of Fig. 
3.8-5a. Consider time dimensioned in seconds. 

For this system L(m) = 0;hence L,(s) = L(s). The first entry in Table 3.8-1 yields 

257 277 
Re [T(jwo)] = -tanh -

"'0 wo 
and 

71 277
Im [T(jwo)] = -- tanh -

2 "'0 

From Eqs. (3.8-15) the conditions for sustained oscillation are 

271 257 2.71 257 
- tanh -< - or tanh -< 1 
wo 0 0 "'0 wo 

and 
71 271 57 257 -- tanh -= -- or tanh -= 0.4 
2 0, 5 wo 

whence we observe that a limit cycle is indeed possible, and that its period is 

277 
To = -= tanh-I 0.4 = 0.424 sec 

"'0 

The graphical construction is shown in Fig. 3.8-56, from which we see that d(Im T)/dw > 0 
at  w = coo. Hence the limit cycle is stable. 

Tsypkin's method can be applied to the study of systems displaying time- 
delay (transport-lag) phenomena. In such applications we deal with factors 
of the form e-ST, which do not appear in Table 3.8-1. A possible and 
frequently instructive approach with which to circumvent this problem is to 
replace the time-delay factors by suitable Pad6 approximants (Ref. 104), 
which are given as ratios of polynomials in s. Then Table 3.8-1 can be 
employed, and system oscillations can be studied. In the interest of retaining 
an exact version of Tsypkin's method wherever possible, we digress to 
discuss an alternative summation procedure. 

Following Guillemin (Ref. 37), one can generate the sums of Table 3.8-2 
in closed form by an elegant sequence of elementary Fourier series manipula- 
tions. We shall demonstrate here that this table can be simply extended to 
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Relay Linear part 
I # 4 - 1  , 

Im 
0.4 0.8 1.2 1.6 2 .O 

I : Re 
I 

I 
I 
I 
/ 

Limit cycle w ,  = 4.7 n rad/sec / 
/

/
/

/
/

/ 

/' 
/,/ W w )  

-w----~ 

I Low-frequency Tsypkin 

-1.57 locus asymptote 

Figure 3.8-5 (a)  Limit cycling system. (b) The graphical limit cycle solution. 

include all cases of interest not listed. Observe that entry 3 can be derived 
from entry 2 merely by forming the function f (x,a,) -f (x,a2)and performing 
the indicated algebra thereafter. Similarly, it is an algebraic procedure 
to extend these results to any order denominator comprised of terms 
(k2 + ai2). All series involving cos k x  are derived from the related series 
involving sin kx by differentiation with respect to x.  A summed series 
containing one second-order-denominator root (k2 + can be obtained 
by differentiation with respect to ai of the same series with that root to the 
first power. Similarly, any-order-denominator root can be obtained by 
repeated differentiation. Finally, note that any order numerator can be 
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TABLE 3.8-2 S U M M A T I O N  OF CERTAIN INF IN ITE  SERIES (0 < x < a )  

sin k x  a -(1) 2 ---
k0dd k 4 

sin k x  
(2)

k 
f 
odd k(k8+ a 3  

=f ( x d  

sin k x  - f(x,ad -f (x,az)
(3)

k 
2 

k(kz  + alZ)(k2+ az2) aZz- alz 

cos k x  
(4) 2 -=f,(x,a) 

k odd k Z+ az 

a cosh (aal2) - cosh (nu12 - ax)
where f (x,a) = -

4 a2cosh ( ~ ~ 1 2 )  

a sinh (nu12 - ax)aff,(x,a) -.-(x,a) = -ax 4 a cosh (aa/2) 

developed by forming terms such as 

from entries 2 and 4 of the table, respectively. 

Example 3.8-2 Determine the amplitude and frequency of the limit cycle displayed by 
the system of Fig. 3.8-6. 

For this system, since L ( m )  = 0,we have 

Ke-"' 
L,(s) = -

S 

The Tsypkin locus is computed according to 

sin kw07 K T  
Re [T(jwo)]= --

w0 k=1.3,5, ... 
COS kw07 

and Im [T(jwo)]= --
W0 k=1,3,5, ... 

where we have used entries 1 and 4 of Table 3.8-2, the latter in the limit as a +0. The 
conditions for sustained oscillation are therefore 
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1 I 
Figure 3.8-6 Simple relay control system. 

the second of which yields, for K > 0, 

By physical argument the symmetrical limit cycle waveform is established as triangular with 
zero average value. The peak amplitude A, is then the integrated nonlinearity output over 
one-quarter cycle. 

A o =  K F d l = % +  DKT 

METHODS O F  HAMEL, BOHN,  A N D  LUR'E 

Additional methods for the exact solution for oscillations in relay control 
systems are now discussed briefly. 

Hamel (Ref. 42) solves the problem of satisfying the required periodicity 
conditions by matching system trajectories in the phase plane. The existence 
of a periodic oscillation is then defined by an intersection in the phase plane 
of the so-called Hamel locus (the locus of points at which a switch must occur 
in order to sustain an oscillation) with the switch line x = -6, (for a 
hysteretic relay). It  turns out that the Hamel and Tsypkin loci are fully 
equivalent in all systems with at least two more poles than zeros. In fact, 
one can construct the Hamel locus directly by an abscissa scale change and a 
coordinate rotation of the Tsypkin locus. Details of Hamel's method and 
the above-mentioned equivalence are available elsewhere (Ref. 30). 

Bohn (Ref. 9) formulated the relay problem entirely in the time domain in 
order to overcome an apparent inadequacy in the Hamel and Tsypkin 
methods when applied to  conservative systems. Although Tsypkin (Ref. 107) 
has subsequently pointed out that this inadequacy does, in fact, not exist, 
Bohn's formulation is nevertheless of interest. The result of this formulation 
is, for the hysteretic relay, 

c( r )  1 = -8, and 5 I > 0 (3.8-19)
dt 

1=0 t =To12 

where 

~ ( t )= q$3)exp 
J s 1 + exp (sTo/2) 
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and the contour C encloses all left half-plane poles of L (s), as well as the pole 
a t  the origin, but excludes all imaginary-axis pole pairs due to the zeros of 
1 + exp (sT0/2). Proof of the validity of this formulation is left to the 
interested reader, who, upon closing the contour C in the right half-plane 
will also observe the re-creation of the usual Tsypkin conditions. 

Lur'e (Ref. 63)  treats the problem of steady oscillations directly in terms 
of the linear nth-order differential equation involved. By assuming a 
square-wave forcing of this differential equation, he formulates the nonlinear 
problem on a piecewise-linear basis. Then, by matching linear solutions at 
the switching instants, conditions for steady-state oscillations are determined. 
These conditions are presented in a compact canonic form in the reference 
cited, and are fully equivalent to the conditions derived by Bohn. Aizerman 
(Ref. 1) describes a method for the determination of self-oscillation modes in 
systems with an arbitrary piecewise-linear nonlinearity. This represents a 
degree of generalization beyond Lur'e's approach; however, in both instances 
the method of determining the periodic states reduces to a system of tran- 
scendental equations for which a general solution is not possible. These are 
in fact the same as the analytically summed Tsypkin conditions. 
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PROBLEMS 

3-1. A phase-shift oscillator has a cascaded RC-lag feedback network with transfer 
function 
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The feedforward (amplifier) portion of the oscillator has a D F  derived from con- 
sideration of both large and small oscillation amplitudes, given approximately by 

-
5 / -0.4A deg for A 5 3[;> 

A 

N(A)- --3.6 deg for A > 3 

Plot the limit cycle amplitude and frequency as functions of T (for K = 4) and as 
functions of K (for T = 1). What account need be taken of the amplifier phase 
contribution to the closed loop? 

3-2. Using both polar and amplitude-phase plots, determine and study the stability of 
all limit cycles predicted by D F  application to an ideal relay servo with linear elements 
given by 

K e s T  
L(s) = -

S 

Compute the exact amplitude and frequency of the single stable limit cycle, and 
thus show that the D F  approximation leads to a perfect answer for both the waveform 
frequency and its fundamental amplitude compbnent. 

3-3. Investigate the existence and stability of limit cycle oscillations present in a servo 
with a limiter (abrupt saturation with drive levels fD and input breakpoints * S )  
and linear elements 

K(TS+ 1 y
L(s) = 

s3 

Use both analytical and graphical methods. 
3-4. Investigate the possible appearance of steady-state oscillations in the equation 

which arises in the study of a mechanism for minimizing the roll of a ship (W. J. 
Cunningham, "Introduction to Nonlinear Analysis," McGraw-Hill Book Company, 
New York, 1958, p. 333). 

3-5. In a certain pneumatic control system the dominant system characteristics are known 
to be a nonlinear square-root-law downstream valve [y(x) = ~ 4 x 1and three 
cascaded isolated accumulators. Each of the accumulators is describable by a 
first-order lag of unity gain and time constant T = 5. What value of valve gain 
K do you recommend for a fast-responding but limit-cycle-free system? 

3-6. In a closed-loop system, an amplifier, a motor, and a gear train are used in the 
forward loop, and a simple angular sensor mounted on the load is used to provide 
the feedback signal. The amplifier has an adjustable gain K. The motor has a 
elvolt performance function = 100/(1 + 2s) deg/sec/volt. The gear has a 10:l 
reduction and a backlash of 5" at the input end. A pure viscous load is driven by the 
output shaft of the gear. The sensor has a sensitivity of 0.1 volt/deg. Study the -
limit cycle characteristic of this system as a function of K. 

3-7. Find that value of gain K for which the closed-loop response of the system of 
Example 3.3-1 is down 3 db at a frequency of 10 radianslmin. What closed-loop 
phase shift occurs at this frequency? 

If the nonlinear integrator were replaced by an equivalent linear integrator, what 
would be the resultant closed-loop gain and phase shift at o = 10 radianslmin? 
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3-8. Discuss the frequency response of the simple servomechanism of Fig. 3-1 when N is 
(a) A linear gain 
(6) A limiter (abrupt saturation) 
(c) A cubing nonlinearity 
Can jump resonance occur in any of the cases above? If not, devise a nonlinearity 
which will lead to jump resonance and discuss the resulting frequency response 
characteristics. 

Figure 3-1 Simple seruomechanisrn for frequency 
response study. 

3-9. Sketch the closed-loop frequency response curves arising for the system of text 
Example 3.3-2 for the case in which the nonlinearity is a relay with drive levels 
& D  and dead zone 26. Consider the possibilities of both M ,  < 6 and M, > 6. 
What feedback compensation network can be employed to eliminate all jump 
resonances? 

3-10. Demonstrate by manipulating the variables of Fig. 3-2 that the steady-state equation 
describing frequency response can be written as 

(Hint: Use of the notation r = Mrejwt, x = Aej'""+@'may prove expetlient.) 
(Aizerman, op. cit.) 

Describe a graphical procedure for determining A and 6 as functions of w, and 
illustrate a situation which depicts jump resonance possibilities. 

r ( t )  = M ,  sin wi x ( i )  = A sin (wt + 8 )  
U j w )  7'


I 

Figure 3-2 Nonlinear system for general frequency response study. 

3-11. Using the critical frequency locus show that the system of Fig. 3-3 just fails to exhibit 
jump resonance phenomena if the following relationship holds: 

[Hint: Work with the function p = tan-' (V /U) ,where L = U +jV.1 
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Figure 3-3 System with a cubic nonlinearity. 

3-12. (a) Discuss the limit cycle behavior of the time-optimal control system whose 
frequency response was determined in Sec. 3.4. Use the graphical approach. On 
what physical basis can the D F  result be justified? 
(b) Discuss the graphical D F  interpretation of conservative free oscillations of an 
ideal pendulum. 

3-13. Design a compensation network with a single free parameter for a relay-controlled 
pure inertia plant L(s) = K/s2, which provides a variable limit cycle frequency wo. 
What is the relationship between ooand the free parameter? 

3-14. A relay servomechanism motor-load transfer function is 

where 0 is load position, and Y is the relay output (motor input). Assuming a 
relay with hysteresis whose pull-in voltage is twice its drop-out voltage of 6 volts and 
whose drive levels are &45 volts, devise both lead and lag networks which ensure 
limit-cycle-free operati~n and discuss the resulting system in each case. The linear 
feedback shaft encoder has a sensitivity of 1volt/deg, and the omp pens at ion networks 
are to be placed in the feedforward path preceding the relay. 

3-15. Study the limit cycle behavior of the system of Fig. 3-4. 

Figure 3-4 Multiple nonlinearity system. 

3-16. By finding both exact and D F  solutions for the self-oscillation frequency of the system 
of Fig. 3-5, demonstrate that the qualitative remarks regarding D F  accuracy made 
in the text are again borne out. 
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Figure 3-5 Conservative second-order system with dead zone. 

3-17. For the following form of Rayleigh's equation, 

find the solution for limit cycle oscillations by the D F  first approximation. By noting 
that the residual consists of a single term, construct the second-approximation DF  
solution, and thus show that the limit cycle frequency correct to second-order 
terms in 1is 

3-18. Using the DF method, compute first- and second-order approximation solutions for 
the limit cycle exhibited by the relay control system of Fig. 3-6. 

Figure 3-6 Relay control system. 

3-19. Show that for all first- and second-order functions L,(s) the frequency calibration of 
the (coincident) linear elements' polar plot and corresponding Tsypkin locus in the 
high-frequency region tends toward a constant difference factor. [Hint: Consider 
the limit in increasing frequency of the function IL,(jo)/T(jw)l.] 

3-20. Discuss the nature of the limit cycle predicted by DF theory for the second-order 
ideal-relay system with L(s) = Kwm2/(s24- 25~0,s+ on2), and solve for the limit 
cycle exactly by use of Tsypkin's method. Repeat for L(s) = K/[(s + 

3-21. A satellite attitude control system with on-off thrust control and proportional plus 
rate feedback is shown in Fig. 3-7. Determine the limit cycle period for this system, 
and indicate probable accuracy of the result by tracing the relay-output third 
harmonic around the loop and comparing to the first-harmonic amplitude at the 
relay input. 



PROBLEMS 209 

Proportional-
plus-rate feedback 

Figure 3-7 Satellite attitude control system. 

3-22. Design the system of Fig. 3-8 to meet the specifications: 
(a) No limit cycle in the absence of input 
(b) Dead zone referred to the error e( t )2 1 unit 

-6 s 2  25scompensation s(,+ + I \  

K = 5 sec-I 
6 = 5u 5 = 0.5 
D = lOu w, = 10 rad/sec 

Figure 3-8 

3-23. Show that the range of values of K for which the system of Fig. 3-9 will not limit-cycle 
is given by 

~ S W J
O < K < - 


D 


If K is twice the minimum value which results in a limit cycle, show that the resulting 
limit cycle amplitude and frequency are A w 3.96, w, = o,. 

I I 

Figure 3-9 
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3-24. The relay-controlled system of Fig. 3-10 must meet the following specifications: 
(a) It must have enough drive capability to follow input rates up to 50 unitslsec. 
(b) The limit cycle amplitude at c ( r )  is to be no greater than 2 units. 
Design appropriate compensation. You may place it either just before or just after 
the switch. 

Figure 3-10 

3-25. Sketch the input-output frequency response curves for amplitude and phase for the 
system of Fig. 3-11 with an input sinusoid of amplitude 15 units. You need not 
calculate the entire curve accurately. Just get some of the interesting points. 

Figure 3-11 

3-26. Would you expect single-sinusoid-input describing function theory to be useful in 
the applications of Fig. 3-12? If not, why not? 
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r = M ,  sin wr 
7 l S +  1


K -
r 2 s +  1 


Figure 3-12 

C 




