
5TWO-SINUSOID-INPUT 
DESCRIBING FUNCTION (TSIDF) 

5.0 INTRODUCTION 

Circumstances which lead to periodic but highly nonsinusoidal nonlinearity 
inputs render the DF approach invalid. In a number of such cases the 
nonlinearity input is well described as being composed of two additive 
sinusoids. These sinusoids result, in most cases of interest, from a sinusoidal 
input to the system, from system limit cycles, or both. The input to the 
nonlinearity is assumed, for the purpose of describing function calculation, 
to have the form 

x ( t )  = A sin (w,t + 6,) + B sin (wBt + OB)  (5.0-1) 

in which the amplitudes A and B and frequencies w, and w, will be deter- 
mined by the nature of the system and its inputs. From the point of view 
of the general describing function theory developed in Chap. 1, the random 
variables which characterize this input are the phase angles 6, and 6,. 

When two or more sinusoidal components are assumed at the nonlinearity 
input, the statistical independence of these components, which if true 
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simplifies describing function calculation considerably, must be established 
with some care. Since each sinusoidal component is characterized by an 
amplitude and frequency which are deterministically fixed, and by a phase 
angle, the independence of the input components is established if the phase 
angles can properly be described as independent random variables. There 
are a number of important situations in which these phase angles are not 
independent. If one sinusoid were harmonically related to the other, the 
periods of the sinusoids would be commensurate, and a consistent phase 
relation would exist between them. The nature of the nonlinearity output 
would depend on this relative phase, and the quasi-linear approximator 
should reflect that dependence. In that case, with two sinusoidal inputs, 
only one phase angle could be treated as a random variable with a uniform 
distribution over one cycle; the other phase angle would be deterministically 
related to the first. With the statistical approach of Chap. 1, the coupled 
set of integral equations indicated in Eq. (1.5-13) would have to be solved to 
determine the optimum quasi-linear approximator for the nonlinearity. 
Alternatively, the interpretation of these describing functions as the amplitude 
and phase relation between each input component and the harmonic com- 
ponent of the same frequency in the nonlinearity output can be employed for 
describing function calculation. This latter point of view is expressed in the 
statements 

phasor representation of output component of frequency w,
NA = (5.0-2)

phasor representation of input component of frequency w, 

phasor representation of output component of frequency o,
NB = (5.O-3)

phasor representation of input component of frequency wB 

where the subscript on Ndenotes the input component to which the describing 
function applies. These TSIDFs for the case of harmonically related inputs 
are in general functions of the amplitudes of both input components, the 
relative phase angle of these sinusoids, and the frequencies of each for a 
dynamic nonlinearity, the frequency ratio in the case of a static nonlinearity. 

When one is studying the effect of a sub- or superharmonic of a sinusoidal 
signal, the frequencies of the two sinusoids under consideration are locked 
together into a harmonic relationship. In other cases, the frequencies of the 
two sinusoids are not locked into such a relation, but are determined, rather, 
by the nature of the system or its inputs. An example of this would be a 
limit cycling system responding to a sinusoidal input. One sinusoidal 
component at the nonlinearity input would have the frequency of the input 
to the system; the other would have the frequency of the system limit cycle. 
When the frequencies are determined by two unrelated mechanisms such as 
these, the periods of the two sinusoids may be thought of as incommensurate, 
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or the frequency ratio irrational, since the set of rational numbers is a set of 
zero measure. This means that if the frequencies are determined by unrelated 
causes, the event that they should be found to be rationally related is an 
event of zero probability. For sinusoids with incommensurate periods, the 
concept of a relative phase angle has no meaning, and one may properly 
think of the phase angles as given independently at random. 

Situations in which the frequencies of the sinusoidal components at the 
nonlinearity input are not related harmonically thus satisfy the assumption of 
independence which led to the uncoupled expression for the optimum 
quasi-linear approximator [Eq. (1.5-21)] and its specialization to a sinusoidal 
input component in the presence of any other uncorrelated inputs [Eq. 
(1.5-36)], which is repeated here for convenience. 

L 
n, = -A y(0) sin 0, (5.0-4b) 

This is the describing function for the transfer of the sinusoidal component 
with amplitude A. The corresponding describing function for the transfer 
of the component with amplitude B is given by the same expression, with B 
replacing A. The indicated expectations in this case represent integrations 
over the distributions of the two random phase angles, 6, and 6,. Thus, 
for example, if the nonlinearity were static and single-valued, so y(0) 
were given unambiguously in terms of x(O), n, would be zero, as was shown 
in Sec. 1.5, and the describing functions for the two input components would 
be written 

NA = -!'"d~~ Cd6,y(A sin 0, + B sin 0,) sin 4, (5.0-5)
27r2A o 

NB = -/'"d0, L'd0, y(A sin 6, + B sin 6,) sin 6, (5.0-6)
27r2B o 

The probability density functions for 6, and 0, have both been written as 
11297 over the interval (0,27~). The integrations could equally well be taken 
over any other interval which spans one cycle, such as (-~,7r). These 
TSIDFs can be seen to depend only on the amplitudes of the input 
components. 

An important special case is that in which one of the sinusoids at the 
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input to the nonlinearity has an infinitesimal amplitude. The quasi-linear 
gain of the nonlinearity to such an infinitesimal sinusoid in the presence of 
another is called the incremental-input describing function. It  is possible to 
express this describing function in terms of the D F  for the nonlinearity. 

In this chapter applications of the TSIDF and incremental-input describing 
function are made to various situations in which D F  theory is inadequate. 
These include the two-sinusoid response of nonlinear systems, subharmonic 
oscillations, frequency response counterexamples, and multiple limit cycles; 
other applications are indicated. Jump resonance phenomena and transient 
oscillations are also briefly treated, despite the fact that we have already 
developed adequate means for their study via the DF. In the case of jump 
resonance phenomena a different and possibly more appealing point of 
view than that presented in Sec. 3.3 is shown to lead to precisely the same 
result obtained earlier. The study of transient oscillations is directed 
toward the determination of relative stability of steady-state oscillations. 
The procedure developed is simple to execute, and is comparable in accuracy 
with the quasi-static solution of Chap. 4. We begin with a treatment of 
TSIDF calculation. 

5.1 TSIDF CALCULATION 

Many different methods for TSIDF calculation are available. In general, 
they are all more difficult to execute than the various schemes for D F  
calculation treated in Chap. 2. Certainly, this is to  be expected; the problem 
now under consideration is far more general. Nevertheless, once derived, 
application of the TSIDF proceeds in a remarkably simple way. 

TSIDF CALCULATION BY DIRECT EXPANSION 

This method of TSIDF calculation is applicable when representation of the 
nonlinearity is in terms of a low-order polynomial. The approach is there- 
fore somewhat limited in scope. Nevertheless, this approach leads directly 
to several interesting results, some of which will be encountered in subse- 
quent sections. Motivated by the work of West, Douce, and Livesley (Ref. 
22), we proceed by example. 

Example 5.1-1 Consider the cubic characteristic 

y = x3 

For an input of the form 
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one may determine output harmonic content by direct expansion, as follows: 

A3 
= (y+ y)cos wt + -cos 3wt 

4 

+ B3 
-cos (3ywt + 36)
4 

The last fully expanded equation is written in terms of only single-frequency components. 
Several distinct cases corresponding to different values of y are of interest. 

Case I. Nun-harmonically-related input sinusoids' In this event the only output terms 
of the same frequency as the input sinusoids are the first and third terms of Eq. (5.1-3). 
Terming N,(A,B) and N,(A,B) the TSIDFs for input frequencies w and yo, respectively, 
gives 

and 

The symmetry between these expressions, both of which are real, independent of y,  and 
independent of 8, is apparent. 

Case 2. Harmonically related input sinusoids ( y  = +) The output terms of interest in 
Eq. (5.1-3) are repeated for convenience: 

(y+cos wt 3y2)-+ -(,:3 ,= + 7)cos i+wt + 0) 

3AB2+ -cos (-3wt 4-26) + -B3 
cos (wt -t36) + terms at other frequencies (5.1-6)

4 4 

Cases where y is irrational (e.g., not expressible as the ratio of two integers). Results 
obtained for thecubic nonlinearity also hold for harmonic frequency ratios (e.g., rational y), 
provided y # +, 1 ,  3. 
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As varied phase angles are associated with the terms to be considered, the phasor repre- 
sentation called for by Eqs. (5.0-2) and (5.0-3) is conveniently utilized, with the result that 

The TSIDFs are both complex and dependent upon 8. 

Case 3. Harmonical/y related input sinusoids ( y  = 3) This case is, essentially, identical 
with Case 2, with the roles of the higher- and the lower-frequency input terms reversed. 
I t  warrants no further discussion. 

TSlDF C A L C U L A T I O N  BY D O U B L E  FOURIER SERIES E X P A N S I O N  

This calculation is based on a procedure described by Bennett (Ref. 2), and 
later by Kalb and Bennett (Ref. 14). Corresponding to the input 

x ( t )  = A sin o t  + B sin (ywt + 8 )  (5.1-8) 

the nonlinearity output is sought in the form 

yit) = y(A sin y, + B sin p,) 

where y, = w t  and y, = ywt + 0 
The Fourier coefficients P,, and Qmn are determined in the usual manner 
by multiplying both sides of Eq. (5.1-9) by the multiplier of the coefficient 
which is to be found, and integrating the result throughout the square bounded 
by y, = kn,y, = *n. This yields 

and 
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In the case of static single-valued nonlinearities, an important property of 
Qmncan be demonstrated by rewriting Eq. (5.1-1 1) as four integrals covering 
the ranges -7112 < y, < 37112 and -7112 < y2 < 3~12 .  

The integrand, unchanged from one integral to the next, has been denoted 
by brackets. In I, and I,, the last two terms in Eq. (5.1-12), we make the 
substitutions 

y: = 71 - yl  and y,* = .rr - y, 

which result in the determination that 

I,  + I, = cos (m + n ) ~(I, + Iz) 

Hence Q,,, can be written as 

I + cos (m + n ) ~  
Qmn = ( 4  + 12)2.rr2 

whence it follows that 

Q,, = 0 for m + n odd (5.1-13) 

Beginning with Eq. (5.1-10) and pursuing a similarly constructed argument, 
it is also readily demonstrated that 

Pmn= 0 for m + n even 

If, in addition, the nonlinearity is odd, it can be further proved that all 

Qmn = 0-
Let us return to  Eq. (5.1-9) and note that, for y irrational, the only output 

term of frequency w occurs for m = 1, n = 0. Correspondingly, the only 
output term of frequency yw occurs for m = 0, n = 1. In each of these 
instances it  follows from previous arguments that Q,, = 0. Hence we 
arrive at the TSIDF expressions 

' -
- ~ j ' y ( Asin yl + B sin y,) sin y, dy, dy, (5.1-14)

2z2A 
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Po,and NB(A,B)= -
B 


- 2r2B 
-J- //((A sin y, + B sin y,)sin y, 41, dy, (5.1-15) 

-li 


These TSIDFs are real numbers. They are independent of 6 and y, and 
dependent only upon A and B. These expressions are exactly those of Eqs. 
(5.0-5) which result from the unified theory of Chap. 1.and (5.0-6), 

If y is rational, more than one term of Eq. (5.1-9)yields the frequency of 
interest. Calculating N,(A,B), for example, we look for all terms for which 

mw + nyw = co 

Thus, when y = 8 ,  the pairs of values (m,n)which satisfy Eq. (5.1-16)are 
(1,0),
(0,3), (2, -3), (3,-6), etc.; and for y = 3, the appropriate pairs are 

(1,0),
(4, -I), (7,-2), (10, -3), etc. In each of these terms Q,,, = 0,and 
the component of y(t)a t  frequency w is computed from Eq. (5.1-9)as 

= PI,, sin (wt+ Bav) 
The TSIDF is therefore given by 

which is complex and dependent upon y and 0,in addition to A and B. 

Example 5.1-2 Consider the ideal-relay characteristic defined by 

y(A sin y,  j, B sin y,) - D for sin y,  k sin y, 2 0 

- D  f o r s i n y ,  ! k s i n y , < O  

where k = BIA, and for the present development we adopt the convention that A corre-
sponds to the larger sinusoid. This ensures a solution to the switching condition 
sin vl & k sin v2 = 0. In order to calculate N,(A,B),the double-integral formulation of 
Eq. (5.1-14) is written as follows: 
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where, as before, the integrand is denoted simply by brackets. Changes of variable are 
now effected in the first three integrals, to convert all the limits of integration to the range 
0 to a. Using the property of odd characteristics, y(x) = -y(-x), the result of this 
manipulation is expressible as 

The calculation attendant on this integral formulation can be somewhat simplified by 
recasting it into four double integrals, each of n/2-radian range in the independent variables 
v1 and y,. Operating on these integrals by appropriate variable substitutions so as to 
achieve a range of integration 0 to a12 in y, and y,, and collecting the results, yields 

As this formulation has not yet been specialized other than to odd memoryless character- 
istics, observe that it is generally applicable. We now proceed to the specific ideal-relay 
nonlinearity. 

Over the entire range 0 to a12 in each of the angles y, and y,, y(A sin y, + B sin y,) = D. 
However, y(A sin y1 - B sin y,) assumes both of the values iD,depending upon the sign 
of its argument. The angle which satisfies the switching condition sin y, - k sin y, = 0 
is y, = sin-' (k sin y,). Therefore we can write 

where E(k) is the complete elliptic integral of the first kind. Denoting by K(k) the complete 
elliptic integral of the second kind, it is readily proved that 

rrI3 dw 
where E(k) = 41 - k2 sin2 y dy K(k) = 1 (5.1-18) 

4 - k 2 s i n 2 y  

It is to be observed that N, and NB are indeed both real and independent of frequency. 
Expansion of these functions in powers of k yields 
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whence we deduce the useful relationship 

Calculation of the TSIDFs for harmonically related input sinusoids can be pursued as 
outlined earlier in the text or by single Fourier series expansion techniques. Rather than 
present details of the calculation here, we simply observe that the TSIDFs are now complex 
and dependent upon A, B, y, and 8. It is of interest to note the maximum phase shift 
associated with NB(A,B,y,8).The absolute value of this phase shift appears in Table 5.1-1 
for various values of y. It can be seen that, for a @en k, the largest values occur at 
Y =,. ~For k I0.5 and y 5 +, this phase shift is less than 0.5". 

TABLE 5.1-1 M A X I M U M  PHASE 
SHIFT IN NB(A,B,y,8)FOR A N  
IDEAL RELAY? 

Y Maximum phase shift 

k
tan-' -

4 

k
tan-' -

8 

k 
tan-' -

64 

7 Amsler and Gorozdos, Ref. 1. 

In the single-sinusoid-input case the nonlinearity output harmonics and 
the filtering properties of the loop linear elements determine whether D F  
analysis is valid. The familiar desired filtering property of the linear elements 
is amplitude attenuation with increasing frequency. In the two-sinusoid- 
input case a slightly different situation arises. This is a consequence of the 
fact that nonlinearity output terms can occur at frequencies below and 
between, as well as above, the input frequencies. In other words, because of 
the modulation process taking place, both sum and difference frequency 
terms are created. The sum frequency terms are necessarily at higher 
frequencies than either input sinusoid; hence for these terms the usual low- 
pass-filter requirement is necessary to validate TSIDF analysis. The 
difference frequency terms can be additionally troublesome, however, 
particularly if the loop linear elements have a resonance peak at one or more 
of these frequencies. I t  is certainly obvious at this point that to determine 
all these terms would be a monumental chore. In theory, all that is required 
is the evaluation of each term P,, (and Q,,) of interest. In practice, this 
determination is usually intractable. 

Often the difference frequency terms are of quite small amplitude. This is 
particularly true when the frequency ratio y is either very large or very 
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TABLE 5.1-2 O U T P U T  O F  A N  IDEAL 
RELAY IN RESPONSE TO A TEST 
I N P U T  

Individual sinusoidal output components 

Frequency Amplitude 

1 0.1 28 
2 0.000 
3 0.000 
4 0.000 
5 0.000 
6 0.000 
7 0.000 
8 0.006 
9 0.000 

10 I .260 
11 0.000 
12 0.006 

small. In support of this statement there is listed in Table 5.1-2 the output 
of an ideal relay (drive levels & 1) in response to an input 

x = 0.2 sin t + sin lot 

For all practical purposes there is no output harmonic distortion. At the 
frequencies w = 1 and w = 10, however, significant amplitudes do occur. 
These are very well predicted by Eqs. (5.1-19),the solutions derived for 
non-harmonically-related input sinusoids. That they also apply to the case 
of harmonically related input sinusoids will be explained in subsequent 
discussions of TSIDF approximation. 

TSIDF C A L C U L A T I O N  BY INTEGRAL REPRESENTATION 

This method has been employed by Gibson and Sridhar (Ref. 10) for the 
case of non-harmonically-related input sinusoids, using techniques of random- 
process theory. Below, we develop the TSIDFs for non-harmonically-
related input sinusoids with the aid of completely deterministic arguments. 

The output of an instantaneous nonlinear element can be written as a 
function of the input using the integral representation 

where Y(ju) is the Fourier transform of y(x), 

y(x) exp (-jux) dx (5.1-22) 
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The convergence of this integral can usually be enforced artificially, as is 
subsequently demonstrated by example. Tf y ( x )  is an odd function of x 
(odd nonlinear characteristic), Y ( j u ) is an odd function of u. In the follow- 
ing discussion only odd characteristics are considered. The nonlinearity 
input is taken in the form 

x = A sin o t  + B sin ywt (5.1-23) 

where y is not rational. From Eq. (5.1-21) the corresponding output is 

= J m Y ( j u )  exp ( j A u  sin wt +jBu sin y o t )  du 2.n -, 

1 
= -1 Y(ju) exp ( j A u  sin w t )  exp ( j B u  sin ymt) du (5.1-24)

257 -m 

A key point in this development, due to Rice (Ref. 20), is the use of an 
expansion of the exponentials in series of the form (Ref. 5)  

m 

= 2 E ~ J ~ ~ ( ~ )  
m 

cos 2n@+ 2j 2 J,,+,(a) sin (2n + I)@ (5.1-25) 
n=O n=O 

where E ,  denotes the Neumann factor 

1 for n = 0 

2 f o r n =  l , 2 , 3 ,  . . .  

and J,,(a) is the Bessel function of order v and argument x. Substituting 
for the exponential terms in Eq. (5.1-24) gives 

exp ( j A u  sin o t )  exp (jBu sin ymt) 

m 
E,J,,(AU) cos 2inwt + 2j 2 J,,+,(Au) sin (2m + 1)wtIm=O 

m 

X [5E~&J,.(BU)cos 2nywf + 2j 2 Jzn+,(Bu)sin (2n + 1)ywtIn=O n=O 

Since Y ( j u )  is an odd function of u, only the odd terms in Eq. (5.1-26) 
contribute to the value of the integral in Eq. (5.1-24). All even functions of 
u in Eq. (5.1-26), when multiplied by Y( ju ) ,  result in integrands in Eq. 
(5.1-24) which are odd functions of u ;  the value of the integral over the 
doubf) infinite range is then zero. Using the fact that Bessel functions of odd 
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order are odd, and those of even order are even, yields that the portion of 
exp ( jAu  sin w t )  exp (jBu sin y o t )  displaying an odd dependence upon u is 

m m 

2j  2 2 E,J~ , (A~)J~~+, (Bu)cos 2mcot sin (2n + 1)ywt 

m m

+ 2j 2 E ~ J ~ ~ ( B ~ ) J ~ , . . , ( A U )cos 2nywt sin (2m + 1)wt (5.1-27) 

Employing the trigonometric identity 

cos ct sin ,8 = *[sin ( a  + ,/3) - sin (K - ,811 

enables rewriting Eq. (5.1-27) in the form 

m m 

j 2 2 ~mJzm(Au)J2n+l(Bu)[sin(2m + 2ny + y)wt - sin (2m - 2ny - y)wt]  

+ j 2 2 cnJzn(Bu)Jzm+l(Au) 
m=O n=O 

x [sin (2m $- 2ny $-1)wt - sin (2ny - 2m - l ) o t ]  (5.1-28) 

Suppose that we seek the first-harmonic gain of the nonlinearity. Then the 
only terms in Eq. (5.1-28) of interest are those involving sin wt or sin (-cot). 
Considering y irrational, such terms arise (over the allowable values of the 
indices nz and n )  only for the combination m = 0,  n = 0. Had the non- 
linearity gain to the input component of frequency y o  been sought, again 
only m = 0, n = 0 would be pertinent. For these cases, therefore, the only 
terms of interest in Eq. (5.1-28) are 

2jJ,(Bu)J1(Au)sin wt + 2jJO(Au)J,(Bu)sin ywt (5.1-29) 

Finally, from Eqs. (5.1-24) and (5.1-29), the frequency-independent TSIDF 
for the fundamental output term is given by 

Similarly, 

We may conclude that the frequency-independent TSIDF expressions for 
each input component are functionally identical. That is, 

The only distinction between the two inputs in this case is their reIative 
amplitudes! This conclusion is equally evident from Eqs. (5.1-14) and 
(5.1-15). 
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The foregoing procedure can be extended to the case of harmonically 
related input sinusoids simply by the inclusion of a phase-shift variable in 
one of the input components and the consideration of rational values of y 
(Ref. 18). 

Example 5.1-3 As an example of the application of this method, consider the ideal-relay 
characterisfic,defined by 

-Deu" x < 0 

x = o  

x > O  

For a = 0 this characterization reduces to that for the ideal relay. However, for a 
positive, albeit infinitesimal, y ( x )  as defined above becomes Fourier-transformable. Thus, 
from Eq. (5.1-22), 

Equations (5.1-31) and (5.1-33)are evidence that N,(A,B) is given by 

Evaluation of this integral yields 

where the complete elliptic integrals E and K are as defined previously. 
The reader may be interested to compare this result with that obtained via double 

Fourier series expansion. Using the definition k = B / A ,  both results are seen to be 
identical. 

Generally speaking, the transform approach to TSIDF calculation is quite 
useful. The transformed functions Y ( j u )  are readily obtained. The major 
difficulty with this formulation is in evaluating the inversion integrals of 
Eqs. (5.1-30) and (5.1-31). Often, this can be accomplished in closed form 
in terms of known functions (gamma functions, hypergeometric functions, 
and elliptic integrals). 
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POWER-SERIES E X P A N S I O N  

A particularly simple TSIDF calculation mechanism for odd nonlinearities 
with non-harmonically-related input sinusoids results from the development 
of NA(A,B) and NB(A,B) [Eqs. (5.1-30) and (5.1-31)] in power series. The 
major steps in this development are briefly sketched in the ensuing 
presentation. 

Let A denote the larger input sinusoid amplitude, and B denote the smaller. 
Then, provided that the necessary dcrivatives exist, NA(A,B) can be expanded 
in a Taylor series about B = 0. 

The derivatives are computed in the form 

Expressing Jo(Bu) in its power series, 

one can readily demonstrate that 

for n odd (5.1 -40a) 

aBn for n even (5.1 -40b) 
2n[(n/2)!I2 

Thus Eq. (5.1-37) can be rewritten as 

The dummy variable n has been replaced by p, where n = 2p. The integral 
in this formulation has a surprisingly simple interpretation. This can be 
seen by first noting that NA(A,O), the leading term in the series, is the single- 
input-sinusoid DF,  N(A). 

N(A) = lim N,(A,B) 
B + O  
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Use has been made of the fact that J,,(O) = 1. Repeated differentiation of 
this equation with respect to A yields relationships which can be so combined 
that the integral in Eq. (5.1-41)is expressed in terms of the DF and its 
derivatives! The result of this process is 

where V,(A) is computed recursively as 

In a completely similar way one can show that 

where 

and 

Although these results may look cumbersome, they are actually quite simple 
to employ. Their utility is demonstrated by the following examples. 

Example 5.1-4 Compute the TSIDFs for a cubic characteristic, y = x3. 
The corresponding D F  is N(A) = $A2. Thus, from Eqs. (5.1-43c)and (5.1-44c), 

Employing the recursive formulations for VP+,and W,,, [Eqs. (5.1-43b)and (5.1-44b)] 
gives 

Vl = W,  = 6 

V, = W, = 0 for all p > 2 

Substitution of these results into the power-series TSIDF expressions [Eqs. (5.1-43a)and 
(5.1-44a)Igives 

N,(A,B) = sA2+ $B2 

These expressions are valid for all A, B and are identical with the cubic characteristic 
TSIDFs computed previously by direct expansion. 
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Example 5.1-5 Compute the TSIDFs for an ideal relay with drive levels 5 D .  
Proceeding as above, but with N ( A )  = 4D/nA,  yields 

4 0  2 0  vo=- Wo=-
nA rr A 

- 4 0  2 D v,=- W, =,
nA3 T A  

- 1 2 0  1 8 0v, =- W z  =7 
xA5 nA 

. . . . . . . . . . . . . . . .  


The TSIDF power-series expressions are therefore 

.*(A,.) = T A  -$(!J -i(!J-$(q 
 256 A -

N M , B )  = Z [ InA + ~ ( : ) 2  +~(ir+&(:)" 
The ratio test for infinite series can be employed to determine that each of the above 
expansions is convergent for (B/A) ,  < I .  These expressions are identical with those 
determined by double Fourier series expansion [Eqs. (5.1-19a) and (5.1-19b)l. 

Example 5.1-6 Compute the TSlDFs for the harmonic nonlinearity, y = sin mx. 
The required D F  is .(A) = 2J,(mA)/A. Application of the differential relationships 

yields 

Substituting for V,  in Eq. (5.1-43a)gives 

L 
= -

A 
J,(mA)J,(mB) 

upon identification of the infinite series for Jo(mB). Similarly, 

These expressions exist for all A ,  B and are indeed the exact TSIDFs for the harmonic 
characteristic (cf. Prob. 5-3). 
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O T H E R  M E T H O D S  O F  TSIDF CALCULATION 

One obvious means of TSIDF calculation is by a digital-computer-imple- 
mented Fourier series analysis of the actual nonlinearity output. This 
approach has been used by Jaffe (Ref. 13), Elgerd (Ref. 8), and others for 
the study of various nonlinear elements. I t  has the disadvantage that 
closed-form solutions are never arrived at. On the other hand, it has the 
far-reaching advantage that it is applicable to any nonlinearity whose output 
is pointwise-determinable in terms of its input. 

There remains one additional TSIDF calculation of interest. We defer 
this to the next chapter, where it is proved that the TSIDF can be computed 
as the DF of a DIDF,  the last-mentioned describing function being the 
subject of that chapter. 

Normalized TSIDF graphs for five common nonlinearities are presented 
in Appendix D. 

5.2 SUBHARMONIC OSCILLATIONS 

Systems with suitable nonlinear characteristics can respond to an input 
sinusoid by producing an output whose lowest-frequency component is a 
submultiple of the input frequency. The lowest-frequency component is 
usually at or near the system natural frequency of oscillation. This frequency 
response phenomenon is thus known as subharmonic resonance. Sub-
harmonic frequencies as low as one-thirteenth of the input frequency have 
been observed in simple systems. Because of the resonant nature of the 
phenomenon, the subharmonic component is often of large amplitude, 
causing the system output to bear little resemblance to a sinusoid of the input 
frequency. Interestingly enough, just outside the region of subharmonic 
oscillation, the sinusoidally forced system output may be so small as to be 
practically zero. Complete treatments of subharmonic response phenomena 
in the cases of smooth and piecewise-linear nonlinearities can be found else- 
where (Refs. 11, 18). For ease in presentation, the TSIDF treatment here 
is based upon a cubic nonlinearity. 

We have alrcady computed the one-third-subharmonic TSIDF in systems 
with a cubic nonlinearity [Eq. (5.1-7b)l. It is rewritten here: 

NB(A,B,+,O) = j (B2 + 2A2 + AB cos 30 -jAB sin 38) (5.2-1) 

Call the phase shift of this TSTDF P. Tt follows that (k = BIA) 

-k sin 38 
tan /3 = 

2 + k2 + k cos 30 
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This function, maximized over 6, is 

which can be further extremized with respect to k. Considering real k,  
Eq. (5.2-3) yields, for k2 = 2, 

Hence the maximum possible TSIDF phase shift is 21". To avoid a one- 
third-subharmonic oscillation, the loop linear elements must have a phase lag 
not exceeding 159". Under this condition the total phase shift is less than 
180°, and oscillation cannot ensue (see Fig. 5.2-1). 

Now consider the frequency locus L(jw), for which one-third-subharmonic 
oscillations are possible at input frequencies between 3w, and 301, radians/sec. 
Corresponding to some input frequency w within this range, L(jw/3) provides 
in excess of 159" phase lag. NB(A,B,$,6) need therefore only provide an 
additional phase lag of less than 21" for a one-third-subharmonic oscillation 
to take place. The governing equations are (for a unity feedback configura- 
tion) 

and 

At any given o ,  a range of subharmonic-oscillation amplitudes can exist as 
M ,  is varied. Stability of a particular subharmonic oscillation is treated in 
terms of Eqs. (5.2-5) and (5.2-6) and the usual quasi-static describing function 
argument. It is to be noted that, as the phase of N,(A,B,+,B) is small for 
small values of B, the subharmonic oscillation is not self-starting, and must 
be initiated by some transient within the system. 

Example 5.2-1 Determine all pairs of input amplitude and frequency such that the 
system of Fig. 5.2-2 can exhibit subharmonic oscillations. 

We note that Eq. (5.2-6)implies the angle and magnitude conditions 

and 

Equation (5.2-7a)can be manipulated in the specific case at hand to yield 
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cannot occur 

Figure 5.2-1 The 21" rule for elimination of one-third-subharmonic generation in 
systems with a cubic nonlinearity. (Adapted from West, ReJ: 23.) 

which is, in fact, a quadratic in k for fixed o,0. Similarly, Eq. (5.2-76) can be manipulated 
to yield 

The last relationship required corresponds to Eq. (5.2-5). This gives three equations in 
the three unknowns, A ,  B, 8, provided that o is held constant. 

Insofar as the three equations arrived at are themselves particularly nonlinear, their 
closed-form solution is not sought. However, the desired solution can still be obtained. 
By picking values of 8 in the range 0 2 8 5 120°, the corresponding values of k are specified 
in terms of Eq. (5.2-8). Only positive real values of k are of interest. Next, Eq. (5.2-9) 

Cubic 
nonlinearity 

r ( t )  = M ,  sin wt  K ( i s +  4 )
( )' - s ( a r s +  1 

K = 0.8 sec-' 
T = 0.0625 sec 
a = 5  

Figure 5.2-2 Third-order system with cubic nonlinearity. 
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Theoretical curve 
\ 

Input frequency w ,  rad/sec 

Figure 5.2-3 Region of subharmonic resonance for example system 

yields the values of A which correspond to the pairs of values (0 ,k) .  Finally, the last 
equation is used to  determine the corresponding M,. 

As w is varied, the complete range of solutions is traversed. Theoretical results and 
excellent analog-computer verification are illustrated in Fig. 5.2-3. A typical input-output 
waveform pair is illustrated in Fig. 5.2-4a. The "resonance" is apparent. As the input 
amplitude is either increased or decreased, a point is reached a t  which the subharmonic 
resonance disappears. Figure 5.2-4b depicts the decay of the subharmonic mode due to 
a slight decrease in the input amplitude. Observe that the steady-state response beyond 
the subharmonic region, in this case at  least, is imperceptible. 

It is often stated, erroneously, that only odd harmonics can occur in 
systems containing an odd nonlinearity. This interesting error appears to 
be the consequence of one major aspect of approximation techniques, 
namely, you get only what you ask for. Thus, in the cubic nonlinearity 
system of Example 5.2-1, even subharmonics (of order one-half) were 
indeed observed during simulation; however, a bias was associated with the 
corresponding nonlinearity input. Unless this bias is specifically provided 
for in the model nonlinearity input waveform, approximation methods such 
as TSIDF analysis fail to predict the even subharmonic mode. 

Finally, it is to be noted that the frequency domain criterion for avoiding 
subharmonics (i.e., 21" rule for systems with a cubic nonlinearity) is far more 
readily applied than detailed determination of the region in M,, w coordinates 
throughout which subharmonics can occur. In fact, analytic descriptions 
of the subharmonic TSIDFs for common nonlinearities are generally not 
available, although some have been obtained experimentally. For the 
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Figure 5.2-4 (a )  Illustration of subharmonic resonance. (b)  Decay of a 
subharrnonic mode. 

piecewise-linear limiter (D = 6 = I), Douce and King (Ref. 6) have 
determined the bounds of the one-third-subharmonic TSIDF to be such that 
the condition for avoiding subharmonic resonance is as illustrated in Fig. 
5.2-5. That for the ideal relay follows directly (cf. Prob. 5-8). 

5.3 FREQUENCY RESPONSE COUNTEREXAMPLES 

The D F  calculation of frequency response in Chap. 3 is prefaced with a note 
of caution. It is stated there that certain non-limit-cycling systems break 
into a limit cycle oscillation when forced by a sinusoidal input (thus rendering 
invalid the D F  calculation of frequency response), and also that certain 



Irn 

subharrnonics 

Subharmonics 
cannot occur 

Figure 5.2-5 The 28" rule for elimination of one-third-subharmonicgeneration 
in systems containing a limiter. (Adapted,from Douce, Ref. 7.) 

limit cycling systems are quenched by the introduction of a sinusoidal input 
(thus permitting DF calculation of frequency response). In this section 
examples of each of the above phenomena are presented. The emphasis in 
presentation is on a physical interpretation of cause and effect. For further 
information the reader is referred to the interesting work of Gibson and 
Sridhar (Ref. lo), from which the following examples are drawn. 

Example 5.3-1 Limit cycle induction. Consider the system of Fig. 5.3-1. This is a 
special case of Example 3.1-1 (that is, < = w, = 6 = D = I), where it is shown by D F  
utilization that n o  limit cycle takes place when K < 3.14. For larger values of K a limit 
cycle of frequency w, = 1 exists. 

Now set K = 2, so that L(j1) = - 1 ,  and apply an input r = M,sin wt. T o  test for 

Figure 5.3-1 An example of limit cycle induction. 



F R E Q U E N C Y  RESPONSE C O U N T E R E X A M P L E S  273 

the possibility of a limit cycle, model the nonlinearity input according to 

x = A sin w i  + B sin t (5.3-1) 

where B is the limit cycle amplitude, should one exist. The requirement for a limit cycle 
in TSIDF terms is 

or simply, NB(A,B)= 1 (5.3-2) 

Whereas the D F  for the relay with dead zone has a maximum value less than unity [such 
that no limit cycle can circulate according to the D F  counterpart of Eq. (5.3-2)], the 
corresponding TSIDF can have values far in excess of unity. In particular, a range of A 
and B exist in which Eq. (5.3-2)is precisely satisfied; a limit cycle can exist! 

The effect of an externany applied sinusoid has been to increase the (internal) loop gain 
to the point where an instability he. ,  limit cycle) can occur. To see the mechanism 
whereby the TSIDF gain can exceed unity, consider the value A m 1 .O. The nonlinearity 
output never departs from zero, but input excursions carry right up to the discontinuities. 
Now a aery small added signal ( B )causes the output to jump to +1 ;hence the gain to the 
very small input under this circumstance is very large. This accounts for the behavior of 
the curve cr = 1.0 near the origin in Fig. D.3. Although not shown, there exists a con- 
tinuous range of values 1.0 < a < 1.3 in which NB(A,B)2 I .  Therefore we conclude 
that all combinations of M, and w which result in 1.0 < A < 1.3 are accompanied by an 
input-induced limit cycle. 

Example 5.3-2 Limit cycle quenching. Consider the system of Fig. 5.3-2. This is a 
special case of Example 3.7-6 (that is, < = w, = D = I ) ,  where it is noted that a limit 
cycle of frequency . w, = 1 exists for all values of K. . 

Once again, set K = 2 ,  apply an input r = M, sin cut, and model the system error signal 
according to Eq. (5.3-1). The condition for the limit cycle to continue is then satisfaction 
of Eq. (5.3-2). Figure D.1, a normalized plot of the ideal-relay TSIDF, illustrates that 
for any specified value of B,  N,(A,B) decreases as A increases. It follows that there exists 
a value of A ,  which we denote Amin,such that, for any value of A in the range A,,, < 
A < co,NB(A,B)is always less than unity, and no limit cycle can circulate. 

A,,, is readily calculakd. In the region of its maximum value, NB(A,B) is given by 
Eq. (5.1-35), namely, 

where x = AIB. With the aid of the differential relationship 

the value of x which maximizes NB(A,B),denoted x,,,, is found to satisfy 
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Figure 5.3-2 An example of limit cycle yuenching. 

Standard tables of the complete elliptic integrals can be consulted to yield that 

x,,, = 0.909 

at which point the maximum value of NB(A,B) is computed as 

This results in the determination that A,,, = 0.855. Hence all combinations of M, and 
w for which A > 0.855 drop the loop gain at the limit cycle frequency to the point where 
the limit cycle is quenched (e.g., extinguished). These combinations are determined with 
DF theory, since there is now but one sinusoid with which to contend. 

Circumstances under which a D F  treatment of frequency response is 
insufficient can be deduced from the foregoing examples. Non-limit-cycling 
systems which can support a limit cycle at some values of loop gain (either 
higher or lower than the no-limit-cycle setting) must be checked by a TSIDF 
calculation to ensure the absence of a limit cycle. Limit cycling systems 
which can be quenched by either a raised or lowered loop gain should also 
be subject to TSIDF calculation to determine the range in which a frequency 
response exists. This phenomenon, called signal stabilization, is treated in 
more detail in Chap. 6. 

5.4 MULTIPLE LIMIT CYCLES 

Nonlinear systems often exhibit more than a single stable limit cycle. In 
such multiple limit cycle systems the possibilities exist that either one limit 
cycle predominates, several limit cycles occur one at a time, or several limit 
cycles occur simultaneously. A TSIDF argument is required for determina- 
tion of the circumstances leading to the first of these alternatives. 

Consider the relay system of Fig. 5.4-la for which D F  theory tells us that 
the limit cycles at frequencies w, (higher) and w, (lower) are stable. If the 
higher-frequency limit cycle is excited, the following relationship must hold: 
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Phase 

Figure 5.4-1 (a )  Multiple limit cycle system. (b) Corresponding amplitude- 
phase plot. 

where A is the limit cycle amplitude and B = 0. Now, using as a model 
for the nonlinearity input 

x = A sin w,t $- B sin wBt (5.4-2) 

where B <A ,  the TSIDF is employed to determine the nature of stability of 
the perturbed low-frequency limit cycle mode. The procedure is quite direct. 
Use of Eq. (5.1-20) enables rewriting Eq. (5.4-1) in the form 

from which it is deduced that the perturbed low-frequency mode is unstable if 
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that is, the oscillation grows. Hence, when Eq. (5.4-4) is satisfied, the 
high-frequency limit cycle alone is not a stable systematic mode. Otherwise 
it is. 

Now apply the same argument to test the reverse situation. This almost 
always shows the perturbed high-frequency mode to be stable in the presence 
of a low-frequency limit cycle since the condition IL(jw,)/L(jw,)l > 2 is 
rare indeed. In those circumstances where this mode is unstable, the linear 
element's frequency locus is highly resonant in the vicinity of o,. Non-
linearity output harmonic content near w, is consequently not negligible, 
and as a result, the TSIDF linearization is inappropriate. A somewhat 
different argument is required to  ascertain conditions of stability. To  
facilitate analysis, the case where only the fundamental and the harmonic 
component nearest the higher-frequency oscillation mode is of significant 
amplitude can be treated. This is the approach taken in Ref. 1. 

5.5 INCREMENTAL- INPUT DESCRIBING F U N C T I O N  

A special case of the TSIDF occurs when the amplitude of one nonlinearity 
input sinusoid is much smaller than the amplitude of the 0ther.l Under 
this circumstance, a simple closed-form solution exists for the nonlinearity 
gain to the small-amplitude input component; it is called the incremental- 
input de~cribing~function. This particular describing function is of consider- 
able interest. It has application to the study of oscillation stability (including 
stability of forced sinusoidal response and limit cycle stability), and impor- 
tantly, it is an excellent approximation to the TSIDF in the case of widely 
differing input amplitudes. Following the nomenclature used by Bonenn 
(Ref. 4), we consider separately the cases of synchronous (i.e., identical 
frequency) inputs and nonsynchronous (i.e., different frequency) inputs. 

D E R I V A T I O N  O F  T H E  I N C R E M E N T A L - I N P U T  DESCRIBING F U N C T I O N  

Synchronous inputs Let the two sinusoidal inputs to a static nonlinearity 
be given by 

x = Asin wt + €sin (o t  + 0 )  (5.5-1) 

where the second term represents the incremental input, that is, 

The content of this section can be viewed as a direct result of TSIDF expansion in a 
power series (Sec. 5.1). Rather than simply setting B to zero in Eqs. (5.1-43a) and 
(5.1-44a), a brief and more direct derivation of the describing functions of interest is 
presented here. 
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Expanding Eq. (5.5-1) and regrouping terms, x can be put in the form 

x = ( A  + E cos 0) sin o t  + ( Esin 0) cos u)t 

= 1 / ( ~+ E cos 0)2 + ( Esin 0)2sin iwt  + t a r 1  
E sin 0 1

A + E COS 0 
(5.5-3) 

Using the relative amplitude constraint [Eq. (5.5-2)], the expressions for 
input magnitude and phase can be further simplified. Dropping second- 
and higher-order terms in € / A ,we have 

d ( A  + E cos 0)2 + ( E  sin 6)2m A + E cos 6 (5.5-4) 

E sin 0
and t a r 1  m 2 sin 0 

A + E C O S O  A 

Hence Eq. (5.5-1) can be written in the alternative form 

x m ( A  + E C O S  0) sin (3.5-6) 

If N ( A )  = n,(A) + jn,(A) is the DF for the nonlinearity, and has a contin- 
uous first derivative with respect to A ,  the output is (prime denoting differen- 
tiation with respect to A)  

Output m ( A  + E cos O)[n,(A + E cos B)] sin 

+ ( A  + E cos 6)[nq(A+ E cos O)] cos 

m ( A  + E cos O)[n,(A) + E cos 6 n:(A)] sin wt + fsin B cos wt 
A 

E .+ ( A  + E cos 0)[n,(A) + E cos 0 ni(A)]  icos wt  -- sin 0 sin wt 
A 

m A[n,(A) sin wt  + n,(A) cos u) t ]  

+ E[n,(A) sin (wt + 0) + n,(A) cos (wt + 0) 

+ A cos 0 (na(A) sin wt + ni(A) cos wt) ]  (5.5-7) 

where again only first-order terms in < /A have been retained. Defining the 
incremental-input describing function as the complex ratio of output terms 
due to E divided by the corresponding input term, we finally arrive a t  the 
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desired result, 

N,(A,I9) = incremental-input describing function 

= %(A) +jnq(A) + A[nL(A) +jni(A)] cos 6 e-je 

= e-je 19 cosA N f ( A )+N(A)  (5.5-8) 

Observe that the incremental-input describing function is independent of E 

and is derivable directly from the ordinary D F  for the nonlinearity. By 
rearranging the I9 dependence of N,(A,O), one may show that 

in which form it is evident that, for fixed A ,  the tip of the vector Ni(A,6 )  
traces out a circle in the polar plane (see Fig. 5.5-1). 

Nonsynchronous inputs The nonlinearity input is now taken as 

x = A sin wt + E sin ywt (5.5-10) 

where the frequency ratio y is irrational, and the condition expressed by Eq. 
(5.5-2) still holds. The phase angle I9 has been discarded since x now 
possesses an aperiodic waveform. In fact, by considering 6 to be a uniformly 
distributed random variable, one can derive the incremental-input describing 
function pertinent to the present case simply by averaging N,(A,O) of the 
synchronous case [Eq. (5.5-9)]with respect to 6. The result, independent 
of 6 ,  is given by (Ref. 4)  

This is precisely the relationship arrived at by setting B to zero in Eq. (5.1-44a). 
That is, 

Ni(A>= Wo(A) (5.5-12) 

where Wo(A)is the first term in the expansion of N,(A,B) in powers of B. 

APPLICATION T O  JUMP RESONANCE PHENOMENA 

A natural application for the synchronous incremental-input describing 
function lies in the study of jump resonance phenomena (Sec. 3.3). For the 
nonlinear system of Fig. 5.5-2a, the possibility of jump resonance can be 
studied in terms of the stability of a sinusoidal perturbation of frequency w 
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Figure 5.5-1 Complex representation of Ni(A,6) for synchronous inputs. Zllus-
tratedfor the case where N ( A )  is real. 

about a steady-state forced oscillation at the same frequency. The charac- 
teristic equation of the system seen by such a perturbation is (Fig. 5.5-2b) 

For fixed A, the quantity -l/N,(A,B) plays the role of a stability point, or 
more properly, a stability curve, since 8 can take on any value from 0 to 
2.rr radians. Whereas with the ordinary D F  an instability (limit cycle) is 
indicated when the locus L(jw) passes through the point -l/N(A), now an 
instability (jump resonance) is indicated when the locus L(jw) passes through 
any portion of the curve -1/Ni(A,8). This new point of view regarding the 

Figure 5.5-2 (a) Nonlinear system. (b) Corresponding incremental system. 
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jump resonance phenomenon is easily demonstrated as being equivalent to 
that presented earlier, in Sec. 3.3. 

Example 5.5-1 Derive the equations for the contours in the polar plane along which 
jump resonance can occur. 

Expressing L ( j o )  in the form U ( w )  +j V ( w ) ,  Eq. (5.5-13) can be written as 

Equating the real and imaginary parts on each side gives 

Eliminating 8 between these equations and manipulating yields 

Geometrically interpreted, the contours of constant A are circles, with center coordinates 
( - $ { l / N ( A )  + I / [ N ( A )+ AN'(A)I} ,  0 )  and radii IAN'(A)/ZN(A)[N(A)+ AN'(A)]I. 

It is readily seen that Eqs. (5.5-16) and (3.3-12) are identical. This establishes the 
equivalence of both ways of viewing the condition for jump resonance. The reader is 
referred to Sec. 3.3 for further discussion of jump resonance phenomena. 

APPLICATION T O  TRANSIENT OSCILLATIONS 

This section is concerned with the relative stability of small perturbations 
about steady-state oscillations in nonlinear systems. The systems are 
assumed describable by equations of the type 

where s = d/dt, and P(s) and Q(s) are polynomials in s. The differential 
operator corresponding to the system linear elements' transfer function is 
L(s) = P(s)/Q(s), and the nonlinearity output is characterized by y(x,i). 

For the study of relative stability, the test signal applied to Eq. (5.5-17) 
is chosen in the form1 

X ( t )  = A ~ ? w ~ ~+ Eeotei(wot+o) (5.5-18) 

* By convention the real test signal is understood to be the imaginary part of this complex 
expression. The derivation closely follows Bonenn (Ref. 4). 
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where E is an arbitrary but small parameter. Substituting for x ( t )  in Eq. 
(5.5-17) yields, after making the describing function approximation, 

The dominant terms in this equation, of order A, represent the steady-state 
oscillation and sum exactly to zero. For the remaining perturbation terms, 
application of the differential-opcrator rules (Ref. 19), 

To satisfy equality with zero requires that the term in brackets vanishes; 
the perturbation signal itself is arbitrary. Dividing this term by Q(o +jo,) 
gives, as the characteristic equation of the perturbed system, 

1 + N,(A,B)L(o +jw,) = 0 (5.5-23) 

where w, is the steady-state oscillation frequency, and o is the damping 
factor of interest. Equation (5.5-23) is a generalization of Eq. (5.5-13), 
the latter implicitly assuming o = 0. The transition from Eq. (5.5-13) to 
(5.5-23) is analogous to the transition from stability determination by 
frequency methods to stability characterization in terms of poles and zeros. 
Of course, it is assumed in writing Eq. (5.5-23) that N,(A,O) is the appropriate 
gain to associate with an incremental input E exp (of) sin w,t. For o 
sufficiently close to zero, this approximation is certainly valid. The nature 
of the approximation is identical with that made in Chap. 4, where N(A) is 
used to characterize the nonlinearity in response to a sinusoid of slowly 
varying amplitude and frequency. The point of view adopted here, however, 
is quite different from that in Chap. 4. 

A graphical procedure is employed to extract the desired solution of 
Eq. (5.5-23). It  is best demonstrated by an example. 

Example 5.5-2 Calculate the damping factor associated with limit cycle perturbations 
in the system of Fig. 5.5-3. 

Recall of the DF for a preload nonlinearity enables writing the steady-state limit cycle 
equation as 
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Figure 5.5-3 Limit cycling system. 

This equation is satisfied by oo= 1 and A = 4/77. Now, from Eq. (5.5-9), the synchronous 
incremental-input describing function for the preload nonlinearity is 

To facilitate solution, Eq. (5.5-23) is best put in the form 

Writing this equation in terms of the present problem gives the following complex 
relationship: 

Since the left-hand side is a function of 8 only, and the right-hand side is a function of o 
only, this set of two equations in two unknowns can be readily solved by plotting each side 
as a function of the pertinent variable and determining intersections of the resultant loci. 
This is illustrated in Fig. 5.5-4, where we find the solutions o = 0 and a m -0.1. Notably, 
the quasi-static solution of Chap. 4 also leads to the value o = -0.1. 

It can be seen in general that at o = w,, Eq. (5.5-23) has two solutions for o. One of 
these always occurs at o = 0, and corresponds to the steady-state change in the limit cycle. 
The other, at negative o for stable limit cycles, corresponds to the time constant of the 
limit cycle transient. It is the measure of relative stability which we seek. The analog- 
computer result shown in Fig. 5.5-4 attests to the accuracy of this calculation, providing 
an experimental time constant of about 10 sec (that is, oexper% -0.1 sec-I). 

APPLICATION T O  TSIDF APPROXIMATION 

An important use for the nonsynchronous incremental-input describing 
function occurs in TSIDF approximation for the case of widely differing 
input amplitudes. The approximating relationships are, from Eq. (5.5-7), 

S A ( A , ~ )= N ( A )  
and from Eq. (5.5-S), 

f l B ( A , ~ )= N i ( A )  
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4 1 25% Amplitude 
10 sec transient starts here 

Figure 5.5-4 Graphical solution for the limit cycle transienidamping factor. Insert shows 
analog-computer results 

where a tilde denotes the approximation. The requirement is that B be 
sufficiently small for these approximations to hold. For the majority of 
nonlinear characteristics, this implies an upper bound on the ratio B/A. 
For nonlinear characteristics periodic in x (such as the harmonic nonlinearity 
y = sin nzx), this implies a limit on the absolute value of B. 

Example 5.5-3 Determine the requirement on B under which the harmonic nonlinearity 
TSIDFs can be approximated to within 10 percent accuracy by the D F  and incremental- 
input describing function [Eqs. (5.5-24) and (5.5-25)]. 

For the harmonic nonlinearity y = sin mx, it is readily demonstrated (see Prob. 5-3) 
that the exact TSIDFs are 
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According to the proposed approximations, it follows from Eq. (2.3-23) that 

and from Eq. (5 .5- l l ) ,  

Comparing Eqs. (5.5-26) and (5.5-28) yields that the exact and approximating TSIDFs 
differ by the factor J,(mB). This factor is bounded by 1.0 and 0.9 for m B  in the range 
ImBI < 0.65. Now comparing Eqs. (5.5-27) and (5.5-29), we see that the factor of 
difference is 2Jl(mB)/mB. This factor is bounded by 1.0 and 0.9 for m B  in the range 
lmBl < 0.89. Hence the requirement on B is 

which is, indeed, independent of A ,  as noted previously. 

The relative ease with which the TSIDF approximation can be calculated 
certainly promotes its use as an analytical tool. Applications for this 
particular form of linearization are both diverse and numerous. A typical 
application is illustrated below. 

Example 5.5-4 An optical-beam-riding antitank missile has its position control loop 
closed by a human operator. The on-off rate control loop employs a 400-cps carrier rate 
gyro feedback signal and associated amplification, demodulation, and compensation, as 
shown in Fig. 5.5-5. Assume that the airframe dynamics from 6 to y are characterized by 
the transfer function 

Y 50(s + I)
-
6 

( s )  = 
s(sZ + 2s + 25) 

It is found that the in-flight missile trajectory oscillates about the optical tracker-target 
line of sight, producing a signal e = 25 sin 6t volts. Find the amplitude of missile control- 
surface deflection due to a 1-volt demodulator output noise at the carrier frequency. 

The nonlinearity input is modeled according to 

x w A sin 6t + B sin 2,5121 

We first have to calculate the amplitude A of the low-frequency nonlinearity input 
component. This is given by the solution to the relationship 

where the approximation to N,&(A,B)is the DF for the on-off element with dead zone 
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The solution to these equations is readily found to be A = 2.5. Next the incremental-input 
describing function gain must be calculated in approximation to NB(A,B). 

This expression is evaluated at the appropriate value for A. 

The system seen by the sinusoidal noise voltage has thus been linearized. Neglecting the 
small fed-back high-frequency signal, the required control-surface noise-deflection ampli- 
tude 6,is calculated as 

j2,512 + 1 
x 0.26 = 0.026 radian 

This result is particularly interesting in view of the fact that 6,would be zero if e were zero. 
Nonlinearity modification by one input as seen by another input is a phenomenon which 
can be put to practical use. We shall meet it repeatedly in the remainder of the text. 

It is of some interest to check the accuracy of-the TSIDF approximation employed. 
Using earlier notation, we have A - 2.5, B - 0.1. Entering Fig. D.l at the curve labeled 
A16 = 5 (which is not shown, but interpolation is sufficient for our purposes here), we 
find at B/6= 0.2 the value NB(A,B)6/Dw 0.13, or N,(A,B)- 0.26. This is certainly an 
excellent check on our approximation. It is also possible to check the value of N,(A,B), 
although to use the abo;e-mentioned figure, we must employ Eq. (5.1-32). Hence, in 
place of NA(A,B),we choose to evaluate NB(B,A).This places us just below the curve 
labeled A16 = 0 at  the abscissa value BI6 = 5. The result is the determination that 
NA(A,B)w0.50. This justifies the use of n A ( ~ , ~ ) ,which also has the value 0.50 at 
A = 2.5. 

5.6 ADDITIONAL TSIDF APPLICATIONS 

By straightforward describing function technique one may use the TSIDF 
to study. the complete forced harmonic response of a limit cycling system and, 
similarly, the response of a non-limit-cycling system to two simultaneously 
applied sinusoids. Interpretation of the nonlinearity input signal component 
parts is evident in each of these cases. 

A conditionally stable system is one in which the linear elements' frequency 
locus has some frequency region displaying greater than 180" phase lag and, 
simultaneously, a gain in excess of unity. If, for example, such a system 
contains a limiter, a limit cycle can exist, following a suitable input transient. 
D F  application can determine the limit cycle amplitude and frequency, but 
not the amplitudes and frequencies of input sinusoids which excite the 
limit cycle. TSIDF theory is readily applied here (Ref. 22). 
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Other TSIDF applications include the consideration of harmonic content 
in loop oscillations (i.e., D F  correction term) and the analysis of systems 
with two nonlinearities separated by filters which insufficiently attenuate 
harmonics so that ordinary D F  application is inaccurate (Ref. 23). 

It must be remarked that, in general, TSIDF calculation for harmonically 
related input sinusoids is laborious. Where alternative methods of analysis 
obviate the need for this calculation, they may well be preferred. On the 
other hand, TSIDF calculation in the case of non-harmonically-related input 
sinusoids is quite easily accomplished. Calculation of the incremental- 
input describing function proceeds with no difficulty whatever. Once 
calculated, the employment of various TSIDFs for nonlinear-system study 
proceeds with the simplicity characteristic of describing function techniques. 
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PROBLEMS 

5-1. Calculate the TSIDFs in the cases of harmonically- and nonharmonically-related 
input sinusoids for the polynomial hard-spring characteristic given by 

5-2. By employing the method of double Fourier series expansion, show that, for the 
half-wave linear rectifier, 

x X T O  

0 x < o  

the first three output Fourier coefficients are (Ref. 2) 

5-3. Demonstrate that for the nonlinearity 

y = sinmx 

the function Y(ju)can be obtained in the form 
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and hence that the TSIDFs are given by 

[Hint: Use the relationship 

where 6(or) denotes the unit-impulse function of argument o r . ]  
5-4. Derive Eqs. (5.1-44a) to (5 .1-44~) .  Use the result to evaluate the TSIDFs for an 

odd square-law nonlinearity, y = x 1x1. 
5-5. Compute the approximate TSIDFs for an ideal relay. According to the exact 

TSIDF expressions, what is the range of validity of the approximation? 
5-6. What is the upper limit on input frequency which you would recommend for the 

system of Fig. 5-1 such that one-third subharmonics are not to occur? Design 
a linear comp&sator to be located at station y such that no one-third subharmonics 
can occur. 

Figure 5-1 Nonlinear system with saruration. 

5-7. Demonstrate that the TSIDF loci -l/NB(A,B,+,8)for a cubic nonlinearity are 
circles described by ( k  = B / A )  

4 k
Radius = -

3A2k4+ 3k2 + 4 

and plot these loci for fixed A at several values of k in the ranges 0 < k < 1 and 
1 < k < 8 .  

5-8. By noting that any piecewise-linear limiter with drive levels +D and input breakpoints 
* 6  can be represented in terms of a unity drive level, unity breakpoint limiter, 
preceded by a linear gain 116 and followed by a gain D, show that, as a consequence 
of Fig. 5.2-5, the rule for avoidance of subharmonic oscillations in systems containing 
a forward-path ideal relay is as illustrated in Fig. 5-2. 
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Figure 5-2 The 28" rule for elimination of subhar-
monics in systems containing an ideal relay. 

5-9. The linear elements in an ideal-relay system are characterized by 

Is the high-frequency limit cycle indicated on an amplitude-phase plot of L(jw) and 
- I / N ( A )  a mode which can exist by itself? 

5-10. A certain surface ship has a base-rate-motion-isolated rocket-launching platform. 
The elements of the platform roll-rate control loop are as illustrated in Fig. 5-3. 
Under an extremely rough sea condition the roll-rate control-loop disturbing torque 
signal T, is given by T, = 1.5 sin t. Calculate the amplitude of the noise torquing 
signal at station T due to a I-volt 400-cps stray pickup signal n. 

Compensation Torquer Torquer limits Platform 

_2 
O.ls+l- 1os+ 1 T * 

Rate gyro 

-0.5 c= 


Figure 5-3 Launching platform roll-rate control loop. 

5-11. A ground-based missile contains an inertial navigation system with a coarse-leveling 
loop as illustrated in Fig. 5-4. Instrument errors and gimbal servo dynamics have 
been neglected; the inertial platform is treated as a pure integrator. The quantity 
0 is the tilt angle (radians), measured with respect to the local vertical. Because of 
the effect of wind gusting on the missile structure, the accelerometer senses a disturb- 
ance input d = 0.2gsin 2 r t  + 0.02g sin 8rt. The accelerometer has a "notch" of 
O.lg width and an otherwise linear characteristic of slope 1 voltlg. Calculate 8 in 
terms of two sinusoidal components, and thereby determine the accuracy of this 
coarse-leveling mode. How can the accuracy be improved? 
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d ( t )

T 0.5 1 e ( 0  *-
0.2s+ 1 

Gravity 
feedback 

Ig/rad 

Figure 5-4 Missile inertial-navigation-system erection loop. 

5-12. For the system of Example 4.4-1, compute the damping factor associated with a 
limit cycle perturbation by means of the incremental-input describing function. To 
facilitate an analytic solution to this problem, note that the graphical construction 
employed can be interpreted as the solution for the intersections between a line and 
a circle. Compute the slope of the "line" [that is, L(o +jw,)-l] at the point where 
o = 0, and thus deduce the approximate result, o = -Cw,/(l + 4c2)for large 5. 

5-13. Derive the incremental-input describing function associated with the kth incremental 
component of the nonlinearity input 

x = A sin wt + 2 eli sin (wt + Bk) 
k=l 


and put it in the standard form 

5-14. A linear time-varying differential equation of considerable physical importance is 
the Mathieu equation, 

x + [wn2-Msin (t + 8)lx = 0 

A block diagram appropriate for this system appears in Fig. 5-5. We wish to study 
the stability of the parametrically excited oscillations of this system by describing 
function methods1 

A. Leonhard, Extension of the Describing Function Method to the Investigation of 
Parametric Oscillations, Proc. ZFAC, Basel, Switzerland (August, 1963), pp. 18711-7. 

Y 1 
s2 + wnZ 

Multiply 

Figure 5-5 Block diagram of 
the Mathieu equation. 
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-Exact (Floquet theory) 

--- Approximate (DF theory) 
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(a)Assuming the system to be in a state of neutral stability given by 

x = Asinwt 

show that an appropriate D F  model for the multiplicative gain is 

(This requires the argument that only w = 4 yields solutions of consequence.) 
Next, invoke the D F  requirement for self-sustained system oscillation to find 

M = 2 [wn2- (+)*I 

This equation for the stability boundary is conventionally plotted in the form 
I M ~ versus unZ. Such has been illustrated in Fig. 5-6 against a background of 
the exact stability boundaries for the Mathieu equation as determined by Floquet 
theory. 

(b) Now consider the more representative steady-state self-oscillation waveform 

x = A, sin wt + A, sin (3wt + y) 
Show that the appropriate TSIDF model for the multiplicative gain is 

and derive, as the equation for the stability boundary, 

with the corresponding solution 

This result is plotted in Fig. 5-6, where, in addition to an improvement in the 
shape of the approximately derived solution, two distinct V-shaped boundaries 
appear. 

(c) Finally, consider the case in which the first, third, and fifth harmonics are 
included in the self-oscillation waveform model, viz., 

x = A, sin wt + A, sin (3ut + y,) + A, sin (5wt + ly,) 
Determine the three appropriate describing function gains of the multiplicative 
term, and demonstrate that the stability-boundary equation takes the form 

The solution of this equation has been plotted in Fig. 5-6, where it is clearly seen 
that the describing function analysis yields an excellent approximation to the 
exact solution. A third V-shaped boundary arises from the point w,2 = 6.25, 
although this is not shown. 
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The incorporation of a dc term in the self-oscillation waveform of the parametric 
oscillator of Prob. 5-14 yields additional stability-boundary solutions of interest. 
(a)Choose 

x = A, + Alsinwt 

and by following the lead of Prob. 5-14, develop the dc and first-harmonic gains 
of the multiplicative term (now using the argument that only w = 1 yields 
solutions of interest), and by manipulating, obtain the results 

M is arbitrary for wn2 = 1 

M = d2wn2(wn2- 1) for wn2 > 1 

(b) Show that for the three-term waveform model 

-Exact (Floquet theory) 

I --- Approximate (DF theory) 

Figure 5-7 Stability boundaries for the Mathieu equation (w = 1). 
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the stability-boundary solutions are 

for 1 < con2< $ and wn2> 4 
3w,* - 8 

These approximate solutions are plotted in Fig. 5-7. Note that the boundaries 
arising under the assumption w = 1 with a self-oscillation waveform dc term 
are located in between the boundaries determined under the assumption w = 4 
without a dc term. 

5-16. Make an argument which demonstrates that the area between the stability boundaries 
and the abscissa corresponds to the region of stable operztion, whereas that above the 
boundaries denotes unstable operation, for the Mathieu equation. 

5-17. For the system of Fig. 5-8, find the region in the space of M, and w in which the 
system would display a stable response to the sinusoidal input, and would not 
limit-cycle. 

y = x- 'x3  

r( t )  = M, sin W I  c ( t )--2 - .  
+- S ( ~ S + I ) ~  

Figure 5-8 

5-18. Write a general expression for the steady-state response c( t ) to the sinusoidal input 
for the system of Fig. 5-9-an expression valid for all combinations of input ampli- 
tude and frequency resulting in a response at x which is of small amplitude relative 
to the amplitude of the limit cycle at x.  

Figure 5-9 

5-19. For a cubic nonlinearity, y = x3, show that the three-sinusoid-input describing 
function gains corresponding to the input 

~ ( t )= A, sin wt + A, sin (3wt + 0,) + A, sin (5wt + 85 )  
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are :' 

+ 2A3' + 2A5' - A1A3cos 83 

--A 2 A scos (28, - e5) - 2A3A5cos (eS- 03)IA1 

A32A~.
-A1A3 sin 8, + -sin (28, - 8,) - 2A3A5sin (8, - 8,)

A 1 I I 

Ai2A5 .
sin 8, --sin (05- 03)+ 2A1ASsin (8, - 28,)IIA3 

A 12A 3 A IA  3'+ 2A3' + As2 --cos (8, - 83  + -cos (28, - 8,)IA 5 A5 

Ai2A3 . 
ASsin (8, - 8,) + *sin (28, - o,)]] 

5-20. A nonlinear feedback system is comprised of a cubic nonlinearity, y = x3, and 
fourth-order linear elements 

Show that D F  arguments lead to the conclusion that the system does not limit- 
cycle. Based upon consideration of the shape of the L(jw) locus, would you 
suspect the D F  conclusion to be in error? 
Now assume a nonlinearity input of the form 

~ ( t )  A ,  sin o t  + A, sin (3011 + 8)= 

and by simultaneously satisfying the four conditions 

INA,I IL(jw)l = 1 /NA,+ /&jo> = * x  

-INA3) IL(j3w)l = 1 / N . ~ ,  + / ~ ( j 3 w )= IT-

show that this TSIDF argument does predict a limit cycle, given by 

x ( t )  = 1.13 sin 0.608t + 0.605 sin (1.8241 + 0.083) 

This oscillator problem is one of a class of problems studied by Fitts, who 
showed that several modes of oscillation can indeed occur. The j r s r  mode, 
in which the predominant harmonic is the third, was measured as 

x ( t )  = 1.13 sin 0.604t + 0.548 sin (1.812t f0.093) 

(c) Outline how you would solve for the so-called second mode of oscillation, in 
which the first, third, and fifth harmonics appear? 

Fitts, R. E.: Linearization of Nonlinear Feedback Systems, Ph.D. thesis, Massachusetts 
Institute of Technology, Cambridge, Mass., June, 1966. 




