
DUAL-INPUT DESCRIBINGbFUNCTION (DIDF) 

6.0 INTRODUCTION 

The two-sinusoid-input describing function (TSIDF) of Chap. 5 is certainly 
again brought to mind by the title of this chapter, as are all other describing 
functions which simultaneously accommodate two nonlinearity input 
waveforms. Because of the specific utility of the particular describing 
function of this class to be discussed presently, however, we reserve for it the 
otherwise general appellation dual-input describing function, and related 
abbreviation DIDF. 

TSIDF application to nonlinear control systems is conceptually limited by 
requiring that only sinusoids be described in the nonlinearity test input. 
For this reason an alternative linearization accommodating two inputs was 
sought by researchers interested, among other things, in the approximate 
forced response behavior of certain nonlinear systems. The DIDF, as 
we shall now see, is a physically motivated linearization of a nonlinearity 
which readily permits study, among other things, of the forced responses of 
limit cycling nonlinear systems. In what follows it is required that command 
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inputs do not cause the limit cycle to terminate, an assumption that can be 
verified when under suspicion. The nonlinearity input is then comprised of 
the limit cycle and a component due to the command input. By assuming 
that the component due to the command input varies little during a limit 
cycle period, one can formulate a nonlinearity linearization similar in 
concept to the TSIDF, but far simpler to calculate. Hence the DIDF model 
input waveform is a bias plus a sinusoid, the latter component effectively 
serving to linearize the nonlinearity gain to the former. 

The idea of linearizing nonlinear characteristics by means of an additive 
sinusoid is not a new one. MacColl (Ref. 12) described the use of such a 
signal in a motor-drive system incorporating a relay. Loeb (Ref. 10) has 
suggested that any nonlinear system can be treated in this manner. Lozier 
(Ref. 11) is credited with a method of treating oscillating control systems 
using this linearization, an interpretation later independently arrived at by 
Li and Vander Velde (Ref. 9) in connection with limit cycling adaptive 
feedback control system applications. Other papers by Gelb (Refs. 3-5) 
followed this interpretation and further developed the dynamic charac- 
terization of limit cycling systems. Oldenburger experimentally discovered 
the effects of an additive high-frequency low-amplitude input to a control 
system, and subsequently provided analytical justification via DIDF consider- 
ations for these effects in several papers on "signal stabilization" (Refs. 
16-18). Popov (Ref. 20) and later Popov and Pal'tov (Ref. 21) have 
published books in which DIDF harmonic linearization is treated. 

In this chapter, following general formulation and  calculation of several 
specific DIDFs, the forced response of a class of limit cycling systems is 
considered. The role of poles and zeros in the description of limit cycling 
systems is established in this context, and application of the theory is made 
to a class of adaptive control systems. Adaptive roll control for a missile 
is considered as an example in this class. It is then shown that limit cycles 
in systems with an asymmetric nonlinearity are easily determined. The uses 
of artificial dither for the compensatory purposes of linearization and 
signal stabilization are treated. Finally, a brief TSIDF derivation is 
developed in DIDF terms. 

Before embarking upon a discussion of DIDF formulation, we digress to 
examine a system quite different from those discussed in the remainder of 
this chapter. 

Example 6.0-1 Apart from limit cycling systems, the DIDF model input waveform can 
arise in quite a number of different ways. For illustration, consider the problem of 
determining the near-circular-orbit period of an earth satellite. The coupled radial and 
tangential force equations are 

P; - * a =  -- (6.0-1) 
rt 

and r q + 2 @ = 0  (6.0-2) 
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or since Eq. (6.0-2) can be written as (llr) d/dt(r2+) = 0, we can write 

re+ = h (6.0-3) 

where r and y are as defined in Fig. 6.0-1, p is a constant defining the specific gravitational 
force, and  h is the constant specific angular momentum of the orbit. Eliminating II, from 
Eq. (6.0-1) by means of Eq. (6.0-3) gives 

A natural approximate solution to this conservative equation proceeds as follows: 
First, the geometry of the problem suggests a solution of the form (y = o t )  

r =  R + 6 , c o s y  (6.0-5) 

where R and 6, are constant. Substituting this expression in Eq. (6.0-4) gives 

The assumption of a near-circular orbit implies that SB/R < 1. Correspondingly, the 
nonlinear terms in Eq. (6.0-6) can be approximated by appropriate first-order expansions, 
viz.. 

h 2 (  3'". ) 22 
;( 

m - 1 -1-oEGR (6.0-7)cos tp - cos y -cosy-

R3 R 

Balancing harmonics on each side of this equation (a concept which is integral to DF 
analysis of previous chapters) gives the relationships 

R = -he 3ha 2p
and o"---

P R4 R3 

Solution of these two equations for the orbit period T finally yields 

Figure 6.0-1 Earth-satellite geometry. 
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This compares favorably with the exact result (where orbit eccentricity = SB/R) 

The ease with which this approximate solution is obtained is characteristic of the 
harmonic linearization approach. This accounts, in large measure, for the popularity 
and widespread use of describing function techniques. 

6.1 MATHEMATICAL FORMULATION OF THE DIDF 

MOTIVATION 

Consider the system of Fig. 6.1-1 to be in a limit cycle state of period T. 
Now let a "slowly varying," but otherwise arbitrary, input which satisfies 
the inequality 

Tld$l < A  (6.1-1) 

be applied, where A is the amplitude of the limit cycle oscillation at the input 
to N. From this inequality it can be seen that a slowly varying function is 
taken as one which changes relatively little with respect to A over the period 
T. This coarse, somewhat restrictive definition is sufficient for our present 
purposes. 

In this case a typical set of input and output waveforms are illustrated in 
Fig. 6.1-2a, where we see that the output follows the input, on the average, 
to within some dynamic following error. With the exception of an additive 
limit cycle component this is the input-output relationship ordinarily 
encountered in control systems of all types, where the function of the system 
is simply to reproduce the input waveform a t  a higher power level at the 
output. One cycle of the associated nonlinearity input waveform is shown 
in Fig. 6.1-2b. This model is the starting point for DIDF derivation. It  
plays a role completely analogous to the single-sinusoid model of D F  usage, 
or the two-sinusoid model of TSIDF usage. Let us also note that precisely 
the same model is arrived at in general consideration of the limit cycle 
behavior of a system with an asymmetric nonlinearity, for in this case the 

Figure 6.1-1 Limit-cycling system. 
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x = r - c  1 

A + B  - Model of error signal over any single 
cycle of x( t )  

B -

t 

( b )  

Figure 6.1-2 (a)  Typical input and output waveforms with (b)associated error- 
signal model. 

closed loop can develop a bias input to N in addition to the limit cycle. 
Other physically significant situations in which a true bias appears at the 
nonlinearity input, in addition to a sinusoid, include a system with an 
integration in the linear part responding to a ramp input while limit cycling, 
a limit cycling system responding to a constant disturbance input, and a 
non-limit-cycling system responding to a sinusoidal command and a constant 
disturbance input. 

FORMULATION 

The input to the nonlinearity is taken to be 

~ ( t )= B + A sin ( o t  + 0) (6.1-2) 

From the statistical point of view taken in Chap. 1, B, A ,  and cc, are con- 
sidered determined by the nature of the system and its inputs. Thus the 
only random variable in the characterization of x( t )  is the phase angle 8, 
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which has the uniform distribution over one cycle. The expectations which 
appear in the expressions for the describing functions are in this case just 
single integrations over a 2 ~ r  interval in 8. 

The expressions for the describing functions resulting from the uncoupled 
relations of Eq. (1.5-21) are clearly applicable in this case. The nonlinearity 
input is the sum of two components: x,(t) may be taken to be the bias, and 
x,(t) the sinusoid. With B a deterministic quantity, and the sinusoid x,(t) 
having zero mean, these two input components are obviously uncorrelated. 
With the describing function for the sinusoidal input component interpreted 
as the sum of an in-phase plus quadrature gain, as was discussed in Chap. 1 
and again in Chap. 2, the output of the optimum quasi-linear approximator 
to a nonlinearity with this input is 

The required gains, or describing functions, can readily be calculated for 
quite general nonlinearities. In recognition of this we indicate in the 
notation a dependence of nonlinearity output on the nonlinearity input x(t) 
and its derivative. 

Y(t) =Y [x(t),*(t)l (6.1-4) 

This, however, is not to be taken as a restriction on the form of nonlinearities 
which can be treated. The only requirement is that one be able to define 
the nonlinearity output as the phase of the input sinusoid traverses a full 
cycle. The describing functions will in general depend on the bias level, the 
amplitude of the sinusoid, and its frequency. 

The approximating gain to the bias input component is given by Eq. 
(1.5-27). 

1 
y(B + A sin 8, A o  cos 8) dB (6.1-5) 

The real and imaginary parts of the complex approximating gain to the 
sinusoidal input component are given by Eqs. (1.5-36). 

2 
n,(A,B,cu) = -A y(0) sin 8 

y(B + A sin 8, A o  cos 8) sin 8 d8 (6.1-6) 

n,(A,B,w) 
L 

= -
A 

y(0) cos 8 

1 
= -

7rA 

2u 
y(B + A sin 8, A o  cos 8) cos 8 dB 

0 
(6.1-7) 
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These describing functions, defined by the property of minimum mean- 
squared approximation error, are seen to be identical with the result of 
expanding the nonlinearity output, for the assumed input, into its Fourier 
series, and relating the corresponding input and output terms. Thus the 
mean output is related to the mean input by the gain NB, and the fundamental 
output component is related to the sinusoidal input component by the 
complex gain NAY which has real and imaginary parts n, and n,, respectively. 
This is a specialization of more general properties derived in Chap. 1. 
For any nonlinearity input, NB is always the gain which equates the mean 
output of the quasi-linear approximator to the mean output of the non- 
linearity. And for any nonlinearity input which does not include harmon- 
ically related sinusoids, NA always represents the amplitude and phase 
relation between a sinusoidal input component and the harmonic component 
of the same frequency in the expectation of the nonlinearity output, com- 
puted by averaging over all random parameters except the phase angle of 
that sinusoid. In this case there are no random parameters other than the 
phase angle of the input sinusoid; so the expectation of the nonlinearity 
output referred to above is just the output itself. 

It is evident from this formulation that in the limit, as B -+ 0, n,(A,B,w) 
and n,(A,B,w) approach n,(A,w) and n,(A,w), the DF characterization of 
N. Also in the limit, as B +0, the gain to the bias approaches a value 
independent of B, which is termed the incremental-input describing function. 
It is defined by 

2a 

= lim [L1 y(B + A sin 0, Aw cos 8) d0 (6.1-8) 
B + ~2n-B o 1 


Intuition leads one to suspect that this form of the incremental-input 
describing function is equivalent to that presented in Sec. 5.5 for non-
harmonically related input sinusoids (i.e., asynchronous case). This 
equivalence is easily demonstrated. 

Example 6.1-1 Proof of the equality N,(A) = N,(A,O). Application of L'Hospital's 
rule to the indeterminate form of the incremental-input describing function [Eq. (6.1-8)], 
specialized to static single-valued nonlinearities, yields 

[A
p ( B  + A sin 6)  dBINB(A,O)= - lim 
27, B-0 

where y'(A sin 8) stands for the derivative of y with respect to its argument, computed at 
the point where the argument takes the value A sin 8. It is to be noted that Eq. (6.1-9) 
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provides a useful means for computing NB(A,O) directly, without the intermediate step of 
an explicit limiting process (that is, B -+0). Only in the case of discontinuous nonlinear 
characteristics, where y' contains impulse functions, is it again necessary to consider a 
limiting process (cf. Prob. 6-2). 

Next, Ni(A) is determined in the following way: By definition 

A d
sin 0) sin 0 d0 + --dA [Ar y ( ~sin 0) sin 0 I 

The first integral can be integrated by parts to yield 

y(A sin 0) sin 0 dB = -y(A sin 0) cos 0 r 
Inserting Eq. (6.1-11) into Eq. (6.1-10) gives 

sin 0) cos2 0 dB + -f"y'(A sin 0) sin2 0 dB 

2n
1
= sin, do 

whence it is concluded that 

N i ( 4  = NAA,O) 

D I S C U S S I O N  

The DIDF incremental-input describing function representation of N leads 
to an extremely simple and very useful description of the input-output 
dynamics of limit cycling systems. We shall thoroughly explore this 
description, following several example DIDF calculations. 

The approximation used in that analysis, in addition to the normal 
describing function approximation, is that the bias function employed in 
DIDF calculation is generalized to represent arbitrary functions of time 
within a restricted class. This class evidently can include functions which 
are sIowIy varying; so over any one period of the sinusoid the function appears 
essentially constant. But the relation just derived, Eq. (6.1-13), states that 
the effective gain of the nonlinearity to a small sinusoid of any frequency in 
the presence of another sinusoid is equal to the effective gain of the non- 
linearity to a small bias in the presence of a sinusoid. This suggests the 
possibility that the effective gain of the nonlinearity to a small signal of 
arbitrary form in the presence of a larger sinusoid may be the same, equal to 
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the incremental-input describing function. This suggestion is given further 
strength by the results of Sec. 1.5, which showed that the effective gain 
of a static, single-valued nonlinearity to a small signal in the presence of any 
other independent input signals is the same in the limit as the small signal 
approaches zero, whether it be a bias, a sinusoid, or a random process. 
Thus we also include in the class of arbitrary functions for which the 
incremental-input describing function can be employed, functions which are 
small. Usually this "smallness" condition requires that the arbitrary signal 
be small compared with another signal a t  the nonlinearity input, such as 
the sinusoid in the DIDF formulation. In some instances, however, the 
smallness must be with respect to the characteristics of the nonlinearity (cf. 
Example 5.5-3). 

6.2 DIDF CALCULATION 

Because of the great similarity between D F  and DIDF calculations, only a 
few selected DIDF calculations are presented. These are chosen from the 
ranks of frequency-independent nonlinearities which are piecewise-linear 
symmetric, piecewise-linear asymmetric, and polynomial, as well as 
frequency-dependent nonlinearities. First, let us examine a general calcula- 
tion of some importance. 

Consider a static, but otherwise arbitrary, nonlinearity y =y(x). Using 
the . obvious relationship d(B + A sin y)  = A cos y dy, it follows that 
n,(A,B) can be written as 

+ A sin y )  cos y dy 

Y ( R+ A sin y) d(B + A sin y )7rA2 

(Nore: We have returned to the dummy variable y, to be consistent 
with previous chapters) 

where S is the area enclosed by y(x)  as x varies through a complete cycle 
between the limits B + A and B - A. The reader can convince himself 
with the aid of a simple sketch that the minus sign in Eq. (6.2-1) is indeed 
appropriate. 
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Several conclusions of importance can be drawn from this result. The 
most obvious is that n,(A,B) = 0 for any memoryless nonlinearity, since 
here S = 0. Also, since n,(A,B) is equal to n,(A) when B is set equal to zero, 
it follows that Eq. (6.2-1) is suitable for calculating the phase-shifting 
component of the DF, n,(A). 

Now we proceed to specific nonlinearities. 

IDEAL RELAY 

For this nonlinearity the input and output waveforms are illustrated in Fig. 
6.2-1. One can see clearly that, because of the presence of a positive B, the 
points at which the nonlinearity output switches between D and -D are 
altered in such a way that a net positive bias component results in y. From 
Eqs. (6.1-6) and (6.1-7), in which frequency dependence is dropped, we 
get for this static nonlinearity 

1-[rY1~
= sin y dy + (- D) sin y dy 
3TA 

D sin y dy I 


and n,(A,B) = + A sin y) cos y dy 

= 1[ r V I D  cos y dy + (- D) cos y dy 
3TA 

+I2*D c o s y d yI2-v1 
= 0 

This last result is obtained with even greater ease by inspection of Eq. (6.2-1). 
The limit cycle DIDF is indeed non-phase-shifting, as one expects in the 
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Y 

D 


X 

-D 


( a )  

Figure 6.2-1 (b) Input and output waveforms for the ideal relay (a). 

case of this memoryless nonlinearity. From Eq. (6.1-5) the signal DIDF 
is easily determined as 

NB(A,B) = -J2;(B + A sin y) dy 
2rrB o 
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The incremental-input describing function follows directly. 

The ease with which these calculations have been effected is striking by 
comparison with the corresponding TSIDF calculations of the previous 
chapter. As stated earlier, it is desired to let B represent a multitude of 
signals in addition to a simple bias. As an illustration of the case where B 
represents a sinusoid, let us examine the above ideal-relay results in order to 
get a feel for the conditions under which the DIDF is an acceptable substitute 
for the TSIDF. From the TSIDF ideal-relay calculation in the general 
case where the signal frequency is not a rational fraction of the limit cycle 
frequency, it is shown in Eqs. (5.1-19)that (A > IBI) 

Corresponding DIDF expressions [Eqs. (6.2-2)and (6.2-3)]can be expanded 
to yield 

Examining TSIDF calculations for the cases of rational, as well as irrational, 
frequency ratios and including all relative phase shifts leads to the conclusion 
that the ideal-relay DIDF result is within 5 percent of the TSIDF result under 
the conditions 

Amplitude-ratio condition : 
B 1 
23 

Frequency-ratio condition : Y' 
1 

These rough quantitative statements apply as well to a wide range of common 
nonlinearities. They are therefore adopted as guideposts in a limit cycling 
system input-output characterization. 

At this point another interpretation of the significance of the describing 
function NB(A,B) can be stated. Given that there is a limit cycle of 
amplitude A ,  this quantity explicitly accounts for the transmission of slowly 
varying signals through the nonlinearity in the presence of the limit cycle. 
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Figure 6.2-2 Equivalent nonlinear element for signal trans-
mission through an ideal relay in the presence of a limit cycle. 

I t  defines an equivalent nonlinear element (sometimes called a "modified 
nonlinearity") in the sense that one can divorce limit cycle considerations 
from consideration of nonlinearity signal transmission, provided that A is 
constant. A normalized plot of NB(A,B) appears in Fig. 6.2-2. Insofar as 
the values of BIA encountered may be small, this equivalent nonlinear element 
can be replaced by an equivalent linear element, given by its slope at the 
origin, 2Dl7rA. This is the physical interpretation of the incremental-input 
describing function computed earlier. 

R E C T A N G U L A R  HYSTERESIS 

This piecewise-linear characteristic, possessing memory, leads to a square- 
wave output, as shown in Fig. 6.2-3. It is clear that the fundamental 
component of the square wave is not in phase with the sinusoidal part of x. 
Thus the limit cycle DIDF is sought in the compact form 



310 D U A L - I N P U T  DESCRIBING F U N C T I O N  (DIDF) 

Figure 6.2-3 (b) Input and output waveforms for the rectangular hysteresis nonlinearity 
(a).  

This result can, of course, be expanded to place in evidence either the real and 
imaginary or magnitude and phase-shift limit cycle DIDF terms. It  is 
to be noted that, as B -+ 0,Eq. (6.2-8) reduces to the DF derived for the 
rectangular hysteresis nonlinearity, Eq. (2.3-26). 

The signal DIDF and incremental-input describing function follow directly. 
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Expressing the incremental-input describing function calculation as a proc-
ess of differentiation yields 

NB(A)= lim NB(A7B) 
B-0 

2 0  sin-l (6/A+ BIA) - s i r 1  (6/A-BIA)--- lim 
lTABlA-+O 2BIA 

TWO-SEGMENT PIECEWISE-LINEAR ASYMMETRIC NONLINEARITY 

This memoryless characteristic is shown in Fig. 6.2-4. By proper choice of 
m, and m,, it can be made to represent an absolute-value device (m, = -ml), 
a rectifier voltage-current characteristic (ml> m, > O), and so forth. 
DIDF calculation proceeds easily. Since the nonlinearity is memoryless, it 
results that (1B1 5 A) 

NA(A,B)=- y(B + A sin y) sin y, dy
TA  S2"0 

m,(B + A sin y) sin y dy 
TA  

277-~1 

+ S.+,, m,(B + A sin y)  sin y dy 

2"+1 m,(B + A sin y)  sin y dy IZ"-v1 

--m1+ m2 + m, -m, B sin 2y1
2 77 ( 2 A C O s y l + y l - - 2 

The term in brackets has already been found to occur frequently in DF 
calculations [denoted f(B/A) in Sec. 2.31. In terms of the previously intro- 
duced notation, Eq. (6.2-11) can be written as 

I t  is to be observed that the above results are valid only for a restricted 
range of B. Outside of this range, inspection yields 

m, for B > A 

N A =  [mn for B < -A 
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m * ( B - A )  

B - A  

Figure 6.2-4 (b) Input and output waveforms for a two-segment piecewise- 
linear asymmetric nonlinearity (a). 

Continuing, 
I rzn 

1 2n--v1 
--[ r m , ( ~- + A sin y )  dy + 1 m,(B +A sin y)  dy2nB n+vl 

2 n - v ~ ~+ 1'' m,(B + A sin y )  dy I 
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The term in brackets here differs from that in Eq. (6.2-1 l), but as in the 
case of f(B/A), this new term occurs repeatedly in DIDF calculation. It is 
thus designated (7r/2)g(B/A), in which case Eq. (6.2-14) can be written as 

Clearly, in the case of this nonlinearity, the incremental-input describing 
function defined by Eq. (6.1-8) is meaningless, for an output bias appears 
even in the absence of an input bias. A more meaningful quantity is the 
gain to vanishingly small perturbations about that particular input bias B0 
which results in zero output bias. B0 satisfies the relationship 

Another meaningful quantity in this instance is the perturbation in output 
bias caused by a perturbation about zero of the input bias. 

POLYNOMIAL-TYPE NONLINEARITY 

The class of nonlinearities under consideration is comprised of the odd 
functions 

Y ( X )  = cnxn (6.2-16) 

where n is an odd integer. The general formula for the limit cycle DIDF 
for a memoryless nonlinearity yields 

2n 


(B + A sin y)" sin y dy (6.2-17) 

Applying the binomial theorem in expansion of the integrand and integrating 
gives 

n! 
NA(A7B)= -

k)! k! 
(A sin ~ J ) " - ~ B ~  sin y dy 1
7rA n -

=5i ! 12'(sin y)n-k sin y dy 
rAk=@(n- k)!k! 

r ( s i n  ~ ) n - ~ + l  ="f n! 
A - L - ~ B ~  dy (6.2- 18) 

.rr ,=, (n - k)! k! 

Two necessary intermediate results are 

For k odd: r ( s i n  v)"-~+' dy = 0 
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For k even: r ( s i n  y)n-k+l dy  = 4 

where r ( 1 ) is the gamma function of argument 1. Thus 

The signal DIDF is computed as follows: 

%(A$) =I o27rB 12>(B + A sin y)  dy  

2a 
= 5I ( B  + A sin ylndy

27rB o 

n! ( A  sin y ) n - k ~ k ]  dy  

=-A2 "! ~ ~ - ~ ~ ~ l * ( s i ny)"-' dy  
2mB k=o (n - k)!  k !  

The integral in the summation contributes only for k odd; hence 
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Examining the limit of this expression as B +0 enables identification of the 
incremental-input describing function. The summation is first expanded, 
yielding one term in B0 = 1 and (n - 1)/2 other terms which disappear in 
the limit as B -t 0. Thus 

NB(A) = lim [NB(A,B)] 
B - + O  

A very common odd nonlinearity is of the form 

Using the above results enables finding the DIDFs for the limit cycle and 
signal as 

NA(A,B) = $A2+ 3B2 (6.2-26) 
NB(A,B) = $A2 + B2 (6.2-27) 

NONLINEAR CLEGG INTEGRATOR 

Discussion of this dual-mode nonlinear integrator can be found in Chap. 2 
(see Fig. 2.4-3). Figure 6.2-5 shows the input and discontinuous output 
over one complete cycle, -y, I y 1 2 r r  - y,. The output of the Clegg 
integrator is determined in two pieces: First, by integrating the input wave- 
form from -y,, the point at which the input turns positive, to the literal 
variable y (for -y, 2 y < rr + y,): 

y(B + A sin y,  ~w cos y) = [91s (B + A sin y) d -
-9110 
 (9 


(B + A sin y) dy 

1 
= - [B(y) + y,) + A(cos y1 - cos y)] (6.2-28)

W 

and second, by integrating with zero initial conditions from rr + y,, the 
point at which the input turns negative, to y (for rr + y, I y < 2rr - y,): 

y(B + A sin y ,  Aw cos y) = (B + A sin y)  dy 

1 
= - [B(Y - ~ 1 -r )  -A(COS y1 + cos y)] 

W 
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Figure 6.2-5 Input and output waveforms for the nonlinear Clegg integrator. 

The frequency-dependent limit cycle DIDF is computed as follows: 

. -
N - ~ ( A J P )= -J y ( B  + A sin y ,  Aw cos y)e-iw d y  

n A  -,pl 

where the interval over which the DIDF is evaluated is chosen, for con- 
venience, as - y ,  < y < 277 - y , ,  instead of 0 < y < 271, and the relation- 
ship y ,  = s i r 1  (BIA) is employed. Observe that, as it should in the limit 
as B - t  0, the limit cycle DIDF reduces to the D F  computed in Chap. 2: 

Following the same procedure gives the signal DIDF and incremental- 
input describing function as 

2r-w1 

NB(A,B,w) = -1 y (B  + A sin y ,  Aw cos y )  d y2nB -,, 



FORCED RESPONSE OF LIMIT CYCLING NONLINEAR SYSTEMS 317 

and NB(A,w) = lim NB(A,B,w) 
B-0 

Thus, in the region of small BIA, both the limit cycle and signal DIDFs are 
not only independent of B but of A as well. Only frequency exists as a 
DIDF parameter. This is certainly reminiscent of the behavior of a linear 
integrator. The remaining differences between these linearized nonlinear 
integrator transfer functions and the single transfer function of a lin-
ear integrator are what makes the Clegg integrator a particularly useful 
compensatory device. 

Additional DIDF calculations are tabulated in Appendix C .  The 
frequent appearance there of the functions f (BlA) and g(B/A) attest to their 
value as a shorthand notation. 

6.3 FORCED RESPONSE O F  LIMIT CYCLING 
NONLINEAR SYSTEMS 

In this section an input-output model which accounts for transient as well as 
frequency response behavior is developed for limit cycling systems. Needless 
to say, the approximate DIDF analysis employed results in certain restric- 
tions on the use of this model. Special attention is therefore devoted to the 
question of its range of validity. The results sought are approximations, 
such as may be of convenient use in analysis and design work. The argu- 
ments presented are both heuristic and abbreviated. 

Basically, what we should like to argue is the equivalence of systems a and 
b of Fig. 6.3-1. That is, the original nonlinearity is to be modeled by its 
incremental-input describing function, and the remaining effect of the limit 
cycle (in addition to its modulating effect on the original nonlinear element) 
is to appear in the linearized system as an additive output term. The reason 
for employing the incremental-input describing function rather than the 
signal DIDF is, of course, that the equivalent system thereby becomes 
totally linear. A prefilter has been associated with the system to allow for a 
reshaping of the input amplitude spectrum such that the DIDF nonlinearity 
characterization is valid over the range of inputs anticipated. 
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Nonlinear Linear 

-Prefilter x =: x ~ ( t )+ element elements 

r ( t )  A sin w0r c ( 1 )--- N -Ho(s )  L ( s )  

1 

Output 
limit cycle 

Incremental input Linear - A  sin ~ , r 
Prefilter describing function elements 

Figure 6.3-1 (a) A limit cycling nonlinear system. (b) Its equivalent-linear-system model. 

POLE-ZERO SYSTEM CHARACTERIZATION 

In the following discussion it is assumed that the nonlinearity input signal 
consists of a sinusoidal component due to the limit cycle plus another 
component due to the input signal (Fig. 6.3-la). That is, 

w xB(t) + A sin w,t 

It  is our intent here to discuss the meaning of poles and zeros as applied to 
the linear system model in Fig. 6.3-lb. A static nonlinearity is assumed. 
Consider the imaginary and real axes separately. 

Along the imaginary axis we are concerned with sinusoidal response 
characteristics. Hence we consider the nonlinearity input signal to consist 
of two sinusoids, one due to the limit cycle and the other to system response 
to the input signal. This results in precisely the TSIDF situation studied 
earlier. According to the TSIDF analysis of Sec. 5.1, the gain to each 
sinusoid is frequency-independent provided that the sinusoidal frequencies 
are nonharmonically related. Since for present purposes any deterministic 
linking of these frequencies is not envisioned, the assumption of an irrational 
frequency ratio is not a t  all restrictive. If, further, the amplitude-ratio 
condition of Eq. (6.2-7) is imposed, the result for many nonlinearities is that 
the limit cycle amplitude is independent of the forcing signal [NA(A,B)-, 
N,(A)],  and the gain to the smaller sinusoid is independent of its own 
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amplitude [NB(A,B) -+ NB(A)]. Under these circumstances the system 
input-output description is indeed linear. 

Let us now turn our attention to the axis of real exponentials. Again we 
assume satisfaction of the amplitude-ratio condition just cited, where the 
ratio now refers to peak exponential amplitude divided by peak limit cycle 
amplitude. In considering the nonlinearity gain to an exponential in the 
presence of a sinusoid, it is immediately apparent that the time duration of 
the exponential relative to a limit cycle period is a significant factor. 
Exponentials of long duration such as 10 or more limit cycle periods are 
certainly well represented in the DIDF input signal model consisting of 
sinusoid plus bias. Equation (6.1-1) tends to be satisfied in this instance. 
On the other hand, exponentials of sufficiently short duration can take place 
during various phases of the sinusoid, and the responses would be quite 
different. For example, in the case of an ideal relay, an exponential occur- 
ring during the limit cycle amplitude peaking would evoke essentially no 
additional nonlinearity output. The "gain" to such a transient signal is 
near zero. If, on the other hand, the same short-duration exponential 
occurs near a limit cycle zero crossing, the nonlinearity output indeed 
reflects its presence, and thus leads to a substantially larger "gain." The 
important fact, however, is the possible time dependence of nonlinearity gain 
to the transient signal. As the exponential duration increases, the time 
dependence of this gain decreases. Figure 6.3-2 illustrates one particular 
situation. Calling rminthe minimum acceptable value of exponential time 
constant (i.e., the time constant corresponding to maximum albwable 
dependence of the signal gain upon time), one could argue that the exponen- 
tial should continue for a minimum of two limit cycle periods, viz., 

In this event the maximum delay (T, in Fig. 6.3-2) is approximately 25 percent 
of the total exponential time duration. This value is somewhat arbitrary, 
but its implications will be fully apparent in the development to follow. 
With this order-of-magnitude calculation we proceed directly to an inter- 
pretation of the significance of poles and zeros in the complex s plane 
input-output system description. 

Consider the s plane as divided into the three regions shown in Fig. 6.3-3. 
From the previous heuristic development we argue by extension that region I, 
to the left of the line defined by o = -m0/3, is the space in which closed-loop 
system poles display residues which depend upon the time they are excited. 
Region 111, the right half-plane, cannot contain any closed-loop poles 
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Relay input signal 
x = X B  + X" 

Total relay output 

Limit-cycle portion 

Exponential portion 

Figure 6.3-2 Response of an ideal relay to an exponential signal in the presence 
of a limit cycle. 

since they would eventually violate the amplitude-ratio condition. The 
remaining region, designated region 11, is the space wherein closed-loop 
poles are taken to correspond to approximately linear time-invariant response 
modes. 

The addition of a zero (1 + 7s) to a function F(s) yields, on a linear basis, 
a time function given by f(t) plus T df(t)/dt, where f(t) = LP1[F(s)]. 
Since the time derivative of a sinusoid is another sinusoid of the same 
frequency, and since the time derivative of an exponential is another exponen- 
tial with the same time constant, it is clear that the presence of zeros in no 
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I Region of
1 approximately linear 

-1 time-invariant
I response modes 

I 
I 

I 

I 
Region I I Region I1 Region I11 

Figure 6.3-3 Regional division of the s plane. 

way alters the regional division of the s plane as given by Fig. 6.3-3. In fact, 
zeros may merely be thought of as altering the residues which accrue to the 
poles within the s plane. Note that all zeros must be used, regardless of the 
regional division in which they lie. These must be dealt with, therefore, 
both to secure a desired system time response and to ensure continuous 
satisfaction of the amplitude-ratio condition. 

A limit cycling control system for a high-performance aircraft was 
simulated on an analog computer. The nonlinearity in this control system 
was an ideal relay. In order to test the equivalent gain concept for the relay 
in the presence of a limit cycle, transient responses for the limit cycling 
system and for the equivalent linear system in which the relay was replaced 
with a linear gain of magnitude k = 2DlnA were studied. All predominant 
response modes were determined analytically to be within region I1 in the 
s plane, which thus requires an identical limit cycling system and equivalent- 
linear-system performance. Experimental results are shown in Fig. 6.3-4, 
in which the ordinate and abscissa scales for both responses are identical. 
Such results demonstrate the validity of the extension of pole-zero concepts 
to limit cycling systems, and tend to substantiate the DIDF model. 

With a knowledge of the physical significance of poles and zeros for limit 
cycling systems, we are in a position to exploit the root-locus method, which 
has proved so useful in conventional linear theory. Recalling the closed- 
loop portion of the system of Fig. 6.3-lb and considering N to be a variable 
gain element enables construction of the locus of roots as in linear servo 
theory. The locus shape so derived is valid only insofar as N, is non-phase- 
shifting. For o < -m,/3 sec-I there is some phase shift added to signals 
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I Time 
(a) Limit cycling control system 

I Time 
( b )  Equivalent linear control system 

Figure 6.3-4 Transient responses of a particular limit cycling control system 
and its analytically computed linear equivalent. 

passing through the nonlinearity, and the actual root-locus position is 
uncertain to this extent. Locus gain calibration, in the usual sense, is also 
no longer meaningful; that is, by varying some process or compensation gain 
factor, the system pole locations cannot be changed. Instead, the open- 
loop signal gain automatically adjusts to a constant value, related to that 
value which establishes the limit cycle. This point will be further explored 
later on. 

Example 6.3-1 Find the DIDF linearized equivalent system corresponding to the relay 
control system of Fig. 6.3-5. Assume that the prefilter has been chosen such that for all 
expected r ( t )the amplitude-ratio condition at x ( t )  is satisfied. 
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Prefilter 

Figure 6.3-5 Third-order relay control system. 

The uncalibrated root locus of the limit cycling loop is derived by assuming the relay to 
act as a non-phase-shifting gain, with the result shown in Fig. 6.3-6. The limit cycle 
frequency is determined as the point at which the locus crosses the jw axis. Alternatively, 
by the D F  methods of Chap. 3, the limit cycle amplitude and frequency are determined 
from the characteristic equation 

sS + 22;wns2+ wn2s+ NAKwn2= 0 

to be (Table 3.1-1) 
w, = W, 

and 

The limit cycle DIDF has been taken as 

which is the value of N,(A,B,w) determined by Eq. (6.2-2)$ valid to 5 percent for all 
B/A < 5. Using the above-determined value of A and the signal DIDF (incremental- 
input describing function), 

2D
Ns= -

7rA 

computed from Eq. (6.2-3) by again using the fact that B/A < f, yields the characteristic 
equation of the linearized limit cycling loop as 

This equation has one real and two complex-conjugate roots, denoted by the squares on the 
three root-locus branches in Fig. 6.3-6. For small 5,  the three roots are approximately 
located within region I1 at the positions 

V

with the result that 

where the prefilter transfer function has been included. Note that the gain constants K and 
D do not appear in the input-output transfer function. For this reason the input-output 
dynamics do not change with changing Kand D; the system is adapriue with respect to these 
parameters. This point is more fully explored in the following sections. 

.-
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Figure 6.3-6 Root-locus diagram for the closed-loop part of the system in Fig.6.3-5: 

STABILITY 

In the design of a closed-loop system for any long-term regulatory action, 
the first and most important specification is that the system possess no 
unstable modes. Linear systems with greater than 180" of open-loop phase 
lag, or stated differently, with root-locus branches in the right half-plane, are 
unstable for certain choices of open-loop gain. 

On the other hand, limit cycling systems may not display similar linear 
unstable modes, whatever the open-loop gain setting. Consider, for 
example, a closed-loop control system containing an ideal relay (cf. Example 
6.3-1). As the process static sensitivity Kincreases, the limit cycle amplitude 
at the nonlinearity input increases proportionally. Thus the gain NB, 
inversely proportional to A ,  decreases, and the product KNB is auto-
matically held constant. This example evidences that, whereas in a linear 
system eventually an instability would occur, in the corresponding limit 
cycling system, the closed-loop dynamics do not even vary. The only 
price paid is the increase in limit cycle amplitude; and for cases in which this 
may be troublesome, Sec. 4.4 outlines the basis for its automatic regulation. 

For the majority of common nonlinearities (i.e., those displaying satura- 
tion), NB is less than NA for B < A.  In such cases unstable closed-loop 
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modes can occur only if the system is of a form which can become unstable 
for a decrease of open-loop gain from that value which sustains the limit 
cycle. The root loci for two systems of this class are illustrated in Fig. 
6.3-7. In the first case, Fig. 6.3-7a, a conditionally stable system is 
illustrated. The quasi-static stability theory of Chap. 3 determines that 
of the three root-locus jo-axis crossings, two correspond to stable limit 
cycles. These are labeled A, and A,, where A, > A,. Let us assume the 
system to be in limit cycle state A,. Correspondingly, the dynamics of 
small-signal propagation through the loop are determined by the position 
of all closed-loop roots associated with the nonlinearity gain NB(Al). 
Since the arrows along the locus correspond to the direction of increasing 
open-loop gain, it follows from the relationship NB(Al)< N,(A,) that the 
root of interest can lie on either side of the jo axis, depending upon the gain 
calibration of the locus. For the situation depicted in Fig. 6.3-7a, this root 
falls in the right half-plane, indicating unstable closed-loop dynamics. This 
leads immediately to the conclusion that limit cycle state A, is actually 
unstable; only the larger-amplitude limit cycle can occur! Observe that a 
similar argument proves the system stable to small signals in the presence of 
the larger-amplitude limit cycle. 

Arguing along similar lines for the unstable open-loop system of Fig. 6.3-7b 
yields that there may be no stable state whatever, depending upon the 
position of the lower branch root at the nonlinearity gain NB(Al).In the 

x Open-loop pole 

o Open-loop zero 

o Closed-loop root corresponding to N , ( A ,  ) 

A Closed-loop root corresponding to N , ( A , )  

Figure 6.3-7 Root-locus plots for a conditionally stable system (a) and an unstable open-loop 
system (b), both containing a static memoryless nonlinearity. 



326 D U A L I N P U T  DESCRIBING FUNCTION (DIDF) 

illustration it is depicted as an unstable mode. However, if a stable situation 
does arise, it must do so a t  the smaller limit cycle amplitude A,. 

Let us note in passing that limit cycling control can be applied successfully 
to open-loop unstable processes. It  is essential in this case to design the 
system not only for a stable limit cycle but also for stable closed-loop modes 
a t  the gain prescribed by NB. In a laboratory at the Massachusetts Institute 
of Technology, a limit cycling system was constructed to control an inverted 
pendulum, with quite successful operation. 

STEADY-STATE FORCED ERRORS 

In response to harmonic forcing the steady-state forced errors are determined 
directly from the DIDF linearized equivalent system. To the extent that the 
complete representation of NB(A,B) is used in such analyses, rather than 
just its slope at the origin, all results obtained (in the case of unrelated 
frequencies) will be identical with TSIDF results. Section 6.8 provides the 
justification for this statement. It  is of interest, in addition, to note the ease 
with which steady-state errors resulting from aperiodic inputs may be 
determined. We demonstrate by example. 

Example 6.3-2 Find the steady-state following error produced by the relay system of 
Fig. 6.3-5 when the input is (a) a step of magnitude R, and (b) a ramp of magnitude Rt. 
Assume a first-order prefilter with time constant r. 

(a) The steady-state prefilter output is a constant, R; hence the following error of the 
overall system is equal to the constant-input following error of the limit cycling loop. 
For the limit cycling loop to be in steady state, a zero-average-value relay output is required 
a s  a result of the open-loop integration in L(s). This condition can be satisfied only if 
B = 0,in which case there is no steady-state following error. This, of course, should come 
as  no surprise, again because of the open-loop integration in L(s). 

(b) In the case of a ramp input, the steady-state prefilter output is another ramp, R(t - T) ,  

displaying a following error Rs. In order for the limit cycling loop to be in steady state, 
a n  average relay output equal to RIKis required, since this produces an output ramp which 
tracks the input. Employing the exact expressions for NB and N,, we get 

B nR--- sin -
A 2DK 

and since w, = w,, 

This last condition is simply the limit cycle magnitude condition. Solving the above two 
equations, we get for the limit cycle amplitude 

2DK nRA = - COS -
~ < w ,  2DK 
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and for the input following error 
DK nRB = - sin -

n{wn DK 

Hence the ramp following error of the overall system is 

DK nR 
Ramp following error = RT +-sin -new, DK 

Clearly, the above is only valid for DK 2 R. It is impossible to command any faster 
response from the given system. If, in addition, the limit cycle amplitude is to be relatively 
independent of the ramp input (say, a maximum deviation of 5 percent from the unforced 
condition), a drive capability (DK)min is required for which 

Notice that in this example the DIDF nonlinearity input model of a bias plus a sinusoid is 
approximate only to the extent that higher harmonics of the limit cycle sinusoid are 
omitted. The bias term is a true representation of the form of signal appearing at the 
nonlinearity input. 

A CLOSED-LOOP PROPERTY: INHERENT ADAPTlVlTY 

The open-loop signal transfer function OLTF (jo),  for the closed-loAp 
portion of the basic limit cycling control-system configuration of Fig. 
6.3-8, is 

OLTF(jw) = NBHl(jo)H,(jw)H,(jo)L(jw) 

= NBH(jo)L( jw) (6.3-3) 

where NB is the signal gain of the nonlinearity. Presuming satisfaction of 
the amplitude-ratio condition enables drawing the locus for this OLTF(jw) 
on the amplitude-phase plane (gain-phase plane). Here NBcan be considered 
as a variable gain, shifting the system OLTF(jw) vertically. 

A first look at this method of representation for systems containing an ideal 
relay is facilitated by recalling the results 

4 0  2 0
Ng M - and NB M -

7rA 7rA 
Correspondingly, 

The interesting facts that the frequency locus OLTF(jw) always passes 

First discovered by Lozier (Ref. 11). 
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Figure 6.3-8 Basic limit cycling control-system structure. 

through the point &/-180" [or (-6 db, -180°)] on the amplitude-phase 
plane, to within the accuracy of Eq. (6.3-5), is easily proved as follows: 

But in order to sustain a limit cycle, 

NAH(jwo)L(jwo)= -1 
therefore 

OLTF(jwo) = -4 
The frequency locus in Fig. 6.3-9 has been drawn for a typical linear process 
in a limit cycling loop. 

- 180 Phase, degrees 

Figure 6.3-9 Typical linear elements, and associated OLTF (jo) 
o f  a relay limit cycling system containing these linear elements. 
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Seeing how one point of the OLTF(jm) locus is constrained on the 
amplitude-phase plane, even in the face of changes in process characteristics, 
affords a first feeling for inherent adaptiuity in a limit cycling control system. 
It  is to be noted that Eq. (6.3-7) yields the magnitude and frequency of the 
limit cycle, and that for static, single-valued nonlinearities this frequency is 
also the frequency a t  which the phase of H ( jw)L( jm) is -180". In the more 
general case for which the nonlinearity limit cycle DIDF is phase-shifting, 
the point of apparent constraint becomes 

OLTF( jw,) = -

where the representation 

NA = 1NAl eiEA 
is employed. 

6.4 A SCHEME FOR PARAMETER-ADAPTIVE CONTROL 

Throughout this section, $is used to denote an "environmental parameter" 
such as that which causes a changing description for the controlled process 
L(s,t). Thus t may be thought of as relating to such varied phenomena as 
temperature, pressure, altitude, aging, load fluctuations, and so forth. 
Because all physical controlled processes do in some way respond to a 
fluctuating environment, the need for some form of closed-loop environment 
insensitivity may exist. The conceptual approach to obtaining environment 
insensitivity beyond that provided by linear feedback configurations is 
termedparameter-adaptive control. Its objective may be stated, analytically, 
as the intent to continuously satisfy Eq. (6.4-1): 

where C/Rdenotes the overall transfer function of the system under considera- 
tion. An approximate equality is indicated since attempts to achieve exact 
equality require perfect and complete identijication information, that is, 
identification of the precise changes in L(s,t). In the general case this 
requirement is either impractical or impossible. 

In a limit cycling system the limit cycle itself is the carrier of identification 
information. This can be seen from Eq. (6.3-7), rewritten for convenience: 

NA(A)H( jwo)L( j ~ , , t )  = -1 (6.4-2) 

The solution of this equation is 

Limit cycle at input to N = A(() sin [o,(t)t+ v] (6.4-3) 
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whence we see that the limit cycle amplitude and frequency relate implicitly 
to the environmental parameter 6. Although it requires a closed pool in 
which to circulate, the limit cycle is related directly to open-loop behavior. 
In contrast to other self-contained approaches to identification, the limit 
cycle adaptive control information is not attenuated by the negative feedback 
characteristic of the control loop. On the other hand, one limit cycle carries 
but two pieces of information. 

Following identification is adaptive control action, during which the loop 
compensation is adjusted to maintain the limit cycle amplitude and frequency 
at reference values. This has the effect of constraining the amplitude and 
phase of the open-loop transfer function at the reference frequency, which in 
turn provides a good measure of environment insensitivity for the closed-loop 
system in many cases. Figure 6.4-1 illustrates the general limit cycling 
adaptive control system. The identification-data takeoff point need not be 
the output, and the adaptive control action feedback need not be arranged as 
shown. This figure is meant to be schematic only. 

In this form of adaptive control there is no need to externally generate an 
identification test signal; the system itself provides the limit cycle. Further, 
there is no need for mechanizing some nonphysical performance index; the 
limit cycle amplitude and frequency themselves become the performance 
indices, and are readily available. Moreover, all instrumentation is 
particularly simple. 

It has already been mentioned that the (ideal-relay) limit cycling control 
system input-output transfer is totally insensitive to controlled-process static 
sensitivity (zero frequency gain) perturbations. This turns out to be the 
case, to a first order, for many system nonlinearities besides the ideal relay. 

I I 

I Limit cycle Measuring and 
I 
I 

I reference settings control elements 1 1 
I I I 

Frequency ~ ~ ~ l iEnvironment d~ ~ I ~ 
control control 1 C I 

i f .) II 
I

Nonlinear I Controlled
Compensation 

+ element process ,+
~ ( t )'H ( s )  N 1 L ( s , l )  

Figure 6.4-1 Limit cycling parameter-adaptive control system. 



A SCHEME FOR PARAMETER-ADAPTIVE C O N T R O L  331 

Note that this display of nearly perfect parameter adaptivity in response to 
controlled-process static sensitivity perturbations is a property of a limit 
cycling loop, the identification and adaptive control action operations 
occurring simultaneously and inextricably, within the nonlinearity. 
Controlled-process time-constant perturbations generally appear as both 
limit cycle amplitude and frequency perturbations, according to Eq. (6.4-2). 
It  is the function of the measuring and control elements of Fig. 6.4-1 to sense 
and resolve these perturbations before directing any adaptive control action. 
A sensitivity jimction argument which quantitatively describes the amount 
of adaptivity associated with various limit cycling adaptive control schemes 
appears in the literature (Ref. 4). 

The first commercial exploitation of a limit cycling adaptive control system 
(as such) was advanced by the Minneapolis-Honeywell Regulator Co. I t  
is discussed in an interesting paper by Shuck (Ref. 22). The final system, 
an autopilot for a high-performance aircraft, was obtained by way of a long 
simulation program. Theoretical calculations were subsequently published 
(Ref. 3, pp. 294-300), which substantiated the adaptive capability of this 
experimental autopilot. Other applications of this technique have been 
determined, for instance, in connection with adaptive roll control of an air- 
ground missile. This application is discussed in Sec. 6.5. We digress here 
to consider briefly the matter of limit cycling loop compensation, both in 
general and with the adaptive control aspect in mind. 

COMPENSATION 

I t  is presumed in this chapter that the system of concern has its limit cycle 
mode excited at all times. This allows a simple analytic representation for 
the nonlinearity in the closed loop, and leads to a tractable mathematical 
system description. Thus a series prejilter is included in the limit cycling 
control-system structure. Its fundamental purpose is to reshape command 
input amplitude spectra at the input to the nonlinearity such that the 
amplitude-ratio condition as given by Eq. (6.2-7) is satisfied. It  is clear that 
the prefilter design is a function of the properties of the expected class of input 
signals, the limit cycle, and the overall system specifications. The basic 
system structure is therefore as shown in Fig. 6.3-7. H,,(s), HI($), If&), 
and H,(s) denote linear filters, as is the controlled process (plant) L(s). The 
nonlinearity N may be considered as a nonlinear filter which changes its 
transmittance to low-frequency input terms as the limit cycle changes. Note 
that it need not be a power element. 

Compensation of a limit cycling loop requires that the nonlinearity drive 
level, prefilter, and loop linear filters be so chosen that system specifications 
are satisfied over the range of expected inputs. Thus, in the case of an 
ideal-relay servo, D must be chosen large enough so that the maximum values 
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of output derivatives which can be commanded are sufficient for following 
the input. In addition, if the limit cycle is to continue essentially unchanged 
in response to the input (a requirement for loop parameter adaptivity), the 
ratio of command-input-forced following error to limit cycle amplitude 
(BIA) must remain small. This requires a value of D which is roughly five 
times the input nth derivative, for a type-n plant of unity static sensitivity 
[Eq. (6.3-2)]. On the other hand, increasing D results in a proportional 
increase in A, for which a maximum specification is likely to exist a t  some 
station around the control loop. 

Linear compensation is then selected to obtain the desired limit cycle 
frequency and amplitude. In practice, a design specification which requires 
a limit cycle frequency of about ten times (or greater) the desired overall 
system bandwidth is readily fulfilled. The position of the linear compensa- 
tion is of the utmost importance. For example, if to increase the limit 
cycle frequency requires a lead network, it is most advantageously placed a t  
HI, because placement a t  H, or H, would either maximize the limit cycle 
amplitude at c ( t )  or unnecessarily "slow down" the system response. Of 
course, there are systems in which H, is fixed or otherwise inaccessible. In 
such cases an alternative must be sought. 

SUMMARY 

The limit cycling adaptive control technique can be applied to all linear 
processes for which the existence of a continuous limit cycle is acceptable. 
Depending upon the nature of the variant portions of the controlled-process 
transfer function, limit cycling adaptive control may yield parameter-
adaptive systems for which the required instrumentation is simple relative to 
all other current schemes. The accompanying small expense of instrumen- 
tation, coupled with comparable (and often superior) system adaptability 
in a number of practical situations, clearly indicates the limit cycling adaptive 
technique as a highly competitive approach to parameter-adaptive control. 
The major limitation is the compromise which usually must be struck 
between system drive capability (ability to follow inputs) and limit cycle 
amplitude. Compensation of appropriate design can often improve this 
compromise. 

6.5 APPLICATION T O  A N  ADAPTIVE MISSILE 
ROLL CONTROL SYSTEM 

One of the difficulties in designing a control system for a missile is the fact 
that missile aerodynamic characteristics vary greatly over the flight profile. 
Thus a control system which is satisfactory at one flight condition may be 
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completely unsatisfactory at  another. One obvious solution to this problem 
is programmed control, in which system compensation is varied as a function 
of some externally measured parameters of the flight condition (such as 
Mach number, dynamic pressure, altitude, etc.). Generally, however, it is 
more desirable to have the control system "adapt" to the changing missile 
characteristics without the necessity of external measurements. This 
approach overcomes the problems of operation under uncertain environ- 
mental conditions and required a priori correlation between external measure- 
ments and actual missile characteristics, both of which can invalidate 
programmed control. The self-inspecting approach to design of control 
systems with variable controlled elements (plants) is termed parameter- 
adaptive design. In this section the limit cycling system approach to param- 
eter-adaptive control is applied to the missile roll control problem. 

In general, using this design technique, the control loop containing the 
variable plant dynamics is caused to limit cycle by the inclusion of a nonlinear 
element. In so doing, the loop thereafter automatically displays a certain 
insensitivity with respect to plant parameter perturbations. In the specific 
case at  hand the nonlinearity which causes the system limit cycle is taken as 
part of the system fixed elements, the resulting insensitivity mentioned above 
providing perfect parameter adaptation. 

HYPOTHETICAL MISSILE A N D  SYSTEM SPECIFICATIONS 

The hypothetical vehicle to be considered is a wingless air-to-ground missile 
with a cruciform tail. Control moments are obtained by deflecting control 
surfaces on the trailing edges of the tail fins. To avert cross coupling between 
the vertical control surfaces and pitching motion, and between the horizontal 
surfaces and yawing motion, it is necessary to roll-stabilize the missile. Roll 
control moments are obtained by deflecting the control surfaces differentially. 

The general equation of motion about the roll axis is 

where I, = missile moment of inertia 
L6 = damping coefficient 
L, = elastic restraint coefficient 
L, = control torque coefficient 
L, = disturbance torques 

The elastic restraint torque L,g, may occur when the missile has an angle of 
attack and an angle of sideslip. However, it is usually so small that it may 
be neglected, resulting in the roll equation given in most standard texts: 
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For the missile under consideration, the damping in roll is assumed to be 
quite small, such that the transform of Eq. (6.5-2) may be approximated by 

where s is the Laplace transform variable, and 5 is an environmental param- 
eter. We are primarily concerned with the transfer relationship between 
roll angle and control-surface deflection. Since the control gain La is 
roughly proportional to dynamic pressure, which may vary greatly over the 
flight profile, and in addition the moment of inertia decreases as fuel is 
burned, it is assumed that these variations cause k,(E) to vary a hundredfold. 
Thus 

0.5 < kl(E) < 50 (6.5-4) 

I t  is further assumed that although 5 can vary, the dynamics of variations 
encountered are slow relative to the limit cycle amplitude transient time. 

It  must be mentioned at this point that the simplified model for roll 
dynamics is chosen merely to expedite a presentation of the limit cycling 
adaptive-control philosophy. The general method to be discussed can be 
extended easily to the more complex situation of Eq. (6.5-1). This is 
primarily due to the fact that limit cycling control systems behave like high- 
gain linear systems, without the conventional problem of linear instability. 

The control surfaces are driven by a nonlinear actuator, consisting of a 
solenoid valve with external orifice control and a hydraulic ram. The 
corresponding equation relating control-surface position 6 to the valve input 
signal x can be written as 

8(*x) = *D (6.5-5) 

or in "transfer function" form, 
D

6(s) = - sgn x 
S 

The magnitude D is controlled by varying the size of the effective solenoid 
valve orifice. The nonlinearity considered is, in essence, an ideal relay with 
drive levels fD followed by an integrator. 

For the sake of subsequent reference to a specific system, the following 
arbitrarily chosen control-system specifications are selected : 

Roll step response percent overshoot < 15 percent 
Roll response time (to within *5 percent of final value) <5 sec 
Limit cycle amplitude at output must be constant < a deg 

where a, a number related to mission requirements, need not be specified 
further for this example. 
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LIMIT CYCLING MINOR LOOP 

Consider the limit cycling loop of Fig. 6.5-1, where for the moment disturb- 
ance torques are ignored. The forward path contains the hydraulic 
actuator and the missile airframe dynamics, and also some unspecified linear 
compensatory filter Hl(s). The feedback element is a rate gyro with gain 
factor llk. 

With this choice of loop elements, the limit cycle frequency can be selected 
as desired. The equation governing the limit cycle for any loop with 
nonlinearity N and linear elements HL(s) is 

In the present case, therefore, 

which can be resolved into the real equations 

and 

In anticipation of system response time of about 4 sec and in conjunction 
with hypothetical missile structural capabilities, wo = 20 radianslsec is 

Rate gyro 

1 I
7 

Figure 6.5-1 Limit cycling inner loop. 
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chosen. Clearly, to achieve a stable limit cycle, Hl(s) must be a lead-lag 
network. It may be chosen as 

which satisfies Eq. (6.5-9) a t  o, = 20 radianslsec. A root-locus plot for the 
limit cycling loop is shown in Fig. 6.5-2. The closed-loop poles marked off 
correspond to a value of equivalent open-loop gain equal to half that which 
sustains the limit cycle, in accordance with the previously established relation- 
ship for an ideal relay [Eq. (6.3-5)]. From the root-locus plot the minor- 
loop transfer function is determined as 

The approximate cancellation of the open-loop zero by the closed-loop 
pole is a manifestation of the high-gain character of limit cycling control 
loops mentioned earlier. The pole a t  the origin in this transfer function is 
due to the feedback element. Thus the application of the theory of limit 
cycling systems to this limit cycling loop leads to a simple conclusion regarding 
its input-output dynamical properties. Note that these properties are inde- 
pendent of kl(t);  the basis for a parameter-adaptive control system has been 
achieved. 

ROLL POSITION OUTER LOOP 

Design of the linear outer loop is a matter of selecting a series prefilter which 
causes satisfaction of the amplitude-ratio condition at the input to the non- 
linearity over the expected class of inputs and simultaneously provides a 
suitable input-output transfer for the entire system. Thus H,(s) in Fig. 
6.5-3 must be determined. It is a prefilter to the limit cycling loop, but 
internal to the roll position loop. A second-order prefilter suffices for the 
problem at hand. Thus 

To  satisfy the frequency-ratio requirement we may conservatively choose 
o, = 0 . 1 ~ ~= 2 radianslsec. That this choice is conservative follows from 
the fact that the prefilter output consists of forced responses and normal 
modes, wherein the normal modes (for this hypothetical missile problem) 
are assumed to have significant energy in a higher frequency band than the 
forced responses. Both 5, and k remain to be chosen. These may be 
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Figure 6.5-2 Minor-loop root-locus plot. 

obtained by consideration of the amplitude-ratio condition. In particular, 
we can choose q,,, to be a step function (a reasonable choice in this roll 
problem), replace N by its linear equivalent, and solve for x ( t )  in terms of the 
amplitude of q,,,, C,, and k. It has been determined that the range of 
choices for 5, and k given by 

Prefilter 

Figure 6.5-3 Roll position outer loop. 
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Figure 6.5-4 Equiualent overall system. 

results simultaneously in system stability and satisfaction of the amplitude- 
ratio condition. One set of values within this range which also provides the 
desired system transient response is 

The resulting equivalent overall system is shown in Fig. 6.5-4, where the 
complex pole pair of the inner loop has been dropped from further considera- 
tion, being well beyond the bandwidth of the system. 

AMPLITUDE-REGULATING LOOP 

If design is terminated at this point we shall have a system wBich satisfies all 
specifications except that of output limit cycle amplitude. In fact, as the 
missile sensitivity kl(5) xaries over a 100: 1 range, the limit cycle amplitude 
a t  station pl follows proportionally, whereas that at station 6 (Fig. 6.5-1) 
remains constant. Since we have made available a variable nonlinearity 
(variable orifice), we are at liberty to reverse the above situation (see Fig. 
6.5-5). 

The active device M [ A ]  measures the output limit cycle amplitude and 
adjusts the valve orifice so that this limit cycle amplitude remains constant 
a t  a deg (see specifications). Details of the general requirements for construc- 
tion of M [ A ]  and the resultant speed of adaptation of the overall system can 
be deduced from the content of Sec. 4.4. Note that M [ A ]  serves to establish 
limit cycle amplitude regulation at the system output. This, of course, 
implies that the limit cycle amplitude at the control surface varies over a 
100:1 range. Therefore D is chosen so that, at  the smallest value for k1(5), 
the limit cycle amplitude at 6 is acceptable. As k, (5)  increases, this limit 
cycle amplitude decreases, thus always remaining acceptable. Setting D 
also relates to the amplitude-ratio condition, with a slight circular nature to 
this problem arising. A solution is reached when the amplitude-ratio con- 
dition a t  x is not violated for the largest expected system transient input, 
when the limit cycle a t  station 6 is acceptable, and when the overall system 
response fits specifications. Thereafter the system response is invariant. 

Note that the regulation of the limit cycle amplitude in no way alters the 
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system input-output behavior as long as the amplitude-ratio condition is 
always satisfied. 

We may digress a moment to discuss the disturbance response properties 
of the control system at this point. Equation (6.5-3) indicates the manner in 
which disturbance torques enter the system. Figure 6.5-5 details this 
situation. To determine the effect of disturbance torques on roll angle it is 
necessary to specify, first, the energy distribution in L&). This is due to 
the nonlinear filtering qualities of an apparently "dithered" relay seen by 
any signal. For low-frequency disturbance inputs which also do not violate 
the amplitude-ratio condition a t  x ,  the system behaves as a linear feedback 
system, and its transfer characteristic may be so determined. The steady- 
state error, for example, in response to any constant disturbance is zero. 
For high-frequency disturbance inputs the limit cycling system appears 
open-loop, so that 

9'
- (s) R3 -
LD sa 

For exceedingly large transient disturbances the limit cycle may temporarily 
terminate with the "relay" hard over (i.e., control surface slewing at maxi- 
mum rate in one direction to overcome the disturbance). 

EXPERIMENTAL RESULTS 

An analog computer was used in a study of the system of Fig. 6.5-5. The 
function of M [ A ]was performed manually, according to the same rule which 
would govern the actual circuit. Figure 6.5-6 shows the system roll transient 
response for a number of conditions over the 100:1 range in k,(5). Note 
that in all cases the time to peak is approximately 2.8 sec and the overshoot is 
12 percent. For the system of Fig. 6.5-4 a purely linear calculation predicts 
corresponding values of 2.9 sec and 12.5 percent. Thus the argument that 
the overall system behaves linearly is well supported. Further, observe that 
the limit cycle amplitude at the output is so small as to be barely discernible 
on the analog-computer recordings. Figure 6.5-7 shows 6 at intervals over 
the same range. Note the ordinate scales. It  is seen that the correlation 
between theory and experiment is excellent. 

Finally, recall that the time-domain specifications were chosen arbitrarily, 
merely to allow numerical reference throughout the control-system design. 
The ultimate capability of the hypothetical airframe is by no means exhausted. 
In the final analysis this depends upon structural considerations and control- 
surface slewing capability. In fact, recognizing that the control-surface 
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Figure 6.5-5 Proposed control confguration. 

limit cycle amplitude is largest when k,(E) is smallest, and that this condition 
may exist for only a small part of the flight, quite significant decreases in 
system response time may be obtained. In any case, the simplicity in design 
of this system is clear, indicating the potential practicality of its application 
to the missile roll-stabilization problem. 

6.6 LIMIT CYCLES IN SYSTEMS W I T H  A N  
ASYMMETRIC NONLINEARITY 

A very useful property of the DIDF formulation is the means by which 
systems with an asymmetric1 nonlinearity can be studied. As we shall 
presently see, this application is quite natural, and conceivably could have 
accounted for the DIDF development in the first place. 

Consider the feedback system of Fig. 6.6-1 in which N is an asymmetric 
nonlinear element and L(s) is the loop linear part. If this loop is in a limit 
cycle state, it is clear that x(t) will contain a bias term [for our present 
purposes we choose r(t) = 01. This follows since, in the assumed absence 
of any bias in x(t), y(t) will indeed develop a bias and contradict this assump- 
tion. Such behavior, of course, results solely from our assertion that the 
nonlinearity is asymmetric. In a symmetric nonlinearity system no biases 
appear, a fact which is implicit in the formulation of the limit cycle theories 
of previous chapters. 

By asymmetric is meant one which is not odd; that is, y(x) # -y(-x). 
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(a) k , = 0.5 (b)  k , =  1.5 

(c) k , =  5.0 ( d )  k ,  = 15 

4 6 tI 
(e)  k , =  5 0  

Figure 6.5-6 Missile roll responses taken over the entirejight envelope. 

For a sinusoid at x(t) to propagate unattenuated around the loop requires 

,By o0W( joo>= -1 (6.6-1) 

as in past limit cycle formulations. In addition, however, it is required that a 
bias (B) at x(t) also propagate identically around the loop. Thus 

BNB(A,B,oo)L(jO)= -B (6.6-2) 

This identity is automatically satisfied if B = 0,an uncommon situation, and 
hence is of little interest in that case. For B f 0, however, we must have 

NB(A,B,wo)L(jO)= -1 (6.6-3) 
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(a) k ,  = 0.5 

( b )  k ,  = 5.0 

Figure 6.5-7 Control-surface responses taken over the entire flight envelope. 

the second of two conditions which must be fulfilled in order that the system 
of Fig. 6.6-1 sustain a limit cycle. L(j0) denotes, of course, the static 
sensitivity (dc gain) of the linear elements. 

It  is true, in general, that the periodic output of an asymmetric nonlinearity 
in a limit cycling system contains even harmonics. In particular, some 
second harmonic may be present. To whatever extent this is true, the filter 
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Figure 6.64 System with an asymmetric nonlinearity. 

hypothesis need obviously be altered in the direction of requiring more 
filtering of the nonlinearity output for continued validity of the DIDF 
linearization. Otherwise, all remains as before. 

When L(s) has no open-loop integrations (poles at the origin), L(j0) is 
finite and the application of Eq. (6.6-3) is straightforward. If L(s)has one or 
more open-loop integrations, IL(j0)l-t m, and we require N,(A,B,w,) = 0 
[alternatively, BNB(A,B,w0) = 0 since B # 0] as the only possible solution 
of Eq. (6.6-3). If, on the other hand, L(s) has one or more open-loop 
differentiations (zeros at the origin), the only possible means for satisfying 
the limit cycle conditions are indicated by Eq. (6.6-2), which calls for B = 0. 
In each of these cases, stability of the indicated bias value must be determined. 
Table 6.6-1 summarizes the possible circumstances. 

TABLE 6.6-1 REQUIREMENTS O N  B FOR A 
L IM IT  CYCLE TO EXIST? 

u s )  Requirement 

t Ll(s) has neither poles nor zeros at the origin. 

A simple example serves to clarify the use of this table. 

Example 6.6-1 Determine the limit cycle state of the system in Fig. 6.6-2. 
The asymmetric nonlinearity is effectively a biased-output ideal relay, for which N,(A,B) 

and NB(A,B) appear in Appendix C. For lB/Al 5 1 
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Figure 6.6-2 Example system with a biased-output ideal-relay nonlinearity. 

Table 6.6-1 evidences that B = 0 is a limit cycle requirement. Hence, from Eq. (6.6-1) 
it follows that 

2 0  Kjw, 
= -1-

mA (ji-mO + 
Solution yields 

and 

It  remains to be shown that the condition of zero nonlinearity input bias is a stable one. 
To do this, assume a perturbation about zero of the input bias, and the associated perturba- 
tion about 012 of the output bias. This gives the incremental-input describing function 
applicable to the present example. 

ANB(A,B = 0)= lim ABN,(A,AB) - Dl2 
AB-0 AB 

We are thus interested in stability of the system illustrated in Fig. 6.6-3. The open-loop 
elements of this linear feedback system are 

By use of linear analysis it is readily verified that this system is indeed stable. Hence, and 
in summary, the limit cycle state determined above is stable. An analog simulation of this 
system bears out these findings, and indicates solution accuracies of about 5 percent. 

If the linear elements of this example are replaced by either 

the DIDF analysis leads to incompatible requirements, from which it is to be concluded that 
a limit cycle is not possible. Again, analog simulation substantiates these conclusions. 
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Figure 6.6-3 Bias stabiIity study of exampIe system. 

6.7 ARTIFICIAL DITHER A N D  SIGNAL STABILIZATION 

The vehicle by which DIDF formulation, calculation, and usage have been 
conveyed thus far in this chapter has been the limit cycling system. Other 
interpretations of the bias and sinusoidal part of the nonlinearity input signal 
exist, and they account for quite different behavioral aspects of nonlinear 
systems. Consider, for example, a non-limit-cycling system with an input 

r( t )  = rB(t)+ R sin wrt 

where ItB(t)l <Rwr/2rr. Provided that the application of this signal does 
not stimulate a systematic oscillation and that the amplitude of the low- 
frequency part of the nonlinearity input is less than that of the sinusoidal 
part, DIDF linearization of the system nonlinearity provides a means for 
determining the forced response behavior of the system. Although it is an 
easy matter to check the amplitude-ratio requirement, it is quite difficult to 
determine whether the input causes the system to oscillate at frequencies other 
than or. Describing function verification would call for a nonlinearity 
linearization for inputs comprised of a bias and two sinusoidal inputs. In 
theory, this can certainly be achieved. Practically, this may go beyond the 
point of diminishing returns. For this reason attention is confined to 
situations where simple DIDF linearization is useful by itself. 

ARTIFICIAL DITHER 

The employment of high-frequency signal injection for the purpose of 
altering the apparent characteristics of a nonlinearity in a closed-loop system 
is an exceedingly useful compensatory device. The high-frequency signal is 
referred to as art$cial dither, or just dither.l The technique of dithering for 
linearizing purposes has been known for some time. 

Artificial dither implies intentionally applied dither. Unintentional 
introduction of dither into control systems, however, is not at all uncommon. 
Examples are 60- or 400-cps electrical pickup in an instrument servo, and 

In this chapter all dither waveforms considered are periodic. The use of random dither 
is discussed in Chap. 7. 
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mechanical vibration in a missile control-surface servo. Under the circum- 
stances to be delineated presently, such unintentional dither can be readily 
accounted for as well. 

In what follows it is assumed that the loop linear elements attenuate the 
high-frequency dither to the point where only an insignificant dither frequency 
signal makes the return trip to its originating place. Three types of dither 
are considered separately. 

Triangular-wave dither Consider the application of symmetric tri- 
angular-wave dither to an arbitrary memoryless odd saturating nonlinearity 
(Fig. 6.7-la). Let e(t) represent the total nonlinearity input, comprised of 
signal x(t) and dither d(t). This symmetric nonlinearity is defined by 

e I -6 y =  -D 

-6 < e < 6 ~ ( e )= -y(-e), otherwise arbitrary (6.7-1) 
e 2 6  y = D  

Input and output waveforms are shown in Fig. 6.7-2, where for input values 
in the range -6 < e < 6 the (arbitrary) output is shown dotted. Since the 

Triangular-
wave dither Saturating nonlinearity 

(a) 


Equivalent nonlinear element 

Figure 6.7-1 (a) Application of triangular-wave dither to an arbitrary 
odd saturating nonlinearity and (6) the eguivalent nonlinear eiement. 
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D C  -

Figure 6.7-2 Input and output waoeforrns for an odd saturating non- 
iinenrity with triangular-wave dither. 

dither frequency is by definition significantly higher than the frequencies of 
interest in x, the input signal is modeled as a bias over one dither cycle. 

The signal gain of this device is, by analogy with previous DIDF formula- 
tions, 

Yav

N ~ ( ~ a 7 ~ )= B (6.7-2) 

In terms of the parameters of the illustration, the average output is given by 
(T, = dither period) 

Notice that no account need be taken of the dotted portion of the nonlinearity 
output, since over a complete cycle it has an average value of zero. It  is 
for this reason that arbitrary nonlinearity characteristics can be admitted, 
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provided they are odd. Hence, for IBI < A, - 6, the signal gain of this 
device is 

which, remarkably, is independent of 6. The inequality requirement on B 
points out that we have assumed the nonlinearity output to saturate positively 
and negatively during every dither cycle. For values of B in the range 

the signal gain depends upon the particular nonlinearity under consideration. 
Values of B satisfying 

IBI > Ad + 6 

lead to  a constantly saturated nonlinearity output. Figure 6.7-lb summa-
rizes these results by illustrating the resulting equivalent nonlinear element. 
Of great consequence is the fact that the equivalent nonlinear element appears 
absolutely linear about the origin, irrespective of the shape of the original 
nonlinearity about the origin. The range of linearity can be increased 
'simply by increasing A,, accompanied, of course, by a decrease in linear gain. 
For sufficiently large input signals the equivalent nonlinear element saturates 
a t  the output saturation value of the original nonlinearity. 

By very similar reasoning it can be demonstrated that these results carry 
over to  the entire class of odd saturating nonlinearities with memory. 

Square-wave dither Provided that the dither plus bias drive the output 
to saturation on the positive and negative parts of every dither cycle, the 
average output of the nonlinear element is identically zero for all nonlinear- 
ities given by Eqs. (6.7-1). Continuing as before yields, for the arbitrary 
symmetric nonlinearity with square-wave dither shown in Fig. 6.7-3a, the 
equivalent nonlinearity of Fig. 6.7-3b. A, is the square-wave amplitude. 
As before, dotted line segments refer to portions of the characteristics which 
vary from one nonlinearity to another. 

In this case, the noteworthy fact is that the equivalent nonlinear element 
possesses a dead zone about the origin, regardless of the shape of the original 
nonlinearity about the origin. Again, the results apply to nonlinearities with 
memory, as well as to those without memory. 

Sinusoidal dither The case of sinusoidal dither is identical with that for 
which the DIDF calculations of previous sections were performed. No 
generalization can be made here, except that, for sufficiently large A,, the 
effect of sinusoidal dither is similar to that of triangular-wave dither in that 
all nonlinearities are linearized about the origin. In the case of sinusoidal 
dither, the assumption of negligible fed-back dither signal need not be held. 
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Square-
Saturating nonlinearity wave dither 

Equivalent 
nonlinear element 

Figure 6.7-3 (a) Application of square-wave dither to an arbitrary 
odd saturating nonlinearity and (b) the equivalent nonIinear element. 

With additional labor, but with no new analytic means required, the fed- 
back sinusoid can be included in determining the total sinusoidal input to 
the nonlinearity. 

Additional remarks I t  follows from the discussion of the effect of arti- 
ficial dither that the ideal-relay characteristic, for example, can be manipulated 
as shown in Fig. 6.7-4. Similar results hold for many other nonlinearities. 
Thus a practical means for altering the properties of a control loop is that of 
simply changing the waveform of an additive dither signal. In two of the 
three cases shown, the effect of this dither is to linearize the nonlinearity for 
small input signals, the triangular dither providing a larger linear region than 
the sinusoidal dither. This technique is profitably employed in the compen- 
sation of nonlinear control systems, often for the purpose of linearizing the 
highly nonlinear force-velocity effects due to friction. Since the apparent 
nonlinearity characteristics are dependent upon A,, the use of dither of fixed 
waveshape but variable amplitude allows for continuous abscissa scaling of 
each of the apparent nonlinearity characteristics illustrated. In a following 
servo, for example, if A, were instrumented to be a function nearly inversely 
proportional to the servo error signal, the result would be a high loop gain 
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Dithered nonlinear Equivalent nonlinear 
Dither element element 

sinusoidal 

triangular 

square-wave 

Figure 6.7-4 Ideal relay with three types of dither and the associated equivalent nonlinear 
characteristics. 

at large error signals and a lower loop gain at small error signals. In such a 
way one can achieve the continuous analog of certain dual-mode servos which 
attempt to give near-maximum-effort performance without displaying a limit 
cycle. 

SOME APPLICATIONS FOR ARTIFICIAL DITHER 

In addition to the more common uses of artificial dither such as linearization 
of coulomb friction, threshold, and hysteresis effects, Naslin (Ref. 15) 
describes several other interesting applications. 
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Consider the use of dither for the purpose of providing a proportional 
torque zone in a relay-controlled split-field series motor (see Fig. 6.7-5). As-
suming the motor to be fed by a constant current source (thus minimizing back 
emf effects), its output torque can take on only two values, fT, depending 
upon the state of the switch. The switch has two additive inputs, a signal 
xB(t) and dither d(t) .  By previous DIDF arguments the average output 
torque is seen to be a linear function of the input signal x,(t) for small values 
of IxB/Adl. This concept of torque control can also be applied to other 
forms of energy. Basically, it amounts to a form of pulse-width modulation. 
Observe that grid-controlled rectifiers and some magnetic amplifiers operate 
in the very same manner. 

Next, consider the use of dither for controlling small guided missiles by 
means of spoilers. Spoilers are vanes that disturb normal airfoil airflow, thus 
producing aerodynamic forces. The average aerodynamic force becomes a 
linear function of the input signal as the result of relay-controlling spoiler 
position such that it is either fully retracted or fully protruding, and supplying 
a linearizing dither signal to the relay, in addition to a signal input. Hence a 
linear region of control is effected. 

Another application involves a position servo incorporating a photocell 
error detector with an absolute-value characteristic. This device was built 
for the purpose of providing an instrumented signal representation of the 
height of a mercury column, in a form suitable for telemetering. The 
servomanometer functional diagram is shown in Fig. 6.7-6. A lead-screw 
positioned carriage houses a photocell which detects whatever light ffux 
(shown dotted) passes through the mercury-column-supported slit and over 
or under the 50-cps sinusoidally oscillating carriage-mounted diaphragm. 
The photocell output is filtered for recovery of whatever 50-cps content it 
contains, then amplified and fed to the control winding of a two-phase motor 

Dc or ac 
power supply 

-

Figure 6.7-5 Relay-controlled split-field series motor. (Naslin, Ref. IS.) 
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50-cps 
selective filter 

50-cps diaphragm 
dither signal screw 

Mercury 
column 

Datum 
I I .......................
reference winding 

Figure 6.7-6 Servomanometer. (Naslin, Refi 1.5.) 

which drives the lead screw. Lead-screw angular position is then the 
instrumented quantity which is sensed by a shaft-angle encoder and 
telemetered. 

To understand the behavior of this system it is necessary to determine the 
relationship between photocell output and slit-position input (see Fig. 6.7-7). 
Specializing DIDF calculations already presented for the two-segment 
piecewise-linear asymmetric nonlinearity to the case of an absolute-value 
characteristic (m, = -m, = m), and assuming le/A,I < 1, where e = 

r - c, yields [Eq. (6.2-1I)] 

NA(Ad,e)= 7T [sin- (:- + J1 - (:-I 
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and [Eq. (6.2-14)] 

2mAd 
m -

rre 

Hence the photocell output is given by 

2mAd 4me 
y w  = -+ -sin 100rt 

7T rr 

where second-order and double- and higher-frequency terms have been 
dropped. Equation (6.7-7) exhibits a most interesting effect, namely, that 
the amplitude of the jrst-harmonic term in y(t) is directly proportional to the 
positioning error e. The photocell plus dither act, in effect, as a modulator. 
Operation of the remainder of the system is clear, and need not be discussed 
further. The overall system accuracy is reported to be 0.1 mm of vertical 
mercury motion, or 0.002 psi. 

Other diverse applications for artificial dither include extremal control, 
adaptive control, and signal stabilization. The last-mentioned application 
is briefly discussed next. 

Desired 
output 
signal 

Slit position 
relative to Photocell 

datum 
Two-phase -filter and - induction - Lead -1 

amplifier motor screw 
X 

Diaphragm 

relative to 
datum 

Carriage position 
relative to datum 

Carriage 

Dither 
A d  sin lOOxt 

Figure 6.7-7 Block diagram of the servomanometer. 
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SIGNAL STABILIZATION 

Since the injection of dither has the effect of altering nonlinear characteristics 
in closed-loop systems, it is reasonable to expect that limit cycles in nonlinear 
systems can be turned on, altered, turned off, and, in general, controlled by 
proper choice of dither waveshape. The use of dither to turn limit cycles off 
is referred to as signal stabilization. It  has been extensively investigated by 
Oldenburger and his students (Refs. 16-19), among the first to discover this 
phenomenon experimentally and, subsequently, to provide analytical 
justification. They point out that the analytical justification for signal 
stabilization differs from that given by Minorsky (Ref. 13) relating to the 
asynchronous quenching of systems characterized by nonlinear differential 
equations. 

Investigation of signal stabilization via describing function theory can be 
executed as a two-stage process. First, by use of DIDF theory, the dither 
and original nonlinear element are replaced with an equivalent nonlinear 
element, whose form implicitly accounts for the presence of dither, but which 
no longer explicitly displays the dither signal. Second, the resulting system 
is made the object of a DF analysis to reveal the presence or absence of a 
limit cycle. This rather simple investigation scheme is demonstrated by the 
following example. 

Example 6.7-1 Find the minimum sinusoidal dither amplitude Ad,min for which the 
system of Fig. 6.7-8a just fails to develop a limit cycle, given that o,> I.' 

First, the relay with dither is replaced by its equivalent nonlinear element (signal DIDF) 
(Fig. 6.7-86). From this point analysis proceeds by determination of the D F  for this 
equivalent nonlinear element and subsequent performance of a D F  limit cycle analysis of 
the resulting system. Note that the limit cycle, if any, plays the role previbusly played by 
system error signals, and the dither plays the role otherwise belonging to a limit cycle. 

The D F  of the signal DIDF is determined as follows (k = AIA, < I): 

sin-' (k sin yr) sin y dyr 

Integrating by parts and grouping terms yields 

where E(k) and K(k) denote the complete elliptic integrals of the first and second kind, 
respectively [Eq. (5.1-18)]. 

This system was studied by Oldenburger and Boyer (Ref. 19), although they did not 
determine the required D F  analytically. Their results are, of course, identical with those 
given here. 
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d ( t )  = Ad sin w d t  

Equivalent 
nonlinear 
element 

Figure 6.7-8 (a)  Relay control system with stabilizing signal added. (b) Equivalent 
nonlinear system. 

Similarly, it is readily shown that for k > 1 the D F  is given by 

A normalized plot of N(A) over a range of k is shown in Fig. 6.7-9. Since all devices which 
ultimately saturate at fixed levels possess DFs which are asymptotic to the ideal-relay D F  
for large inputs, this curve is included for reference. 

Returning to the problem, it is to be observed that any limit cycle which takes place must 
do so at a frequency w, = I,' where the plant phase shift is -180". At this frequency the 
remaining condition for a limit cycle is 

MA) IL(jl)l = 1 

Since IL(j1)l = 0.2, it follows that 

N(A) = 5 

Considering -I/N(A) as plotted in the amplitude-phase plane, it is clear that thelowest point 
of this locus corresponds to the peak in the curve of Fig. 6.7-9. So adjusting this peak such 
that the -l/N(A) locus never cuts the L(jw) locus guarantees the absence of a limit cycle 
(to whatever extent one is willing to make quantitative guarantees based on approximate 
analysis). The required condition is 

For which reason the dither frequency was specified as greater than 1; that is, w, >w,. 
So one can neglect the fed-back dither when computing the equivalent nonlinearity. 
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A dN(A Equivalent nonlinear element 
D 

I .o 

(max) 0.85 

0.8 


\ \ 1 

a i  relay DDFasymptote (")
0.6 

.4 

.2 

Figure 6.7-9 Equivalent nonlinear element DF for a sinusoidally dithered ideal-relay 
characteristic. 

From the DFcurve, we find (A,jN/D)max= 0.85; and from the problem statement D = 10; 
whence the condition on A, for signal stabilization is 

A , > - -
lO(O.85) 

- 1.7 units
5 

or Aa,min = 1.7 units (6.7-10) 

For values of Ad between 1.26 and 1.7 units, two limit cycles are indicated, of which only 
that of larger amplitude is stable. For values of Ad less than 1.26 units, a single stable limit 
cycle occurs. 

Analysis as presented in the foregoing example is subject to the usual D F  
and DIDF limitations, such as the assumption of a single time-invariant loop 
nonlinearity, the absence of nonlinearity subharmonic generation, and 
satisfaction of the filter hypothesis. In addition, it is a convenience if only a 
negligible amount of dither returns via the feedback loop to the nonlinearity 
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input. As a rule of thumb, Oldenburger et al. suggest that the dither 
frequency be a t  least 10 times the highest possible limit cycle frequency, an 
assumption that is readily verified during analysis. This is roughly the same 
rule of thumb which ought to be used in design of a limit cycling control 
system, where the frequency ratio of 10 there refers to limit cycle frequency 
over highest significant input frequency. 

The analytic study of signal stabilization as described above is contingent 
upon our ability to determine DFs for the equivalent nonlinear element under 
consideration. No difficulty is likely to arise in obtaining the equivalent 
nonlinear element itself. The D F  can then be calculated by using the 
approximation techniques of Sec. 2.6. Occasionally, the D F  can be readily 
determined analytically. This is shown for the ideal relay in Example 6.7-1, 
and can also be done for odd polynomial nonlinearities. In the case of a 
sinusoidally dithered cubic characteristic, for instance, the equivalent 
nonlinear element is given by [Eq. (6.2-27)] 

Employing Eq. (2.3-21) yields immediately the D F  as 

6.8 TSIDF CALCULATION VIA THE DF OF A DlDF 

The reader may have already noticed that the D F  calculations made in the 
previous section yielded the exact TSIDF linearization for the ideal-relay and 
cubic characteristics. This is by no means just coincidence; one can com-
pute the TSIDF for a nonlinearity by obtaining the D F  of the equivalent 
nonlinear element. This is readily proved. 

TSlDF CALCULATION 

We have seen the output of a nonlinearity expanded in a double Fourier 
series (Sec. 5.1). In the case of single-valued frequency-independent non- 
linearities with non-harmonically-related input sinusoids, the TSIDF for 
one of the two input sinusoids is given by [Eq. (5.1-15)] 

NB(A,B) = - y ( ~1 sin y, + B sin y,) sin y, dy, dy2 
2.rr2B 

1 
TBS' -11
= - -,,[I 271. J' Y(A sin y1 + B sin y2) dy, I sin y2 d 2  (6.8-1) 
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Notice that ly, is held constant in the integral within brackets; the argument 
of y is equivalently a sinusoid plus a bias. In DIDF notation, this 
bracketed term is represented as BNB(A,B), the bias portion of the non- 
linearity output. Alternatively, it is the output of the equivalent nonlinear 
element. The remainder of Eq. (6.8-1) is, of course, the D F  formulation. 
Hence the TSIDF is indeed the D F  of the equivalent nonlinear element! 
This proof must be restricted to the case of non-harmonically-related input 
sinusoids, although it can be generalized to include frequency-dependent 
nonlinearities. This is, in fact, a special case of the general property of any 
other independent inputs expressed in Eq. (1.5-41). 

TSIDF APPROXIMATION 

It  is of some interest to determine the circumstances under which the DIDF 
itself is a suitable approximation to the TSIDF. The conditions under which 
this use can be made of the DIDF surely cannot be stated very generally. 
Fortunately, it is possible to determine qualitatively the range of usefulness 
of this approximation without doing the more tedious calculation of the 
TSIDF. 

Two approaches to this problem appear in Ref. 1. We note the result 
here, without laboring through the related mathematics. It  is, simply, that 
if the DIDFs NA(A,B) and NB(A,B) are nearly independent of B for some 
range of IBI IA, then the approximate TSIDFs given by NA(A,O) and 
N,(A,O) are valid in this range. Since these are seen to be the leading terms 
in the TSIDF power-series expansions of Sec. 5.1, this approximation 
warrants no further discussion. 

6.9 BASIS FOR HIGHER-ORDER A P P R O X I M A T I O N S  

One can obtain higher-order DIDF approximations in several ways. For 
nonlinearities which are nonanalytic, a procedure entirely equivalent to the 
refined D F  approximation of Sec. 3.7 can be followed. In this instance the 
fed-back residual would be treated as altering the limit cycle DIDF only, 
leading to a second-approximation limit cycle DIDF. In the case of 
analytic nonlinearities a second-order approximation can be obtained by 
perturbing the original D F  solution and satisfying perturbation-equation 
first-order terms derived from the system differential equation. Finally, for 
limit cycling relay control systems with either command inputs which result 
in error-signal bias terms or asymmetric relays or both, Tsypkin's method, 
presented in Sec. 3.8, can be modified and otherwise directly extended to 
yield exact solutions. 
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PROBLEMS 

6-1. Show that any single-valued asymmetric nonlinearity can be represented as the 
parallel combination of one odd [y(x)= -y(-x)]  and one even [y(x)= y(-x)]  
symmetric nonlinearity. What are the corresponding odd and even elements which 
comprise the two-segment piecewise-linear asymmetric nonlinearity 

Calculate the DIDFs for these odd and even elements and sum the results, thus arriv- 
ing at Eqs. (6.2-11) and (6.2-14). 

6-2. (a)  Show that the incremental-input describing function for a limiter of input 
breakpoints f6 and output saturation levels fD is given by 

Perform this calculation twice, once by taking the limit of N,(A,B) as B -,0, and 
once by applying Eq. (6.1-9) directly. 
(b) Compute the incremental-input describing function for an ideal relay directly 
in terms of Eq. (6.1-9). Note that the weights (i.e., strengths) of the impulse func- 
tions in y' are not unity. 

6-3. Compute the limit cycle and signal DIDFs for an asymmetric polynomial nonlinearity 
described by 

cx2 X 2 0 
y(x) = 

0 x < o  

6-4. Compute signal and limit cycle DIDF expressions for the energy-storing nonlinear 
element described by 

y(x,k)  = ~ ( i ) ~  

6-5. Show that NB for an odd square-law characteristic is given by 

and hence derive the result that for small B/A the D F  of the equivalent nonlinear 
element is 1.27A. 

6-6. Show that when n is an even integer, the DIDFs of Eqs. (6.2-21)and (6.2-23)are in 
error by a factor of the order of (B/A)2n. In particular, for n = 2, show that N,(A,B) 
is in error by the amount ( A / ~ T ) ( B / A ) ~ .  

6-7. A frequently used measure of the dependence of closed-loop transmission F,, upon-
an environmental parameter 6 is the sensitivity function sP<It is defined as the 
ratio of per-unit change in F,, to per-unit change in 6,viz., 

Now consider two unity feedback systems with third-order linear elements L(s), 
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one with an additional linear gain K, and one with a nonlinearity N. Assume L(s) to 
depend in some way upon E .  Let Foadenote the open-loop transfer function. 
(a)  For the linear system show that 

(b) For the nonlinear system show that 

(c) If E affects only the gain constant of L(s), and the nonlinearity is an ideal relay 
(N,  .t: 2D/7rA), show that SF' = 0. (Hint: A useful relationship is s,Fca= 

s p s z ; , .  
6-8. (a)  Find the complete description of the equivalent nonlinear element describing a 

relay with dead zone subjected to triangular-wave dither. 
(b) Repeat (a)  for a limiter with square-wave dither. 

6-9. Find the equivalent nonlinear characteristic corresponding to an ideal relay with a 
sawtooth dither input, shown in Fig. 6-1. 

Figure 6-1 Sawtooth dither waveform. 

6-10. The voltage induced in the antenna of a radio compass varies with the antenna orienta- 
tion with respect to the transmitter, as shown in Fig. 6-2. Devise and analyze a 
system for making the radio compass direction sensitive (Naslin, op. cit.). 

Antenna 
voltage 

v I 
v = e 2  

Angular 
orientation 

e 

Figure 6-2 Even symmetric anrenna voltage-orientation characteristic. 
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6-11. Determine the three nonlinear simultaneous equations which describe limit cycle 
behavior of the system shown in Fig. 6-3. Discuss an approach to the graphical 
solution of these equations. Plot the normalized quantities, A/S, B/6, 0 , ~versus 
DK T / ~ .  

Figure 6-3 System with an output-biased rectangular hysteresis nonlinearity. 

6-12. Find the limit cycle state of the system of Fig. 6-4 containing an asymmetric relay 
characteristic, if 

Figure 6-4 System with an asymmetric relay nonlinearity. 

6-13. Describe the limit cycle state of a system containing an input-biased ideal relay with 
symmetric drive levels, described by 

D x > S  

y ( x ) =  I 0 x = s  

-D x < S  
and the linear elements 

6-14. Design a simple adaptive controller for the variable plant L(s) = ~ O T / ( T S+ I ) % ,  
where 0.1 < T < 10. Draw and interpret the closed-loop frequency response curves 
for the resultant system in the extremes T = 0.1 and T = 10. Compute the ramp 
response of the adaptive system. Design a simple gain-compensated linear closed- 
loop system for L(s), and compare this system to the adaptive system. 
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6-15. The system of Fig. 6-5 has a square-law error detector. It  can be made to respond 
to input signals by biasing the input signal off zero. Plot the bias at  the output c(r), 
and the input-output frequency response function for all significant frequencies with 
B = 5 units and r(t) = 5 sin wt. What would be the effect of a negative bias? 

Figure 6-5 

6-16. Consider the system of Fig. 6-6. Determine the limit cycle frequency and amplitude 
with the describing function method for 7, = 0. Select a 7, to reduce the limit cycle 
amplitude to one-half of the uncompensated value, and determine the average 
steady-state error when the compensated system is driven by a ramp function r(t) =5t. 

Figure 6-6 

6-17. Design compensation for the inverted pendulum-balancing system shown in Fig. 
6-7. The specifications are that the amplitude of the limit cycle at 8 must be no 
greater than 5" and the error between 8 and 8, must be no greater than l o  for all 
constant l8,l 5 30". A current switch is controlled by the sign of x(t). The steady- 
state current produces a torque M = 10 Ib-ft, but there is a first-order lag (7 = 0.1 sec) 
in the current, and hence torque, buildup. The pendulum is essentially ideal, 
with length 1 ft and weight 10 lb. It is to be controlled to an angle off vertical 
(inverted) given by 8,. 

For your design, plot the average error, the limit cycle amplitude and frequency, 
and some measure of the dominant system response characteristics as functions of 8, 
for 0 5 8, I30". 

M -
X 

-- --. 1 Torque e - Pendulum > 
rs+ 1 dynamics- - M  

Figure 6-7 
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6-18. The laser gyroscope exhibits an input-rate (mi) output-frequency difference (Af) 
characteristic which displays a dead zone due to "lock-in" (frequency entrainment), 
which arises from coupling between the two counterrotating laser beams. One 
method of enabling use of this gyro at low input rates is to apply a mechanical 
input-rate dither, to linearize the dead zone. 

Assume that the nonlinear laser characteristic is described by 

Describe the equivalent gyro characteristic resulting from an applied dither signal 
of the form 

d ( t )= A, sin w,t Ad > 6 




