
7DESCRIBING FUNCTIONS FOR 
NONLINEAR SYSTEMS WITH 
RANDOM INPUTS 

7.0 INTRODUCTION 

The preceding chapters have dealt with approximate descriptions of non- 
linearities having inputs consisting of the sums of two commonly considered 
signal forms, sinusoids and constants. We wish now to add a third form to 
this repertory of input signals, a random process. The study of nonlinear 
systems with random inputs is of consequence both because the design of 
many high-performance systems is significantly influenced by the presence of 
undesired random noise and because the signal inputs expected in many 
operational circumstances do not permit description in deterministic terms. 
Realistic input signals often can be characterized only as members of an 
ensemble of possible input functions, the ensemble having certain statistical 
properties which are known or can be estimated. 

Actually, the general theory of describing functions developed in Chap. 1 
was couched in statistical terms at the outset. This was done so most signal 
forms of interest at the nonlinearity input could be included in a single 
format. To this end, sinusoidal and bias signals have been treated as special 
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cases of random processes. This led to describing functions for these signals 
which have the more familiar interpretation in terms of harmonic analysis. 

In this chapter we consider, in addition to constants and sinusoids, random 
signals of the ordinary sort which do not have characteristic waveshapes. 
In this case a statistical approach is clearly essential, and no alternative 
deterministic interpretation seems possible. There is a considerable litera- 
ture on the subject of quasi-linearization of nonlinear elements driven by 
random signals. Much of this is related to random signals having finite 
power density spectra, which rules out consideration of biases and sinusoids. 
This literature is briefly reviewed in the following section, after which the 
calculation and application of describing functions for systems with random 
inputs is discussed. A review of probability theory, random variables, and 
random processes appears in Appendix H for convenient reference. 

7.1 STATISTICAL LINEARIZATION 

A time-honored procedure for dealing in a practical way with nonlinear 
systems is to construct a linear model to approximate the nonlinearities. 
Thus, for example, a small-signal linearization consists of expanding the 
nonlinear function in a Taylor series about some operating point and 
retaining only the linear terms in the analysis. If the signals at the input to 
the nonlinearity are not small enough to permit this simple form of lineariza- 
tion, one can do better by allowing the linear approximator to depend on 
the input. A linear operator whose parameters depend on certain static 
characteristics of the input is referred to as quasi-linear. Quasi-linearization 
can be accomplished only if the form of the signal at the input to the non- 
linearity is assumed in advance. The assumption of a sinusoidal signal 
leads to the ordinary describing function; that analysis is appropriately 
referred to as harmonic linearization. 

Similarly, if we deal with nonlinear systems having random inputs by use 
of quasi-linear approximators to the nonlinearities, we refer to the procedure 
as statistical linearization. There is a variety of ways in which such an 
approximation may be formed. The quasi-linear approximator cannot 
model all the input-output transfer characteristics of the nonlinearity; so one 
must choose which of these characteristics to use as the basis for definition 
of the approximator. This choice does not seem as evident in the case of the 
random input as it did with a sinusoidal input. 

If the nonlinearity is of dynamic character, a dynamic linear operator must 
somehow be defined as the approximator. If the nonlinearity is static, one 
is strongly tempted to approximate it with a static linear operator-a gain. 
As reasonable as this sounds, it still represents a somewhat arbitrary choice. 
One of the most important statistical characteristics of the output of the 
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nonlinearity with a random input, its power spectral density function (or 
equivalently, its autocorrelation function), cannot be duplicated at the 
output of the approximating operator if it is just a gain. If the assumption 
is made that the random process at the input to the nonlinearity is gaussian, 
the autocorrelation function of the output can readily be expressed as a 
power series in the input autocorrelation function as in Eq. (H-77). The 
Fourier transform of this autocorrelation function is the power density 
spectrum of the output of the nonlinearity, and the ratio of this function to 
the input power density spectrum defines the square of the magnitude of a 
transfer function which can be taken as a dynamic linear approximation to 
the static nonlinearity. The virtue of this approximation is that it produces a 
power density spectrum at its output equal to that of the nonlinearity it 
approximates. Several authors have employed this method of quasi-
linearization. Pupkov (Ref. 36) gives in graphical form the first five coef- 
ficients, a,, required for the series expansion of the output autocorrelation 
function for several common nonlinearities. Culver and Mesarovic (Ref. 
10) suggest this procedure as a practical alternative to a still more general, 
but much more complicated, method of dynamic linearization. Kazakov 
(Ref. 18) summarizes the conditions which define two dynamic linear 
operators to approximate a static nonlinearity, one to operate on the mean 
and the other on the random component of the input, so as to match at their 
outputs the mean value and autocorrelation function of the output of the 
nonlinearity. He states, however, that investigations by a number of 
authors have not conclusively shown that the performance of closed-loop 
systems which include a static nonlinearity is better predicted by the use of 
a dynamic, as opposed to a static, linear approximation to the nonlinearity. 
Caron (Ref. 8) has taken a different approach to the end of matching the 
autocorrelation functions at the outputs of the nonlinearity and its approxi- 
mator. He employs as his quasi-linear model of the nonlinearity a static 
gain chosen to equate the input-output cross-correlation functions for model 
and nonlinearity, to the output of which he adds a random signal calculated 
to equate the autocorrelation functions. In the application of this procedure, 
however, he predicts signals that have negative values for their power spectral 
density functions over portions of the frequency range. This physically 
meaningless result remains unexplained. 

Actually, the distinction between a static and dynamic quasi-linear approxi- 
mator for a static nonlinearity is probably of lesser consequence to the 
accuracy of the representation of a nonlinear feedback system than the as- 
sumption which is common to both-that the random process at the input 
to the nonlinearity is gaussian. This assumption seems essential to 
permit a practicable attack on all but the simplest of problems. The 
procedure required to calculate, rather than assume, the distribution of 
amplitudes at the input to the nonlinearity is described and illustrated by 
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Chuang and Kazda (Ref. 9). For systems of higher order than second, 
their approach can be pursued to its conclusion only in special cases, and in 
these cases the procedure is complicated enough to defy the interpretation 
and understanding of results which are essential to the system designer. 
We are left, then, with the necessity of assuming the form of the distribution 
function for the nonlinearity input; clearly, the only cases in which this can 
be done are those in which the input to the system is gaussian, and the nature 
of the feedback system is such that the input to the nonlinearity can also be 
assumed gaussian. The situations in which this assumption seems reasonable 
are discussed in Sec. 7.3;we simply note here that the same distortion products 
(nonlinear terms) in the expansion of the autocorrelation function for the 
output of a nonlinearity with a gaussian input which account for the difference 
in the forms of the power spectral density functions at input and output also 
change the form of the distribution function. If the linear part of the 
system, in returning this nonlinearity output back to its input, fails to filter 
these higher-frequency distortion products adequately, a dynamic represen- 
tation of the static nonlinearity would be in order, but not one which depends 
on the assumption of a gaussian input to the nonlinearity. 

If one agreed on the use of a static gain to approximate a static non- 
linearity, there would still remain several reasonable choices for the criterion 
under which this gain is to be chosen. One line of approach was initiated by 
Booton (Refs. 5, 6) ,  who approximated a nonlinearity with a random input 
by a gain chosen to minimize the mean-squared difference between the 
outputs of the nonlinearity and its approximator. This concept was 
extended by Somerville and Atherton (Ref. 42) to a multiple-gain representa- 
tion of a nonlinearity, with an input having components of several charac- 
teristic forms, such as a random process and a sinusoid. Each component of 
the input is transmitted through a separate gain, and these gains are chosen 
to minimize the mean-squared error in the total approximation. It has been 
demonstrated in Sec. 1.5 that minimization of the mean-squared error in the 
approximation is achieved by the gain which makes the covariance between 
the component of input that the gain multiplies and the output of the 
approximating gain equal to the covariance between that component of input 
and the output of the nonlinearity. Merchav (Ref. 26) suggests the use of 
covariance equivalence as a more satisfying definition for equivalent lineariza- 
tion, but the results of this definition are identical with those based on 
minimization of mean-squared approximation error. Another approach is 
to equate the mean-squared values at the outputs of the nonlinearity and its 
approximator. Barrett and Coales (Ref. 4) described this procedure, which 
they attributed to Burt. Later Axelby (Ref. 3) represented a nonlinearity 
with an input bias signal and random process by two gains chosen to 
reproduce the mean and mean-squared values of the output of the non-
linearity. Kazakov (Ref. 17) discussed both this method and Booton's at 
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an early date. A third doctrine, espoused by Sawaragi and Takahashi 
(Ref. 39), and later by Sridhar and Oldenburger (Ref. 43), requires the 
calculation of the autocorrelation function of the output of the nonlinearity 
for the assumed input. This is done in series form in which there appear 
terms that are linearly related to the input autocorrelation function, higher- 
ordered distortion terms, and cross-modulation terms, if more than one 
input component is present. The approximating gains are selected to 
reproduce at their outputs the linear terms in the expansion of the nonlinearity 
output autocorrelation function. 

Smith (Refs. 40, 41) attacked the problem of nonlinear feedback systems 
with random inputs, using the method of functional analysis. With this 
analytic tool and extensive experimentation, he compared a number of 
quasi-linear methods for the approximation of nonlinearities. He con-
cluded that if the assumption of a gaussian input to the nonlinearity holds to 
a good approximation, all these methods give very good results. If one of 
the methods fails, they all do, since the most important reason for the 
failure is the failure of the gaussian assumption which is common to all. 
In these cases for the systems which Smith studied, the method of Booton or 
its extension by Somerville and Atherton was somewhat to be preferred. 
Since, in addition, it is preferable on the basis of the computation required, 
the method of quasi-linearization based on minimization of the mean-
squared approximation error, or the method of covariance equivalence, has 
been pursued in this book. 

Having decided upon this criterion, we take satisfaction in noting that the 
question of a static vs. dynamic quasi-linear approximator need not be 
considered a separate issue. The most general linear approximator was 
taken as the starting point in Chap. 1: a parallel set of dynamic linear 
operators, one to operate on each of the distinguishable components of 
input. The necessary and sufficient conditions which these operators must 
satisfy to minimize the mean-squared approximation error were then derived, 
and those cases in which the optimum transfer is just a static gain appeared as 
a consequence of the theory. Booton (Ref. 5) had noted the important fact 
that for an unbiased gaussian input to a static single-valued nonlinearity, 
the optimum (in the least-mean-squared-error sense) quasi-linear approxi- 
mator is a static gain. Later Nuttall (Ref. 32) investigated this property 
more generally. 

It should be observed that entirely different avenues of approach can be 
taken to the study of certain nonlinear systems with random inputs, 
approaches which do not employ a quasi-linear approximation for the 
nonlinearity at all. For relay control systems it is possible to write the 
switching conditions for the relay in terms of the time response of the linear 
part of the system, and the random input. From this the second-order 
statistics of the half-periods of the oscillation and of any signal in the system 
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can be calculated. This is a direct extension of the methods of Tsypkin and 
others, which were summarized in Sec. 3.8. This procedure, using different 
analytic formulations, has been discussed by Katkovnik and Pervozvanskii 
(Ref. 16), Morosanov (Ref. 28), and Tsypkin (Ref. 45). It  does not fall 
within the theme of this book, however, and will not be considered further. 

7.2 CALCULATION O F  RANDOM-INPUT DESCRIBING 
FUNCTIONS (RIDFs) 

We now address our attention to the calculation of random-input describing 
functions (RIDFs) for specific nonlinearities with rather general inputs. A 
nonlinear device with an input consisting of the sum of components of several 
characteristic forms presents a complicated situation. A quasi-linear 
approximation to the nonlinearity in this case results in a set of approximating 
gains, each of which is dependent upon all the input components. One 
might expect the calculation of these gains to be a rather formidable task; 
in this the reader will not be disappointed. However, the degree to which 
this theory proves useful to the practicing engineer depends directly upon his 
facility to calculate, and then to manipulate, the required RIDFs. This 
section is intended to be of assistance in the former problem. 

It was determined in Chap. 1 that the most general nonlinearity input 
which need be considered is the sum of a single bias component, a single 
gaussian component, and'an arbitrary number of sinusoids. For the purpose 
of this section and Appendix E, we shall take the input to be the sum of a 
bias, a gaussian signal, and a single sinusoid. For those cases in which it is 
necessary to include more than one sinusoid, the extension of these results is 
evident, but of course the complexity of the problem increases. In this case, 
then, the nonlinearity input is 

x ( t )  = B + r(t) + A sin (wt + 6 )  (7.2-1) 

B, A ,  and w are deterministic parameters; r(0) is a random variable having a 
normal distribution; and 8 is a random variable having a uniform distribution 
over an interval of 277 radians. The expectations in the definitions of the 
approximating gains are thus taken over the distributions of r(O), which we 
shall just write as r,  and 0. The joint probability density function for these 
random variables is 

over the intervals -co < r < co and 0 I8 I2n. In this expression, o is 
the standard deviation of the unbiased stationary gaussian random process 
r ( 0 .  
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In this section, attention is centered on static single-valued nonlinearities 
for which the output y( t )  can be written unambiguously as y[x(t)]. The 
gain to the bias component of the input is, from Eq. (1.5-27), 

2n m1 
--- dr y(B + r + A sin 8)exp

(2n)toBSa do J-a 

The gain to the random component of the input, according to Eq. (1.5-51),is 

1 
-- dr y(B + r + A sin 8)r exp 

The gain to the sinusoidal component of the input is given by Eq. (1.5-36)to 
be 

L 

NA = -y[x(O)] sin 6

A 
277 w2 --- dr y(B + r + A sin 8)  sin 8 exp

(2n)toASo dBla 
We shall first document several useful nonlinearities for which analytic 

RIDFs can be derived. This is followed by a numerical integration procedure 
simple enough for use in hand calculation. In addition to this, it is clear 
that a standard digital-computer program for RIDF calculation, together 
with certain function subroutines, will be a most valuable asset to one who is 
to make regular use of RIDF theory. This matter is also discussed. 

POLYNOMIAL NONLlNEARlTlES 

Nonlinear functions of the form 

can be integrated to analytic expressions for the RIDFs. It  is possible to 
do the r and 8 integrations in either order, but the algebra is a little simpler if 
the r integration is done first. This integration is expedited by writing the 
nonlinear function in terms of the Hermite polynomials, to take advantage of 
their orthogonality. As given in Appendix H, the first few of these 
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polynomials are 
H,(u) = 1 

The orthogonality conditions are 

If the integrals involved in the expressions for NB, NR, and NA are to be put 
in the form of Eq. (7.2-7), the variable r must be normalized with respect to 
the standard deviation o. 

Thus the first step is to rewrite the original nonlinear function in terms of 
Hermite polynomials, with r replaced by ov. 

y(B + r + A sin 8 )  = 2 cn(r + B + A sin 8)" 
n 

where the dn will be functions of B + A sin 8 and o. This step can always 
be taken by starting with the highest power of r (or v) and working toward the 
lowest. 

Example 7.2-1 Express the cubic nonlinearity in the form of Eq. (7.2-8). 

y(x)  = x3 (7.2-9) 
Thus 

y (B  + r + A sin 6 )  = (ov + B + A sin 19)~ 

= u3v3+ 3u2v2(B+ A sin 6)  

+ 3uu(B + A sin 6)2+ ( B  + A sin ~ 9 ) ~  

= u3H3(v)+ 3(B + A sin 6)u2H2(v) 

+ 3 [ ( B+ A sin O)% + 03]H,(v) 

+ [ (B+ A sin 6)3+ 3(B + A sin 0)u2]H,(v) 
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With the nonlinearity expressed in terms of Hermite polynomials, the r 
integration-or with the change of variable, the v integration-is trivial. 

do(B + A sin 0, o)d8 (7.2-1 1) 

N = (27~)m Sand% 1o J-:du [F d.K(u)] Hl(u) exp (-g) 
dl(B + A sin 8, u) d0 (7.2-12) 

1 2n 
= -1 do(B + A sin 8, o) sin 8 dB 

7rA 0 

The remaining 8 integration is an ordinary harmonic analysis of the 
functions do and dl, which, when expanded, are simply polynomial expres- 
sions in A sin 8. The required integrals have already been considered in 
Chap. 6 ,  and are rewritten here in the form 

l n ( s i n  8)- dB = 0 n odd 

Use of this integral permits the RIDFs to be calculated in closed analytic 
form. 

Example 7.2-1 (continued) Complete the calculation of the RlDFs for the cubic 
nonlinearity. We have 

do = ( B  + A sin 8)3 + 3(B + A sin 8)02 

= A3 sin3 6 + 3A2Bsin28 + 3A(B2 + a2)sin 8 + BS + 3BuP 
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and dl = 3 [ ( B  t A sin %)2a+ a3] 

= 30(A2sin2% + 2AB sin % + B2 + a2) 

It may be noted that the expressions for NB and NA reduce to the corresponding DIDFs 
of Eqs. (6.2-27)and (6.2-26) in the case of a = 0. 

N o  ather type of nonlinearity yields RIDFs in so simple a form as this. 

A modified form of polynomial nonlinearity is often of interest, a function 
which includes both odd and even powers of x but which is defined as an odd 
function. 

Y(X)= L: cnxn X > O  
n (7.2-18) 

y(-x> = -y(x) 

The terms which are odd powers of x have the same analytic definition over 
the full range of x, and can be integrated by the procedure given above. 
However, the terms which are even powers of x have a different analytic 
definition for x < 0 than for x > 0 and require a different treatment. The 
general term of order n, with n even, would be written 
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The r integrations in the expressions for NB and NA are then 

r + A sin 6)exp 

" 
- ov + B + A sin 6)exp 
-

B f A  sin0 

---I S-I ( O V+ B + A sin 6)' exp 
d5 -" 

f L / m B + , s i n o  (ou+ B + A sin 6)" exp (--z) du (7.2-20)d5 -7 

Expansion of the integrand yields both odd and even powers of v. The 
required integrals are then of the form 

Repeated integration by parts gives the result 

- exp 3- - exp (- g) + (n- I ) u ~ - ~  (--
d2n 


+ . - - + (n- I)(n - 3) - . . (2)exp (- ] n odd and 2 3  

This last integration in the expression for even n cannot be written in closed 
form. It  is tabulated as a function of the upper limit of integration for a 
lower limit of -ao,as in Burington (Ref. 7). We shall be dealing repeatedly 
with this function, and for convenience shall designate it the probability 
interra/.-

1 
Pl(v) = -f exp (- g) du

4% 
-a 
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The integrand of the probability integral is the normal probability function 
which also appears throughout this work. We shall refer to it simply as the 
probability function. 

The integral above is conveniently written in terms of these functions. 

n odd and 2 3  

. + ( n  - l ) (n  - 3) . . . (l)PI(u) n even and 2 2  

This integral form suffices for the r integration in the expressions for NB and 
N,, as given in Eq. (7.2-20), and also for the r integration in the expression 
for NR, which is of similar form. However, the 8 integration cannot now 
be done analytically. 

This solution is adequate for cases in which there is no sinusoidal com- 
ponent in the nonlinearity input, and thus no 8 integration in the expressions 
for NB and NR. In that case, 

(7.2-28)y(B + r)r exp (- $)dr 

Example 7.2-2 The ideal-relay characteristic 
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has in this case the RIDFs 

D 
N --2I-"" exP (- f)  dv + -Iw exp (- f) do-

d 2 a ~-, ~ Z B-B/U 

B 

= [2PIB (:) - l] 
(7.2-30) 

and 
- D  -Bin 

NR = d z ~-I- ,  (- ')d 

D 

-~ G ( T-B,U v e x P ( - ; ) d v  

= ~ [ P F(-(T ;)
 + PF (- ;)I 
= 2 

(T PF (:)
 (7.2-31) 

In the preceding example, certain evident properties of the probability 
function and probability integral were used : 

If the RIDFs are required for nonlinearities of this modified polynomial 
form with a sinusoidal input component as well, the 0 integration requires 
integrating terms of the form PF[(B + A sin 0 ) / ~ ]and PI [(B + A sin O)/G]. 
This must be done numerically. We shall return to the question of numerical 
integration for RIDFs later in this section. 

HARMONIC NONLlNEARlTlES 

Nonlinear functions of the form 

y(x )  = 2 en sin mnx 
n 


permit analytic evaluation of the RIDFs. The representation of the non- 
linear function in terms of an integral transform is especially convenient in 
this instance. This procedure was employed in Chap. 5, both for analytic 
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arguments and for TSIDF evaluation; we shall employ the same transform 
here. 

m 

Y ( ju )exp ( jux)  du 

where Y(  ju) = /-:Y(~) exp (-jux) dx (7.2-39) 

in those cases for which the transform exists. Writing y(x)  in terms of its 
transform in Eqs. (7.2-3) to (7.2-5) gives, for the case of a bias plus gaussian 
plus single-sinusoid input, 

2n m m r21 
N --

- ( 2 n ) s o ~Sa d8s-?j-mdu Y(ju) exp [- 2oa + ju(B + r + A sin 8)I 
1 

du Y(  ju) exp ( juB) d8 exp ( j uA  sin 8) 

x exp [-+(v2 - 2juov)l (7.2-40) 

Completing the square in the exponent for the v integral gives 

u2u2 
du exp [-$(v2 - Zjuou)] = exp (-T) (7.2-41) 

From the definition of the Bessel function, 

J,(x) = -S'"exp [ j(x sin 8 - no)] d8 (7.2-42)
2rr 0 

the 8 integral is recognized as Jo(Au). Putting these results in Eq. (7.2-40), 
we have 

NB = -smY(ju)Jo(Au)exp + jBu) du (7.2-43)
27~B -m 

This form of the result is quite convenient. Alternatively, one can complete 
the square in the exponent to get 

1-1Y(ju)Jo(Au)exp [-$(ou 
1 

NB = -P F  
~/Z;;B


(!)
 -j B l ~ ) ~ ]  (7.2-44)du 

Using similar manipulations, the gain to  the gaussian signal is written 

1 2 n m m r2 
N ----Sa d8J-mdr/-m 

du Y(  ju)r exp [- + ju(B + r + A sin 8)]
- ( 2 4 4 0 ~  

1 a, 
- du Y(  ju) exp ( juB)  d8 exp ( juA sin 8) 
-

x exp [-&(v2 - 2juov)I 
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Alternatively, 

-(aut[-expy(ju)J0(Au) u 1-1 (!!) ,F j !I] 
 du (7.2-46)N R = -
2/G 

j 

Finally, 

2 
N ---- b2'd6j  dr[-Idu Y(ju) sin e 

A - ( 2 n ) * o ~  -m 

r2 
x exp [- + ju(B + r + A sin 6)I 

2 * I 2a 
-- l m d u  Y( ju) exp ( juB) d6 sin 0 exp ( juA sin 0) 

0 

X exp [-*(v2 - 2juov)l 
m a2u2 

Y(ju)Jl(Au)exp (- -+ /Bu) du 
2 

N, (;) JZ L PF= 
i? A 

@ Y(ju)Jl(Au) exp [- I(au -j :J] du (7.2-48) 

In the 6 integration for NA, sin 8 is written in terms of exp (je)and exp (- j6). 
Integration then gives a term J-,(Au) and a term J,(Au), which can be col- 
lected, using the property J-,(x) = -J,(x) for n odd. 

In the case of each of these gains, the original double-integral expression 
involving the nonlinear function has been reduced to a single integral 
involving the transform of the nonlinear function. For some nonlinearities 
Y( ju ) is easier to integrate than y(x). 

Example 7.2-3 Calculate the RIDFs for the harmonic nonlinearity. The general term 
in the sum of Eq. (7.2-37) is 

y(x) = sin mx (7.2-49) 

The transform of this is 

CO 

Y(ju)= 1- sin mx exp (-jux) dx 

77 

= - [6(u -m) - 6(u + m)]
i 
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This function can readily be integrated according to Eqs. (7.2-43), (7.2-45), and (7.2-47) 
to give analytic expressions for the RIDFs for the general harmonic-term nonlinear 
function. 

a2u2 
NB = - Ia(u - m) - 6(u + m)lJo(Au)exp (-- +jBu) du 

= 2BjI [Io(Am)exp (-
1 m2a2 1 

= -B J d A 4  exp (- i) i; [exp (jBm) - exp (-jBm)] 

1 . m2a2-- -sm mB exp (-T)J.(mA) (7.2-51)
B 

m202 1 
= J,(Am) m exp (- i) [exp (jBm) + exp (-jBm)] 

= J.(mA) (7.2-52)m cos mB exp (-7) 
m a2uz 

NA = - [a@ - m) - 6(u + m)y.(Au) exp (- +)Bu) du 

= ~ [ J , ( A m ) e x ~A (-
1 

= -J,(Am) exp (- - texp (jBm) + exp (-jBm)]A 

2 m202 
---cos mBexp (- T )J,(mA) (7.2-53)

A 

In this development, use is made of the property of Bessel functions that J,(x) is an odd 
function of x if n is odd and is an even function of x if n is even. 

These are the RIDFs for the general term of a harmonic nonlinearity. If a nonlinear 
function is a linear combination of terms of this type, as in Eq. (7.2-37), the RIDFs are 
the corresponding linear combinations of the terms given in Eqs. (7.2-51) to (7.2-53). 

PIECEWISE-LINEAR NONLlNEARlT lES 

A great many nonlinearities of common interest are composed of a sequence 
of straight-line segments. If we allow the possibility of discontinuous jumps 
between these segments, this family of nonlinearities assumes even greater 
proportions. I t  will be of value to treat this family in as general a way as 
possible. 
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To this end consider a general linear segment as pictured in Fig. 7.2-1. 
Any nonlinear function consisting of straight-line segments with or without 
jumps between them can be decomposed into segments of this form. If the 
contribution of this general segment to the integrals defining the RIDFs can 
be calculated, the RIDFs for any piecewise-linear nonlinearity could be 
synthesized as the sums of such contributions. Unfortunately, it will not be 
possible to carry out this program analytically in the case of the three- 
component input. In the double-integral expressions for the RlDFs [Eqs. 
(7.2-3) to (7.2-5)], either the r or the 8 integration can be carried out for the 
general linear segment, but in each case this gives rise to functions which do 
not permit the second integration to be done analytically. This suffices 
for the case where either the sinusoid or the gaussian process is missing from 
the input, but if both are present, the RIDF calculation must be completed 
by numerical integration. 

The limits of integration for a nonlinear function of finite extent are much 
simpler to handle if the r integration is done first. The general linear seg- 
ment of Fig. 7.2-1 is nonzero over the interval x, < x < x,. The r and 8 
integrations must then be carried out over the region in the r ,  19plane, which 
satisfies simultaneously the inequalities 

and 0 < 8 < 2 ~  (7.2-54) 

This region is pictured in Fig. 7.2-2 for the case A < (x, - xJ2. The 0 
integration, if done first, would be over different intervals of 8 for r in 
different regions, and these intervals are different for larger values of A 
relative to x, - 3,. On the other hand, if the r integration is done first, it is 
always over the interval x, - B - A sin 8 < r < .r, -B - A sin 8. The 
subsequent 8 integration is then simply over the interval 0 < 8 < 277. 

Figure 7.2-1 General segment of a 
piecewise-linear nonlinearity. 

X 
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Tr 3 s0 - Tr - 2.rr e 
2 2 


Figure 7.2-2 Region of integration ,for the general linear segment. 

In the expressions for N,, and N, [Eqs. (7.2-3) and (7 .2 -5) ] ,the r integra-
tion is of the form 

Il = 7 y ( B  f r + A sin 8) exp (f" ) rt 2 x u  -m (7.2-55) 

For the general linear segment of Fis. 7 .2-1 ,  this becomes 

using the integral form of Eq. (7.2-25). v, and r i ,  are the end points of the 
integration, given by . 

1 
r ,  = - (.Y,- B - A sin 8) (7.2-57) 

u 

1 
r., = - (s,- B - A sin 8) (7.2-58) 

u 

This form of I, holds for any linear segment of finite extent, or one which 
extends to .T--. +a,in which case a, -t I c o .  T o  be applicable to a 
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segment which extends to  x -+ -oo,Eq. (7.2-56) must be rewritten in terms 
of y,. 

~2 =~1 + k(xe - x i )  (7.2-59) 

I ,  = [y ,  - k(.u, - x,) + k ( B  + A sin 8 - .u,)][PI(u,) - PI(u,)] 

+ ko[PF(vJ - PF(u,)] 

This also holds for any segment of finite extent, or  one which extends to  
x + -00,  in which case v, -+-co. 

The r integration in the expression for N, [Eq.  (7.2-4)]is of the form 

I ,  = -I"y(B + r + A sin 8)r exp
d%a2 -73 


--- [y, t k ( B  + ov + A sin 8 - .ul)]vexp ( -1")- du 

In  terms of y ,  this is rewritten 

When evaluating Eq. (7.2-61) for a segment which extends to  plus infinity, 
it should be noted that 

lim (27, - r,)PF(o,) = 0 (7.2-63) 
02+ m 

Similarly, lim (v,  - v,)PF(c,) = 0 (7.2-64) 
vl+-m 

These integrals, I, and I,, are functions of the parameters which characterize 
the linear segment, and of o ,  B ,  and A sin 8. Indicating in the notation only 
the dependence on A sin 8, the RIDFs for the segment are now written as 

N, = -[2'11(,4 sin 8) dB 
2 ~ r Bo 

I 2"
N = -I I,(A sin 8)

27ro 0 

Jl(A sin 8) sin 8 d8 
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which are simply in the form of a harmonic analysis of the functions I,  and 
I,. As in the case of modified polynomial nonlinearities, the integrals of 
PF(x) and PI(x) are required. For a piecewise-linear nonlinearity which 
consists of the sum of a number of these segments, the individual contribu- 
tions to the RIDFs can be calculated according to Eqs. (7.2-65) to (7.2-67) 
and then added, or more efficiently, the individual I, and I, contributions can 
be added first and then integrated at once with respect to 8. 

If the nonlinearity input is taken to include only a bias and a gaussian 
signal, the integrals I ,  and I, constitute a complete solution for the RIDFs. 
In  that case 

x ( t )  = B + r(t) (7.2-68) 

1
NR = -j m y ( ~+ r)r exp (- ,&)

dG03 -m 

These contributions to the RIDFs corresponding to each linear segment can 
very easily be added to give a closed-form expression for the approximating 
gains for any piecewise-linear nonlinearity. 

Example 7.2-4 Calculate the RlDFs for the relay with dead-zone nonlinearity (see Fig. 
7.2-3) for the case of a bias plus gaussian input (A = 0). 

Segment I :  

From Eqs. (7.2-60)and (7.2-62) it follows that 

and 
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Figure 7.2-3 Nonlinear characteristic,for Example 7.2-4. 

Segment 2: 

Similarly, Eqs. (7.2-56) and (7.2-61) yield 

and 

Finally, Eqs. (7.2-69) and (7.2-70) give 

These expressions reduce to the RIDFs for the ideal relay [Eqs. (7.2-30)and (7.2-3 I)] in the 
case 6 = 0. 

NUMERICAL INTEGRATION FOR H A N D  CALCULATION 

The majority of nonlinear functions do not permit an analytic integration of 
the expressions defining the RIDFs. The user must then be prepared to 
calculate RIDFs through numerical, graphical, or other means of integration. 
One evident procedure for approximate RIDF calculation is to approximate 



the given nonlinear function by one for which the RIDFs can more easily be 
calculated. Either a polynomial or harmonic-function approximation to the 
nonlinearity will lead to analytic expressions for approximate RIDFs using 
the results derived above. A straight-line-segment approximation permits 
one integration to be done analytically. 

However, the approximation of one function by others is in itself a sub- 
stantial task; so we look to other means of RIDF calculation which use the 
given nonlinear function directly. The most convenient technique for 
general use is numerical. We present, first, an approximate procedure simple 
enough for hand calculation, and then consider the problem of more exact 
numerical integration by machine calculation. 

The double-integral expressions for the RIDFs in the case of a three-
component input [Eqs. (7.2-3) to (7.2-5)] can be integrated in either order. 
If the r integration is done first, these expressions might be written 

1 1  1 1-rnY ( B  + r iA sin 8)  exp (- 2)dr] do 202
NB = -- / '*[KOB277 o 

1 1  1 
N = -- /"[-01/2?TG'S n g ( B  + r -k A sin 8)r exp (- -1)dr] dB " O 277 0 -z 202 

- y ( B +  r + Asin8)exp (--N , = ; ;  /"[ / 112)dr] sin 8 d8 

If the 8 integration were done first, these expressions would be written 



CALCULATION O F  RANDOM- INPUT DESCRIBING FUNCTIONS (RIDFs) 387 

In either case there appear just four types of integrals: 

c + r )  exp (- &) drIl(c) = - (7.2-79) 

I,(c) = -- (7.2-80) 
1 + r)r exp (- &)dr 

%'Go2 -"2 

13(c)= - y(c + A sin 6) d6 
27.r S2"0 

In an r integration, c = B fA sin 6 ,  and in a 6 integration, c = B + r ;  but 
in either case, c is just a constant during that integration. The present 
functions I ,  and I, are consistent with those used before in the case of the 
general segment of a piecewise-linear nonlinearity. 

Any one of these RIDFs is now calculated by first evaluating the inner 
integral for a number of values of c. The resulting function of c is plotted to 
permit interpolating for other values of c as required in the evaluation of the 
outer integral. In the calculation of the second integral, this function of c 
resulting from the first integration plays the role of a new nonlinear function. 
Each of these expressions can be interpreted in terms of a "modified non-
linearity" if one desires to do so. For example, in the calculation of N, and 
NR, using Eqs. (7.2-76) and (7.2-77), the inner integral is of the form 13(c). 
This function may be considered a modified nonlinearity in which the effect 
of the sinusoid on the gains of the original nonlinearity to the bias and the 
gaussian signal has been accounted for. The outer integrals which involve 
13(B+ r) in the integrand are exactly the expressions for NB and NR for the 
nonlinear function 13(x),having an input x ( t )  = B + r(t). Similarly, in the 
calculation of NB and N,, using Eqs. (7.2-73) and (7.2-75), the outer integrals 
are exactly the expressions for N, and NA for the nonlinear function I,(x) 
with the input ~ ( t )= B + A sin (wt + 6) ,  where Il(c) resulting from the 
inner integral may be interpreted as a modified nonlinearity, which accounts 
for the effect of the random process on the gains of the original nonlinearity 
to the bias and sinusoid. This modified-nonlinearity concept, which has 
been referred to by many writers [Somerville and Atherton (Ref. 42) were 
probably first among them] extends also to cases of additional sinusoids at 
the input. 

We now develop an approximate integration procedure for each of the 
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required integral forms. For the first [Eq. (7.2-79)]we write 

m I 

= S_, y(c + os) -1/27, exp (- g) du 

where the integral is approximated by a finite sum, and equal increments of 
PI(v)are assumed. The v i  are the values of v a t  which the nonlinear function 
is evaluated. There are a number of reasonable ways to choose the values 
of v i  to use. One would be to take the mid-range value of v corresponding to 
each incremental range of PI(v). Probably better than this, on the average, 
would be the values of v i  which give the correct answer for some average form 
of y(x), say, a linear function in each interval. This is the same approach 
taken in Chap. 2 for the approximate numerical calculation of the DF. 
This choice of the oiresults in the trapezoidal integration rule, approximating 
the integral of the actual y(x) by the integral of a function which is equal to 
y(x) at each end of the integration step and linear between these points. 
The exact integral over a linear segment of y(x) is given in Eq. (7.2-56). 
The corresponding contribution to the sum of Eq. (7.2-83)can be equated to 
this to determine the appropriate value of vi. The result of this calculation 
is 

The interpretation of this expression is as follows: A value for G[PI(v)]is 
chosen to give the desired number of intervals. Ten intervals, for example, 
correspond to G[PI(o)]= 0.1. The first interval corresponds to PI(v) 
ranging from 0 to 0.1 ;the second to PI(u)ranging from 0.1 to 0.2; etc. For 
each of these intervals, v, is the value of v corresponding to PI(v)at the lower 
end of the interval, and 11, is the value of v corresponding to PI(v)at the upper 
end of the interval. v i  is then the value of z., intermediate to v, and v,, at 
which y(c + 00,)  should be evaluated to yield the correct integral over this 
interval if y(x )  were linear over the interval. PI(v) ranges monotonically 
from 0 to 1 ;SO G[PI(v)]= lln,where n is the number of intervals to be used. 
Equation (7.2-83)is then written 

The values of v,for n = 10 and 20 are given in Table 7.2-1. 
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The second integral [Eq. (7.2-80)]is written 

1 
I ~ ( c )= -J m  y(c + r)r exp (- 2)ddr 

%'Go2 -m 

03 

=J-my(c + oz~)- --
4%

vexp ( a d r .  

n evenS, y(c + ovi)n 


In this case the additional factor Si is required to indicate the sign of 
8[-PF(v)] in each interval; thus Si= -1 for vi < 0 and + I  for vi > 0. 
PF(v) ranges from 0 to 1/45in the first n/2 steps and then back to 0 in the 
next 4 2 .  The values of vi which yield the correct integral over an interval 
for which y(x)  is linear are given by 

v, and v, refer in this case to the left- and right-hand values of v at  the ends of 
each interval of PF(o). The v i  for n = 10 and 20 are tabulated in Table 
7.2-1. 

The third integral [Eq. (7.2-81)]is treated in a similar way. 

Idc) = -J y(c + A sin 19)
277 0 

Note that 

= A J"" y(c + A sin 8) dI9 (7.2-88) 
77 -a12 

for any static single-valued nonlinearity, which is a restrictioh that has been 
observed throughout this section. Thus 

68 
I,(c) = - y(c + A sin 8J 

77 i 

1 =- 5 y(c + A sin e,)
n i -1 

The appropriate values of sin Bi for trapezoidal integration accuracy are 

cos 8, - cos 8,
sin Bi = 

I92 - I91 



390 D E S C R I B I N G  F U N C T I O N S  F O R  N O N L I N E A R  SYSTEMS W I T H  R A N D O M  I N P U T S  

TABLE 7.2-1 ARGUMENT VALUES FOR TRAPEZOIDAL INTEGRATION O F  

I, integration 1% integration 

where 8, and 8, are the left- and right-hand values of 8 at the ends of each 
interval of 8. The values of sin Oi for n = 10 and 20 are tabulated in Table 
7.2-1. 

The fourth integral [Eq. (7.2-82)] is written 

I )  = - y(c + A sin 8) sin e dB 
Tr S"0 

4 2  

= Z1 y(c + A sin 8) sin 8 d8 
Tr - 4 2  

y(c + A sin 8) d(-cos 8) 

2 = - 16 cos 8) 2 S, y(c $- A sin 8,) 
Tr i 

1 4 "  = A - 2 Siy(c fA sin 8,) n even 
n Tr i=1 

S , in this case carries the sign of -6 cos 8, and thus is -1 for sin 8, < 0 and 
+ l  for sin Oi > 0. Cos 8 ranges from 0 to 1 in the first n/2 steps and back 
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C E R T A I N  R I D F  EXPRESSIONS 

I, integration I, integration 

sin Oi sin 0, sin 0: sin Oi 

-0.9959 
-0.9714 
-0.9229 
-0.8518 
-0.7596 
-0.6488 
-0.5220 
-0.3823 
-0.2332 
-0.0784 

0.0784 
0.2332 
0.3823 
0.5220 
0.6488 
0.7596 
0.8518 
0.9229 
0.9714 
0.9959 

to 0 in the next n/2. The values of sin Oi for trapezoidal integration accuracy 
are 

+(sin 28, - sin 28,) - 8, + 8,
sin Oi = (7.2-92)

~ ( C O S  - cos 8,) 8, 

8, and 8, are the left- and right-hand values of 8 at the ends of each interval of 
cos 8. The sin 8, are tabulated in Table 7.2-1 for n = 10 and 20. 

It  might be noted that if y(x) were odd, and c = 0, which would be true in 
the case of a single input component-either a gaussian or a sinusoid-I, 
and I, would be either zero or irrelevant, and I, and I, could be calculated by 
integrating over half the range and multiplying the result by 2. In any case, 
these numerical integrations can be performed quite rapidly by hand. The 
form of these approximate integrals is especially convenient in that the values 
of y(x) which are calculated or read from a graph need not be multiplied by 
any constants; they are simply added to or subtracted from the total. Having 
a graph of y(x) and an adding machine, one can read the required values and 
add them very quickly. 

The accuracy of these approximate integration rules has been checked in 
the case of the cubic nonlinearity, y(x )  = x3, which is somewhat typical of 
smooth nonlinearities, and in the case of the relay with dead zone shown in 
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TABLE 7.2-2 ACCURACY O F  T H E  TRAPEZOIDAL INTEGRATION RULES 

Cubic nonlinearity Relay nonlinearity 

Max error Av error Max error Av error 

Integral 1 : 
n = 10 2.5 % 2.2 % 
n = 20 1 .o 1.3 

Integral 2: 
n = 10 3.4 1.5 
n = 20 1.5 1.2 

Integral 3: 
n = 10 0.4 0.9 
n = 20 0.1 0.7 

Integral 4: 
n = 10 0.4 0.9 
n = 20 0.1 0.6 

Note: For the cubic nonlinearity, the errors are given in percent of the true value. For 
the relay nonlinearity, some of the true values are zero. The errors are thus given in 
percent of the maximum value of the integral over the 25 values calculated. These 
maximum values are 

Fig. 7.2-3, which is somewhat characteristic of nonlinearities with a dis-
continuous jump. Each of the four integrals was evaluated at 25 combina- 
tions of values for its two parameters. These parameters c ,  IT,and A (or 
c / 6 ,  016, A / 6 ,  in the case of the relay with dead zone) were taken in all 
combinations of the values 0.2, 0.5, 1 ,  2, and 5. The average error over the 
25 points and the maximum error is given in Table 7.2-2 for each of these 
nonlinearities and for n = 10 and 20. For these cases, the 10-point integra- 
tion rule yields better than 7 percent accuracy, and the 20-point rule, better 
than 5 percent. 

RlDF CALCULATION BY DIGITAL COMPUTATION 

The RIDFs may be calculated as accurately as desired by digital computation 
using standard numerical integration techniques. This subject needs no 
discussion here. We simply note that the double integrations required to 
evaluate the RlDFs for a three-component input can be done much faster if 
one of the integrations can be done analytically. This was found to be 
possible for all piecewise-linear nonlinearities and for the modified poly- 
nomial nonlinearities, which include even-power terms but are defined to be 
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odd functions. This represents a very significant family of nonlinear 
functions. In each case, if the r integration is done first, the integrand for 
the 8 integration includes terms in PF(c + A sin 8) and PI(c + A sin 8). 
If one has subroutines available in his library to calculate these functions, the 
integration can be performed very simply. Since PF(x) is just an exponen-
tial function, a standard exponential subroutine which is available in most 
computing centers is sufficient. For completeness, however, we suggest an 
expression which can be used for this purpose. PI(x) is less generally 
available, and we develop an expression for this function which is convenient 
for machine computation. These functions are pictured in Fig. 7.2-4 for 
the positive range of x; they are defined over the negative range by the fact 
that PF(x) is even and the relation given in Eq. (7.2-36): 

An approximation for PF(x) which is very easy to program and reasonably 
efficient for machine calculation is derived from the power-series expansion of 
the function about the origin. This expansion suggests the form 

0.39894229 
--

1 + (a, + [a, + - ..+ (a,-, + anx2)x2- - -]x2}x2 
(7.2-93) 

X 

Figure 7.2-4 Normal probability functions. 
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Using the second, or nested, form, the denominator of this function can be 
programmed in Fortran by a single DO statement. If this function is to be 
used primarily for the computation of RIDFs, six-digit accuracy in the 
approximation is surely adequate, since no more than four-digit accuracy 
would be of any value in the results of the computation. For f,(x), as given 
in Eq. (7.2-93), to approximate PF(x) with a maximum error of 1 . over 
the full range of x ,  requires 14 terms in the denominator. This accuracy is 
not achieved using values of the ai appropriate to the series expansion of 
PF(x) about the origin, but with aivalues chosen to minimize the sum of 
squared errors in the approximation at many points over the range of x. 
With the coefficients optimized in this way, the maximum approximation 
error decreases by a factor of about 2, with each additional term in the 
expansion. A set of 13 coefficients which yield 1 . loF6accuracy is given in 
Table 7.2-3. Note that this approximating function is valid for positive and 
negative values of x. 

The function PI(x) is surprisingly difficult to approximate well with simple 
functional forms. For computational efficiency it was found wise to use 
different approximating functions over two different intervals of x.  The 
following functional forms are suggested : 

f1(x), = 0.5 + b,x + b2x3+ b3x5+ . . + b,x2"-I 

= 0.5 + {b, + [b, + . . + (b,-, + bnx2)x2 . -]x')x 1x1 I X ~ I  

The first of these functions is suggested by the form of the power-series 
expansion of PI(x) about the origin. The second is motivated by the fact 
that, for large values of x ,  

where this asymptotic equality implies that the ratio of the two members 
tends to unity as x tends toward infinity. Even with the range of the function 
broken into two parts, and with the coefficients b, and c, optimized on the 
basis of minimum sum of squared errors, 20 coefficients are required in each 
of these functions to achieve an error no greater than 1 10V over the full 
range of x. The appropriate point at which to break the range of x is in this 
case x, = 3.3. Sets of coefficients which yield 1 . accuracy are listed 
in Table 7.2-3. Note that the first of these functions, for x of smaller 
magnitude, is valid for both positive and negative values of x. The second 
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TABLE 7.2-3 COEFFICIENTS IN T H E  

A P P R O X I M A T I O N S  F O R  PF(x) A N D  Pl(x) 

. 0.39894229 

-PF(x) m f f , (x) = 
1 + {a,  + [a, + . . . + (a,, + a13x2)x2- - ]x2)x2 

a,  = 0.20833333 - 10-I a,, = 0.2691 1439 . lo-' 

a4 = 0.26041665 - lo-, a,, = 0.12232172. lo-'@ 

a, = 0.26041664 - lo-' a,, = 0.50847426. 10-l2 

a, = 0.21701386 . lo-' a,, = 0.37188551 . 10-l3 

bll  = 0.51124335. lo-" 

b12= -0.21217608 . lo-'' 

b13= 0.81334163 - 10-l4 

b14= -0.28965156 . IO-l5 

b,, = 0.96312710 . lo-" 

b,, = -0.30032944 . 10-l8 

b,, = 0.88214403 . 
b18= -0.19304226 . 
b,, = 0.18588157 -
b,, = 0.24283477 -

c,, = 0.66769241 . lo-' 

c,, = 0.30408705 . lo-'@ 

c,, = 0.13631897 - lo-" 

c14= 0.73926276 . IO- l3  

c,, = 0.59690240 . IO-l4 

c,, = 0.56745842 . lo-'' 

c,, = 0.33853563 . lo-', 

= -0.37560769 -
c19= 0.32913919 . 
c,, = 0.1 8022685 . 
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function, for x of larger magnitude, is valid only for positive x ;  Eq. (7.2-36) 
is then used to define the function for negative values. 

The integral expression for the describing function gain to each input 
component is singular for a zero magnitude of that component. Thus one 
may expect the expression to be poorly behaved numerically for small 
magnitudes of input. An accurate reference point for small signals is 
provided by the limiting forms of the describing functions derived in Sec. 1.5. 
For static single-valued nonlinearities, Eq. (1.5-63) states 

lim NB = NE(B = 0)  
B-0 

and Eq. (1.5-66) gives 

lim N, = NR(A = 0)  
A - 0  

The expression for NR remains well behaved for small values of A and B. 
No similar expression is known for NR, but differentiation of Eq. (1.5-59) 
with respect to B reveals the fact that 

This relation is true in general; in particular, it remains well-behaved for 
small values of o. 

Another approach to approximate RIDF calculation has been suggested by 
Atherton (Ref. 2). Using the transform of 'the nonlinear function, he 
calculates the RIDFs for a general quantizer nonlinearity in which the steps 
in both input and output variables are arbitrary. This leads to expressions 
for the gains in the form of sums of terms which involve the confluent 
hypergeometric function and the gamma function, among others. These 
results define the RIDFs for a stepwise approximation to any nonlinearity, 
and if the required functions are prepared as subroutines for digital com- 
putation, the approximation can be made as good as desired. 

Having developed adequate means of calculating RIDFs, we now apply 
them to study the behavior of nonlinear feedback systems with random and 
other inputs. For convenient reference the three-input RIDFs for several 
common nonlinearities are presented in Appendix E. 

7.3 FEEDBACK SYSTEMS W l T H  RANDOM 
SIGNALS A N D  NOISE 



396 DESCRIBING F U N C T I O N S  F O R  N O N L I N E A R  SYSTEMS W I T H  R A N D O M  I N P U T S  

function, for x of larger magnitude, is valid only for positive x ;  Eq. (7.2-36) 
is then used to define the function for negative values. 

The integral expression for the describing function gain to each input 
component is singular for a zero magnitude of that component. Thus one 
may expect the expression to be poorly behaved numerically for small 
magnitudes of input. An accurate reference point for small signals is 
provided by the limiting forms of the describing functions derived in Sec. 1.5. 
For static single-valued nonlinearities, Eq. (1.5-63) states 

lim NB = NE(B = 0)  
B-0 

and Eq. (1.5-66) gives 

lim N, = NR(A = 0)  
A - 0  

The expression for NR remains well behaved for small values of A and B. 
No similar expression is known for NR, but differentiation of Eq. (1.5-59) 
with respect to B reveals the fact that 

This relation is true in general; in particular, it remains well-behaved for 
small values of o. 

Another approach to approximate RIDF calculation has been suggested by 
Atherton (Ref. 2). Using the transform of 'the nonlinear function, he 
calculates the RIDFs for a general quantizer nonlinearity in which the steps 
in both input and output variables are arbitrary. This leads to expressions 
for the gains in the form of sums of terms which involve the confluent 
hypergeometric function and the gamma function, among others. These 
results define the RIDFs for a stepwise approximation to any nonlinearity, 
and if the required functions are prepared as subroutines for digital com- 
putation, the approximation can be made as good as desired. 

Having developed adequate means of calculating RIDFs, we now apply 
them to study the behavior of nonlinear feedback systems with random and 
other inputs. For convenient reference the three-input RIDFs for several 
common nonlinearities are presented in Appendix E. 

7.3 FEEDBACK SYSTEMS W l T H  RANDOM 
SIGNALS A N D  NOISE 
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describing functions and by the required satisfaction of a number of simul- 
taneous nonlinear algebraic relations which define the solution. With the 
thought that it may be prudent to approach these details gradually, this 
section is restricted to the class of problems in which there is only a single 
identifiable signal form at the input to the nonlinearity-a gaussian random 
process. This very important class of problems includes cases in which the 
system responds to input signals and noise if both are characterized by 
gaussian processes. We shall even be able to design the Wiener-optimum 
compensation for such systems, but let us begin with the basic problem of a 
nonlinear system responding to a single gaussian input. 

T H E  BASIC PROBLEM 

The system configuration is shown in Fig. 7.3-1. The system input r ( t )  is a 
stationary gaussian process whose autocorrelation function rprr(r), or 
equivalently, whose power spectral density function @,,(o),is given. If the 
nonlinearity input x ( t )  is to be modeled adequately as a gaussian process, we 
must assume that the system is not limit cycling. This is a situation precisely 
paralleling the study of the frequency response of a nonlinear system using 
the single-sinusoid-input D F  as in Chap. 3,  and the same observations made 
earlier regarding the possibility of a system which does not limit-cycle in the 
absence of input exhibiting one in the presence of an input, or the no-input 
limit cycle of a system being quenched by an input, are applicable here. 
With the assumption of no limit cycle, x ( t )  is just the random response due 
to the input, and this response is considered gaussian for the purpose of 
calculating the describing function for the nonlinearity. 

The single-random-input describing function is given by Eq. (7.2-4) with 
A and B equal to zero. 

1 1N ,  = - ry( r )  exp (-f) dr 
.\/Go3 -a0 202 

This integral can be expressed analytically for a number of nonlinearities, in 
addition to those for which the double-integral expressions of the preceding 
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section can be evaluated. Some of these expressions are tabulated in 
Appendix E. 

With the effect of the nonlinearity on the input random process expressed 
in terms of its RIDF, the system has a quasi-linear description. Standard 
linear theory can then be used to evaluate the mean-squared value of the 
signal that appears at any point in the loop. In particular, the standard 
deviation o of x ( t )  is defined by the square root of 

and 

The power spectral density function @ ( a )  was introduced as a function of 
the real frequency w because only in this case does the function have a clear 
physical significance: it is the power per unit frequency interval of the 
harmonic components of the function in the vicinity of w. However, control 
engineers are more accustomed to functions expressed in terms of the 
Laplace transform variable s. Equations (7.3-2) to (7.3-4) can be written in 
terms of this variable by simply introducing the change of variable s =jw.  

Strictly speaking, the symbol @(s)is improper since it does not refer to @(w) 
with w replaced by s; rather, o is replaced by s/ j .  However, the symbol is 
convenient; it is in common use; and no confusion should arise. For 
rational spectra, co appears only in even powers; so @(s) is derived from 
@(w)simply by replacing w2 by -s2. 

The integral expression for o2 [Eq. (7.3-91 can be evaluated analytically if 
@,,(s) is a rational function of s2. This will be true of any case in which the 
spectrum @,,(s) is rational in s2 and the transfer function H ( s )  is rational in 
s. For this case, the integral has been evaluated by a number of writers and 
appears tabulated in many books and journal articles. Table 7.3-1 lists the 
results for low-ordered spectra; more comprehensive tables may be found in 



FEEDBACK SYSTEMS WITH R A N D O M  SIGNALS A N D  N O I S E  399 

TABLE 7.3-1 TABULATED INTEGRALS FOR RATIONAL SPECTRA 

simultaneous solution defines the rms value of x( t )  for the given input. The 
most convenient way to effect the solution is to choose a value of o,the rms 
value of x(t) ,  and determine the corresponding value of NR from Eq. (7.3-1). 
Equation (7.3-5) is then integrated using this value of NR. The mean-
squared value of r ( t )  can be kept in literal form since it just appears as a 
multiplying factor for the integral. It  is then a simple matter to solve for 
the rms value of r( t ) ,  which results in the value of o originally chosen. This 
process is repeated with other values of o until the relation between rms input 
and rms value of x ( t )  is well enough defined to permit interpolation among 
the results to find the response to a given input. 

The solution of a, for a given oxwill always be single-valued. However, 
different values of oxmay lead to the same value of or;that is, for a given 
input, a multiple-valued response may be indicated. Here again is a situa- 
tion which parallels the sinusoidal response characteristics of similar systems. 
In that case, a multiple-valued response was termed jump resonance. In this 
case such a response characteristic is usually called dual-mode operation, 
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error mode tends to be maintained consistently, depending on initial condi- 
tions. In the random input case, as one would expect, the system changes 
apparently at random between the large and small error modes of operation. 

Having the value of o,, and thus of N,, determined for any input, the 
response at any other point in the loop, such as a t  the output c(t),  can be 
determined by linear methods. The limitation on this is that there must be 
adequate filtering of the higher-frequency nongaussian content in the output 
of the nonlinearity. The quasi-linear description of the nonlinearity used 
here does not model accurately the power spectrum, the distribution, or the 
mean-squared value of the process at the output of the nonlinearity. The 
more linear filtering this process experiences, however, the more nearly these 
characteristics will approach those predicted by this analysis. This too is 
entirely equivalent to the sinusoidal response situation. 

Example 7.3-1 As an illustration of the procedure just described, consider the second- 
order system shown in Fig. 7.3-2. The input is a gaussian process, having the power 
density spectrum 

Using V, of Table 7.3-1, the mean-squared value of this input is found to be 

Thus the spectrum can be rewritten to display the mean-squared input directly. 

The transfer from input to x ( t ) is 

in which the RIDF is used to characterize the gain of the nonlinearity to its random input. 

Taking out the factor 2aur2, the function C(s)/D(s)in the integral form of Table 7.3-1 is 
identified as 

V3from this table then gives 
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Figure 7.3-2 Sysrem of Example 7.3-1. 

Equation (7.2-16) with A = B = 0 gives the RIDF as 

Now for any given bandwidth of the input spectrum, say, a = 1 sec-', Eqs. (7.3-9) and 
(7.3-10) can be solved. For example, take a, = 1 unit. Then 

N, = 3 

a, = 1 4 3 4  = 1.87 units 

This calculation is repeated to define a curve of o, versus a, for a given a. Then the spec- 
trum of the output is 

and the mean-squared output is 

An example of the response of this nonlinear system to a gaussian input is shown in Fig. 
7.3-3, together with the response of the corresponding quasi-linearized system to the same 
input. The evident close correlation between the outputs, c(t), of the two systems indicates 
the success of the quasi-linear description of the operation of the nonlinearity. Notice 
that the signal y( t )  is not well modeled. This effect is even more striking if the nonlinearity 
is an ideal relay, as shown in Fig. 7.3-4. 

ACCURACY 

As part of a more comprehensive study, Smith (Refs. 40, 41) checked the 
accuracy of this analysis, using the system of Fig. 7.3-2 and three different 
nonlinearities. For each nonlinearity he computed the theoretical relation 
between o, and a, for a range of input rms values and for three different 
bandwidths of the input spectrum. He then measured the actual response 
of the system as simulated with an analog computer. His results are shown 
in Figs. 7.3-5 to 7.3-7. The agreement between predicted and observed 

.. - -
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Figure 7.3-3 Sample of response to a random input. Fig. 7.3-2 system, cubic nonlinearity. 

decrease can be observed from these results. Note, first, that in every 
instance in which the data lie close to the line o, = o,, the accuracy is 
excellent. This is the condition in which the rms error is nearly as large as 
the rms input, which implies that the feedback in the system is not effective. 
This occurs mostly for the wideband input. If the fed-back signal is small 
compared with the input signal, x(t) has nearly the properties of r(t), 
including its normal distribution. This is the condition under which the 
analysis was developed. Only when o, is appreciably smaller than o, does 
the accuracy decrease, and then not in every case. Note that for the limiter 
system (Fig. 7.3-7), with a = 1 and small rms input, o, is much smaller than 
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Figure 7.3-4 Sample of response to a random input. System of Fig. 7.3-2,ideal-relay 
nonlinearity. 

An interpretation of these results can be based on the distribution of the 
signal a t  the input to the nonlinearity. With a gaussian input to the system, 
x ( t )  can have a distribution which differs significantly from the normal only if 
an appreciable amount of the distortion generated by the nonlinearity is fed 
back around the loop to the input to the nonlinearity. An appreciable 
amount of fed-back signal is implied if the rms error is much smaller than 
the rms input; this is indeed the intent of the feedback configuration. But 
in the case of the limiter system with rms error small relative to the value 
of x at which limiting occurs, the limiter is only rarely driven into the non- 
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10 --- a =  51 1 1  1 sec-I - System of Fig. 7.3-2-
- Nonlinearity: cubic 
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Figure 7.3-5 Response to gaussian input. (Adapred,from Smith, Ref. 40.) 
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Nonlinearity: relay 
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I sec- ' 
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Nonlinearity: limiter 
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Figure 7.3-7 Response to gaussian input. (Adapted from Smith, Ref. 40.) 

must be appreciable compared with the input signal, and it must contain 
signiJicant nonlinear distortion. 

As an indication of the sensitivity of the accuracy of this analysis to the 
distribution of x( t ) ,  histograms showing the distribution of the nonlinearity 
input for three points in Figs. 7.3-5 to 7.3-7, where the theoretical values are 
most in error, are given in Figs. 7.3-8 to 7.3-10. The normal distribution 
having the same rms value is shown in each case for reference. These 
distributions differ quite significantly from the normal, yet the rms error was 
predicted with less than 10 percent error in each of these cases. 

Nikiforuk (Ref. 30) and Nikiforuk and West (Ref. 31) used narrowband 
filtering to measure the power density spectrum of the output of second-order 
systems with hard-spring and limiter nonlinearities. Comparison of the 
output spectrum with the input permits evaluation of the magnitude of the 
system transfer function over the important frequency range. This experi- 
mentally determined frequency response function was compared with that 
predicted by this analysis and found to agree with better than 20 percent 
accuracy, except in a low-frequency region, where they questioned their 
experimental results. 

It  might be said in summary that the accuracy of the RIDF in dealing with 
a , 1 - . - ‘-At r~ ... - -. - r - - - J :  nr 
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Figure 7.3-8 Distribution of 10,000 error samples. (Adapted from Smith, Ref. 40.) 
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N, thousands 

Error, volts 

System of Fig. 7 . 3 -.2 Rms error = 4.07 volts 
Nonlinearity: limiter a = 1 sec-' 

Figure 7.3-10 Distribution of 10,000 error samples. (Adapted from Smith, Ref. 40.) 

plants would 'provide better filtering of nonlinear distortion and permit even 
better analytic description. When accuracy is degraded, it is due to in- 
adequate filtering of the nongaussian nonlinearity output, which then violates 
the assumption of a normal distribution at the input to the nonlinearity. 
Any theory which is to be more accurate than this over a broad range of 
problems will have to deal with the possibility of a distorted distribution for 
the nonlinearity input. This, unfortunately, poses a problem which is 
likely to remain intractable for practical purposes. 

OPTIMUM LINEAR COMPENSATION 

This section has thus far considered the analysis of a nonlinear system sub- 
jected to a random input. We turn now to the problem of the synthesis, or 
design, of such systems under stated sets of conditions. One of the classics 
among optimal design problems is the Wiener problem of the separation of a 
signal from noise with a linear filter. The extension of the solution to the 
Wiener ~ rob lem to the design of o ~ t i m u m  linear compensation for a system 
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The conditions of the problem are these: 

1. The system responds to an input which is the sum of a signal and noise, 
both of which are considered stationary gaussian random processes with 
given power spectral density functions. 

2. The desired output of the system is a function derived from the signal 
component of the input by some linear invariant operation, not necessarily 
physically realizable. 

3. The criterion for optimality is minimum steady-state mean-squared error, 
which is the difference between the actual output of the system and the 
desired output. 

4. The system contains an invariant stable linear part and a static single- 
valued nonlinear part which are considered fixed. The optimum linear, 
physically realizable compensation is to be designed for this system. 

The system configuration is shown in Fig. 7.3-1 1. Nand L(s)  characterize 
the fixed nonlinear and linear parts of the system; G'(s) is the compensator 
to be designed. The original feedback configuration is recast in an open- 
chain configuration with a known relationship between the new cascade 
compensator G(s)  and the original system compensator Gf(s) .  This is the 
configuration to which familiar filter theory is applicable were it not for the 
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nonlinear element in the chain. Using the theory of this chapter, the non- 
linearity is characterized by its RIDF, which depends on ox. But the mean- 
squared value of x( t ) is not known until G(s)is determined, and that depends 
on the gain of the nonlinearity. A logical way out of this dilemma is 
provided by the constrained optimum-design technique given by Newton, 
Gould, and Kaiser (Ref. 29). If a value is chosen for ox, NR is determined, 
and the constrained-optimum-design solution gives the function G(s) which 
minimizes the mean-squared error subject to the constraint that the mean- 
squared value of x( t ) is as assumed. This solution is repeated for a number 
of values of the constrained variable aZ2. The mean-squared error corre- 
sponding to each of these is noted, and the solution which yields the smallest 
mean-squared error is optimum. 

The solution to the constrained-optimum-design problem specialized to 
the configuration of Fig. 7.3-11 is given here for convenient reference. For 
the development of this solution, the reader is referred to Newton, Gould, 
and Kaiser (op. cit.). -

With reference to Fig. 7.3-1 1, the quantity to be minimized is e(t)2+-
AX(^)^, where ;Z is a Lagrange multiplier. We are considering unbiased 

-
= oZ2. The solution proceeds in the variables in this section; so ~ ( t ) ~  

following steps : 

1. Choose a value of ox. Calculate the corresponding value of NR from 

1 03 

NR = ------ b ( e u ) v  exp (- g) du 
d%ox 

2. Form the function 
H(s)  = NR2L(s)L(-S)+ A 

and factor it. 
H ( s )  = H(s),H(s), 

H(s ) ,  contains all the factors of H ( s )  which define poles or zeros in the 
left half-plane, and H(s) ,  contains all the factors of H ( s )  which define 
poles or zeros in the right half-plane. Any poles or zeros on the jo 
axis are moved just off the axis by the addition of a real part, 6. For 
example, if H ( s )  has the factors l / ( s ) ( - s ) ,  they are replaced by 
l / ( s+ E)( - s  + E) ,the first factor becoming a factor of H ( s ) ~and the 
second a factor of H(s),. 

3. Form the power spectral density functions [ r ( t )  = s( t )  + n( t ) ]  

2nd factor the innut s~ectrum. 
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4. Form the function 

where M(s) ,  has its poles only in the left half-plane, and M(s), has its 
poles only in the right half-plane. The zeros of these functions may lie 
in either half-plane. This step is carried out by partial fraction expansion 
of M ( s )  and adding together those fractions which define poles in the left 
half-plane to form M(s),. M(s) ,  need not be evaluated explicitly. 

5. The optimum cascade compensation function is 

This is a function of the Lagrange multiplier I. 
6. Use the constraint condition 

to evaluate I ,  and hence G (s) ,  to yield the value of oxassumed in step 1. 
7. Calculate the mean-squared error. 

The first two terms in this expression for the error power spectral density 
function are of the form of the integral tabulated in Table 7.3-1. The 
sum of the last two terms is also of this form. 

This solution is repeated for enough values of o,to define a curve of 3 
versus ox. The value of oxwhich yields the minimum 3 is then used in the 
final solution for the compensator G(s). The solution to the problem of 
the design of the optimum linear compensation function for a nonlinear 
system of the form considered here is tedious, to be sure, but requires no 
new concepts and does provide a very satisfying solution to a rather 

. -
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We might just note that describing function theory is applicable to systems 
with nonlinear parts separated by sufficient linear filtering regardless of what 
analytic form one chooses to describe the system. Time-variable systems or 
nonstationary system statistics are more conveniently treated with a state 
space characterization of the system than with a time-variable extension of 
integral transform theory. Under the assumption of known distribution 
for the components of a system state vector, the instantaneous nonlinearities 
involved in the system differential equation of state and in any nonlinear 
measurements taken on the system can be approximated as quasi-linear 
gain matrices using a multidimensional extension of Chap. 1 theory. In 
the case of a non-limit-cycling nonlinear system driven by gaussian noise, 
these gain matrices depend on the mean value and covariance matrix of the 
system state vector, and of any input noises. Having a quasi-linear descrip- 
tion of the nonlinear system, linear filter theory in the form of the Kalman 
filter is employed directly to obtain approximate indications of the time- 
varying first- and second-order statistics of the system. 

OPTIMUM NONLINEAR COMPENSATION 

A somewhat different problem is presented by a system having a given fixed 
part which is just asked to follow a random input as well as possible in the 
least-mean-squared-error sense. Consider any linear compensation to be 
fixed for simplicity in instrumentation. Then, for a given input spectrum, it 
is a simple matter to determine the optimum forward gain. Suppose now 
that we should like the system to respond optimally to inputs of various 
power levels; specifically, consider the shape and bandwidth of the input 
spectrum to remain fixed but scaled in amplitude to correspond to different 
rms input levels. For each input power level there will be a different optimum 
value of forward gain if the system fixed part contains a nonlinearity. What 
is needed, then, is a forward gain which depends on its input rms value, that 
is, a nonlinear element. If one permits some liberty in the application of 
RIDF theory, it is possible to design such a nonlinear compensator in an 
optimal way. The technique was first documented by Douce and King 
(Ref. 13). 

The configuration of the system to be considered is shown in Fig. 7.3-12. 
The input signal is a stationary gaussian process with a power density 
spectrum which is of a prescribed shape but with a variable amplitude 
scaling. The fixed part includes the controlled member, its drive system, 
and any linear compensation which has been designed and is held fixed in this 
process. The nonlinearity N ,  is to be designed to yield a minimum mean- 

- - . -. 
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Figure 7.3-12 System configurarion for design of optimum nonlinear compensation. 

This may well imply a coarser degree of approximation than has been 
employed before in this section, since the output of the first nonlinearity is 
propagated to the input to the second without benefit of the heavy filtering of 
the controlled member. In some instances, L,(s) may be unity or even a 
lead function; so the distribution of z ( t )  surely would not be normal, as 
assumed in the calculation of the RIDF for N,. The only justification for 
proceeding is that the RIDFs for many nonlinearities, and in particular for 
the limiter which is of common interest in this context, are not strongly 
dependent on the distribution of the input. With the understanding that the 
accuracy of the approximation for N, may not be up to the standard for 
RIDF usage, the solution proceeds in simple steps. 

Choose a value for N,, the RIDF for the unknown nonlinearity y,(x). 
Also choose a value for o,, and solve for the or which results in this value 
of o,. This step is just like the "basic problem" discussed at the beginning 
of this section. Calculate the corresponding value of ox. 
Repeat step 1 for enough values of N, and o, to prepare plots of the form 
shown in Fig. 7.3-13. 
At a given value of or, use these plots to determine the value of ox 
corresponding to each choice of N,. Plot these data for several values of 
or as in Fig. 7.3-14. 
For each input rms value there appears on these curves an optimum value 
of N, (unless the solution is trivial). This is the value which minimizes 
the rms error. Cross-plot the optimum values of N, against the cor- 
responding values of o,, as shown in Fig. 7.3-14. This is the optimum 
RIDF for the nonlinearity y,(x). 
Find a nonlinear function which has (nearly) the RIDF just determined. 
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In their illustrative example, Douce and King (Ref. 13) found that a 
nonlinearity of the form 

with the proper choices of a and b, gave a suitable approximation to the 
required RIDF. The RIDF for this nonlinearity is given in Appendix E. 
Testing a simulation of the resulting system, Douce and King found the 
nonlinear compensator to reduce the system mean-squared error compared 
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" x  l 

Figure 7.3-14 Results of steps 3 and 4 of solution procedure for optimum 
nonlinear compensation. 

with the uncompensated nonlinear system by a factor which ranged up to 
3: 1 for some input conditions. Furthermore, the experimental results were 
in good agreement with the theoretical predictions, in spite of the fact that 
in their configuration there was no filter between N, and N,, as shown in 
Fig. 7.3-12. 

7.4 FEEDBACK SYSTEMS WlTH R A N D O M  
A N D  O T H E R  I N P U T S  

We now extend our attention to nonlinear systems having sinusoids and 
biases propagating around the loop, in addition to random processes. The 
class of problems which now lies within the range of our consideration is 
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truly impressive, and although the details of problem solution become more 
laborious with each step of increasing generality, the theory of multiple-input 
describing functions still provides practical answers to important questions 
that pertain to the design of real systems. It  is now essential that one have 
the gains of the nonlinearity to the various components of its input calculated 
in advance, and perhaps plotted for ease of use. The RIDFs for several 
important nonlinearities are given in Appendix E; the methods of Sec. 7.2 
can be used to calculate such data for others. 

With these data a t  hand, it is a relatively simple matter to determine the 
effect of a random dither on a system limit cycle, to design the dither to meet 
a specification on limit cycle amplitude, or to calculate the amount of dither 
required to quench the limit cycle altogether. One can determine the 
characteristics of a noise input which will excite a limit cycle in a system which 
does not display one in the absence of input. The bandwidth and peak 
resonance of the sinusoidal response characteristic of a nonlinear system are 
altered by the addition of noise. It  is possible to eliminate a jump resonance 
characteristic with noise. These phenomena are predictable within the 
present context. Systems with asymmetric nonlinearities can be considered, 
as well as systems with biased responses to inputs. For example, the average 
and mean-squared steady-state following error can be calculated for a limit 
cycling system responding to a ramp command and a random disturbance. 
Many other combinations of circumstances will give rise to the basic situation 
being considered in this section :a signal at the input to the systemnonlinearity 
which is well modeled by the sum of a bias, a sinusoid, and a gaussian process. 

USE OF RANDOM DITHER 

Consider, first, the effect of a random noise, either intentionally supplied as a 
dither or otherwise appearing in a system, on the limit cycle and sinusoidal 
response characteristics of a system of the form shown in Fig. 7.3-1. If 
this system is excited by a gaussian process only, any sinusoid appearing a t  
x ( t )  would have to be due to a limit cycle, and the performance of the system 
would be defined by the following relations: 

These describing functions, NA and NR, pertain to the given nonlinearity 
driven by an input x(t ) ,  which is modeled as the sum of a sinusoid and a 
gaussian process. No bias is being considered a t  the moment, which 
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implies an unbiased input to the system and an odd nonlinearity. The limit 
cycle condition [Eq. (7.4-l)]can be simplified in view of the basic restriction 
which has been observed throughout this chapter; namely, only static single- 
valued nonlinearities have been under consideration. Under this restriction, 
all the describing functions are real-valued static gains; so it is known in 
advance that if a limit cycle is to exist, all the required phase shift must be 
supplied by the linear part of the system. The limit cycle frequency, if any, 
is then the frequency at which the sinusoidal response function for the 
open-loop linear part of the system has 180" of phase lag. Call this frequency 
. The amplitude of the open-loop linear sinusoidal response function a t  
this frequency is known, and the complex Eq. (7.4-1)is reduced to the real 
equation 1 

Equations (7.4-2)and (7.4-4)are now to be solved simultaneously for A and 
o, if the input spectrum @,,(s) is given. The solution defines the system 
limit cycle in the presence of the gaussian input and the input-output transfer 
characteristics of the limit cycling system to the gaussian input. 

If the random input is applied as a dither for the purpose of controlling 
the amplitude of the limit cycle in the absence of other inputs, the dither may 
be applied either at the input or a t  some other station in the loop, such as 
directly at the input to the nonlinearity. Equations (7.4-4)and (7.4-2),with 
@,,(s) interpreted as the power density spectrum for the dither input, remain 
the same regardless of the point at which the dither is injected. In every case 
H(s) used in Eq. (7.4-2)is the closed-loop transfer function from the point 
where the dither is injected to the input to the nonlinearity, with the non- 
linearity replaced by NR. The synthesis problem of determining the amount 
of dither required to meet a specification on limit cycle amplitude is par- 
ticularly simple to carry out. If A is specified and graphs of N,  and NR as 
functions of A and a are available, Eq. (7.4-4)can be solved immediately for 
ox. Then, with A and ox known, and if the shape of the power density 
spectrum of the random dither is chosen, Eq. (7.4-2)can be solved directly 
for the required rms value of the dither, no iterations or additional graphing 
being required. One caution must be observed, however. We shall see 
that nonlinear systems often display more than one mode of operation in their 
limit cycle behavior in the presence of random noise or dither. These 
modes correspond to multiple solutions to the equations defining the response. 
When a design is tentatively completed, the designer must check for the 
possibility of an additional solution; and if one exists, he must assure himself 
that the alternative limit cycle mode also meets the specification. 

As an illustration of these procedures, Kwatny (Ref. 20) studied a system 
with a third-order linear part and an ideal-relay nonlinearity. The con- 
figuration is shown in Fig. 7.4-1. The input r ( t )  was a gaussian random 
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Figure 7.4-1 Kwatny's example system. (Ref . 20.) 

process with power density spectrum 

The RIDFs for the ideal relay with an input consisting of the sum of a 
gaussian process and a sinusoid are shown abbreviated from Appendix E 
in Fig. 7.4-2. We shall present the results for the case o, = 5 units and 
T = 1 sec with the gain of the system, KD,a parameter. For small values 
of this parameter no solution of Eq. (7.4-4)is possible. That is, for values 
of ox consistent with the given input and the low values of KD,there is no 
value of A for which NA(A,o,)is large enough to satisfy Eq. (7.4-4).Over a 
range of gains, then, this system is predicted to display no limit cycle, 
although it is clear that it would limit-cycle for any gain if the noise were not 
present. The transfer of noise through the system in the absence of a limit 
cycle is described by Eq. (7.4-2),with NR given by the A / o  = 0 point in 
Fig. 7.4-2. For values of KD large enough to yield a solution to the limit 
cycle condition [Eq. (7.4-4)],there are in fact two solutions. Thus one 
predicts two possible modes of response: one with a relatively small A and 
large u,, the other with a relatively large A and small ox. 

The theoretically predicted performance of this system is summarized in 
Fig. 7.4-3,which is a plot of the rms output of the system against system gain, 
KD,each normalized by the rms value of the input random process, u,. 
The mean-squared output, which is the only quantity that can conveniently 
be checked experimentally, includes both the transfer of noise to the output 
and the limit cycle at that point. 

-
~ ( t ) ~= $A2+ mean-squared noise at c 

In the lower range of KD,there is just one mode of response with no limit 
cycle. The rms output is due entirely to the transfer of the input noise to 
c( t ) .  In the higher range of KD,the two solutions are shown with the limit 
cycle amplitude indicated along the two branches of the curve. 

The actual performance of this system as observed in an analog simulation 
is entirely consistent with these predictions. Experimentally observed values 
of rms output are also shown on Fig. 7.4-3. In the region where no limit 
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cycle is predicted, the experimental and theoretical values of rms output 
differ by less than 10 percent. In the region where a limit cycle and two- 
mode operation are predicted, the observed rms output lies between the two 
theoretical values, suggesting an averaging between the two modes of 
operation. In his study of the actual output time histories, Kwatny (Ref. 
20) observed the tendency to shift in a random manner between modes which 
would approximate those predicted. At the high end of the range of system 
gain, the tendency toward the larger-amplitude limit cycle mode was more 
pronounced. 

In the case of a non-limit-cycling system, the gaussian-plus-sinusoid-input 
describing functions are useful in the study of the sinusoidal response 
characteristics of a nonlinear system with random noise or dither, or the 
random signal response characteristics of a nonlinear system with sinusoidal 
noise or dither. The noise transfer expression [Eq. (7.4-2)] is still applicable 
in this case, but the limit cycle condition [Eq. (7.4-4)] is replaced by the 
expression for the magnitude of the sinusoid response function of the closed- 
loop quasi-linearized system from system input to nonlinearity input. 

Figure 7.4-2 Gaussian-plus-sfnusoid-fnp~itdescribing functions ,for the ideal-relay non- 
linearity. 
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-Theoretical 

x Experimental 

o r =  5 units 
'= 1 sec 

Figure 7.4-3 Performance of Kwarny's example system. (Adapted from Ref. 20.) 

Nikiforuk and West (Ref. 31) show experimental results for the former in the 
case of a second-order system with a limiter nonlinearity. Their frequency 
response curves for different noise bandwidths or rms values show shifts in 
peak magnitude and in the frequency for peak magnitude which are com- 
pletely understandable in terms of the decrease in the gain of the limiter to 
the sinusoid, with an increase in the rms noise at the input to the limiter. 
They also note that noise or random dither tended to quench the jump 
resonance in the frequency response characteristic. As the noise power was 
increased, the upper jump frequency tended to move down toward the lower 
until the jump phenomenon was eliminated. 

These system characteristics, which are well explained by two-input RIDF 
theory, are difficult to think about qualitatively because of the complex 
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interrelation among N,, NR, A, and a,. The situation is considerably 
simplified if either A or a, can reasonably be treated as constant. This can 
be done in cases where the input sinusoid is very high frequency or the input 
noise is very wideband compared with the bandwidth of the quasi-linearized 
system. In such cases the system acts open-loop with respect to the high- 
frequency signal, since only a trivial amount is fed back. For example, if the 
input noise is wideband, a, can be determined once and for all, and the gain 
of the nonlinearity to the sinusoid is given by the curve of N, versus A for 
the appropriate value of o. From that point on, the problem is just like a 
single-sinusoid-input problem, but with a DF modified by the presence of 
the noise. The effect of the noise is invariably to "smooth out" the NA 
curve, which is the qualitative explanation for the observed quenching of a 
jump resonance. The noise can either increase or decrease the gain of the 
nonlinearity to the sinusoid, depending on whether the slope of the non- 
linearity generally increases or decreases with increasing input. For 
example, the presence of noise increases NA in the case of a polynomial or 
hard-spring nonlinearity; it decreases N, in the case of a soft-spring, limiter, 
or ideal-relay nonlinearity. Other nonlinearities have a combination of these 

. effects. The relay with dead zone, for example, has a small slope (zero) for 
small signals, then a large slope (infinite), and then a small slope (zero) for 
large signals. Noise in this case increases N, for A smaller than the dead 
zone, and decreases N, for A much larger than the dead zone. Furthermore, 
the largest increase in N, for small A is realized by an intermediate amount 

o f  noise such that a, is comparable with the dead zone. 
Oldenburger and Sridhar (Refs. 33,43) neglected the fed-back noise in their 

studies of random-signal stabilization. In the context of a more complete 
theory of quasi-linearization, this point of view is treated as an approximation 
which, when applicable, affords a significant simplification in problem 
solution. In view of the fact that the presence of noise can either increase or  
decrease the gain of the nonlinearity to a sinusoid, depending on the shape of 
the nonlinearity, it is easy to construct examples of systems in which noise 
will reduce or quench the limit cycle that would exist in the absence of input, 
and other examples in which noise will excite a limit cycle in a system which 
does not limit-cycle in the absence of input. The effect of the noise is very 
much like the effect of a second sinusoid in the system, and these examples are 
similar to the examples of sinusoidally quenched or excited limit cycles 
discussed in Sec. 5.4. 

APPLICABILITY O F  T H E  SINGLE-RANDOM-INPUT DESCRIBING 
F U N C T I O N  

Use of the single-random-input describing function to study the response of a 
nonlinear system to a random input is always made under the same condition 
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as that required for use of the single-sinusoid-input describing function to 
study the response of a nonlinear system to a sinusoidal input, namely, that 
the system does not limit-cycle in the presence of the input. The two- 
sinusoid-input describing function is required to test for a limit cycle in the 
presence of an input sinusoid, and the gaussian-plus-sinusoid-input describing 
function is required to test for a limit cycle in the presence of a random input. 
The condition for the applicability of the single-random-input describing 
function was stated previously in the discussion of the use of dither: no limit 
cycle is indicated if for the ox corresponding to the given input and system 
configuration, there is no value of A for which NA(A,oX) is as large as the 
reciprocal of the magnitude of the transfer function for the open-loop linear 
part a t  the frequency for 180" phase lag. This simply says that there is no 
solution to Eq. (7.4-4). This condition is simply stated; the difficulty in 
applying it is the determination of ox. A number of nonlinearities have the 
property that the maximum value of NA(A,o) as a function of A for a given 
o occurs at A = 0. This is true, for example, of the ideal relay (see Fig. 
7.4-2), the limiter, and soft-spring characteristics generally. In this case, the 
following point of view constitutes a most appealing pitfall: there can be no 
limit cycle if NA(A,oX) for A = 0 is less than l/IL(jo,)l, where L(s) is the 
transfer function for the linear part of the system. But for A = 0, ox can be 
determined using the simpler single-random-input describing function. 
Furthermore, it was shown previously [see Eq. (1.5-66)] that 

lim NA(A,o) = N,(O,o) 
A-+O 

so the single-random-input describing function would seem to provide a 
check on its own applicability. The indicated procedure is to calculate o, 
using the single-random-input describing function; note that the correspond- 
ing NR(o) is equal to NA(O,o), and see if this value is less than l/(L(jw,)l. 
The more complicated gaussian-plus-sinusoid-input describing function need 
not be calculated at all, provided one is sure in advance that for any given a, 
NA(A,o) is never greater than NA(O,o). 

This argument, specialized to particular cases, was given by Kwatny (Ref. 
20) and Gibson and Sridhar (Ref. 14), and in each case led to obviously 
incorrect results. The basic difficulty is the presence of multiple solutions; 
the user of describing function theory must always be alert to this possibility. 
The nature of the problem can be illustrated by reference to the system of 
Fig. 7.4-1. Suppose, first, that the rms input o, is taken as the variable 
parameter, and we wish to find the range of o, for which no limit cycle exists. 
l/IL(jw,)l for this system is 1/K and, for a specified K, is a known constant. 
The single-random-input describing function for the ideal relay is given by 
Eq. (7.2-31) with B = 0. 
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According to the argument given above, we are looking for the range of or 
which yields values of o, such that NR(ox) < 1/K. But this is exactly the 
condition for stability of the system, with the nonlinearity replaced by the 
gain NR. This interpretation of the condition for no limit cycle in terms of 
the stability of the quasi-linearized random-input-only system is not unique 
to this example; it is true of any system which is stable for all gains less than a 
critical value. However, all values of or from zero to infinity yield stable 
systems in this example if random-noise-only theory is applied. This can be 
seen by noting that for large values of or, the system cannot follow the input 
and o, tends toward o,. As a, is decreased, ox decreases, and thus NR 
increases. As NR approaches the value which would render the system 
unstable, corresponding to a known finite value of o,, the transfer of noise 
from r ( t ) to x ( t )  approaches infinity. Thus NR approaching the critical value 
for stability corresponds to or approaching zero. All positive values of a,, 
then, even vanishingly small values, yield values of NR in the stable range, 
and the simplified limit cycle condition would say that no limit cycle exists 
since NA(O,oz), which is equal to NR, is smaller than l/IL(jwo)l. This does 
indeed constitute a solution to the mathematical problem, but it does 
violence to the physical problem. We know the no-input system limit cycles, 
and the limit cycle must persist for some range of small values of or. If the 
theory is to be right, there must be another solution (or solutions) to the 
mathematical problem for small values of or. The nature of the alternative 
solution can be seen by referring to the gaussian-plus-sinusoid-input describ-
ing functions of Fig. 7.4-2. If one admits the possibility of a limit cycle with 
A > 0, the effect of the sinusoid on NR is to decrease it. For values of NR 
close to the critical value for stability, a decrease in NR means a decrease in 
ox. But the decrease in ox increases NA to a value large enough to support 
the limit cycle. This alternative solution with A > 0 defines the mode of 
operation we should expect to see in practice, and the solution can be found 
only by admitting the possibility of a limit cycle to the analysis. 

A comparable situation exists if the input is fixed and the system gain K D  
is the variable parameter. If noise-only theory is used, all values of K D  
from zero to infinity are found to yield stable quasi-linearized systems, and in 
every case NA(O,ux) is less than l/IL(jwo)l. The nature of the solution as 
K D  -t oo is that ox goes to infinity (and thus NR goes to zero) with K D  in 
such a way that the quasi-linearized system just approaches the point of 
instability. However, for values of K D  above one value, there are not only 
one, but two, additional solutions with nonzero values of A.  As noted 
earlier, the actual system displays both of these modes. 

In summary, there seems to be no reliable shortcut to the determination of 
the validity of random-input-only describing function theory. Except in 
the case of low-ordered systems which obviously cannot limit-cycle, the 
possibility of a limit cycle can be tested only by including a sinusoid in the 
analysis, and this requires full use of multiple-input describing function theory. 
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A THREE- INPUT I L L U S T R A T I O N  

The presence of all three of the signal forms considered here at the input to 
the nonlinearity does not alter the nature of the analysis, only the labor 
required to apply it. The original nonlinear system is replaced by three 
quasi-linear systems, one to process each of the signal forms. In each of 
these quasi-linear systems, the nonlinearity is represented by the correspond- 
ing RIDF: NB(A,B,o),  NA(A,B,o),  and NR(A,B,o). The nonlinear charac- 
ter of the system is represented in the interdependence of these effective gains. 
The three quasi-linear systems yield three relations, one each for A,  B, and o ,  
in terms of the original system configuration and its inputs. These three 
expressions and the expressions for NB, NA,  and NR, which will usually be 
represented by graphed data, must be solved simultaneously. 

As an illustration of the recommended procedure, consider the system of 
Fig. 7.4-4. This system is responding to a ramp input r ( t )  and a gaussian 
disturbance d(t ) .  We wish to determine the mean value and standard 
deviation of the error in the steady state. The steady-state error response to 
the ramp is a constant due to the integration in the plant. In addition, it is 
clear that, for small enough disturbance inputs, the system will limit-cycle. 
Thus x ( t )  must be modeled as the sum of a bias, a sinusoid, and a random 
signal, and the three-input RIDFs must be employed. A sample of this 
nonlinearity input, x( t ) ,  for particular choices of system parameters and 
input characteristics, is shown in Fig. 7.4-5. The bias in this signal is clearly 
evident, as is the limit cycle, and the irregularity of the record indicates the 
presence of the random noise. 

The quasi-linear system which processes the bias signal has the same 
configuration as the original system, but the nonlinearity is replaced by 
N,(A,B,a), and the only input is the ramp function r( t ) .  Because of the 
integration in the plant, the steady-state response of this quasi-linear system 
is evidently 10BNB = k (7.4-7) 

The quasi-linear system which processes the sinusoid has the same configura- 
tion as the original system, but the nonlinearity is replaced by NA(A,B,o),  

2r ( r d 2
r(r) = kr + d d ( ~ )= 

Figure 7.4-4 Three-input example system. 
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k = 2 volts/sec u,,= 2 volts 
D = 0.5 volt T = 0.1 sec 

Figure 7.4-5 Sample of steady-state response. System of Fig. 7.4-4. 

and there is no input. If this quasi-linear system is to display an undamped 
oscillatory mode corresponding to a limit cycle of the nonlinear system, the 
gain of the open-loop transfer function at the frequency for which it has 180" 
of phase lag must be unity. That frequency in this case is 1 radianlsec, and 
the limit cycle condition is 

5NA = 1 (7.4-8) 

The quasi-linear system which processes the random disturbance also has the 
same configuration as the original system, but the nonlinearity is replaced by 
NR(A,B,a),  and the only input is the gaussian disturbance d ( t ) .  The o 
which the three RIDFs depend on is the standard deviation of the random 
component of x(t),  the nonlinearity input. It is given by 

This integral can be evaluated using Table 7.3-1 to give an explicit expression 
for a2in terms of NR and ad2if 7 is given. This expression is 
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The solution is most readily carried out by assuming a value for a. Then, 
for each of the values of B/o for which the describing functions are plotted in 
Appendix E, the value of Alo which gives NA = 0.2 can be read from the 
graph, as well as the value of A/o which gives BNB = k/10. These sets of 
values are plotted versus BIG, and the intersection indicates the values of A 
and B which result in satisfaction of Eqs. (7.4-7) and (7.4-8) for the chosen 
value of o. This defines NR, and Eq. (7.4-1 1) is solved for the value of od2 
which would result in the assumed value of o. This procedure is repeated for 
several choices of o to define the response of the system to a range of values 
of od2. One can then interpolate among these data to define the response 
for a given value of ad2. 

For some values of o and B there will be no value of A for which NA is as 
large as 0.2. This indicates no possibility of a limit cycle with those values 
of o and B. For other choices of o and B there may be more than one value 
of A for which the limit cycle condition can be satisfied. This indicates the 
possibility of multiple solutions, although one branch of such solutions may 
not be consistent with the requirement on gain to the bias. Another 
indication of multiple solutions can appear at the last step, where the relation 
between o and odmay show more than one value of o,  and hence of A and B, 
corresponding to a single value of o,. 

Having found A,  B, and o for given ramp and disturbance inputs, the 
mean error is 

-
~ ( t )= B (7.4-12) 

and the standard deviation of the error is 

If multiple solutions are indicated, experience has shown that the actual 
system operation usually shifts randomly among the possible modes, and 
measured statistics represent some kind of average among the values of these 
statistics in the different modes. 

GENERALIZATION O F  THE BIAS FUNCTION 

The utility of multiple-input RIDFs is greatly broadened if one generalizes 
the bias which has been included as one of the characteristic forms of function 
at the input to the nonlinearity, allowing it to become an arbitrary function of 
time, within certain restrictions. 

B +B(t) 

Within the necessary restrictions which must be placed on this extension of 
concept, one gains the tremendous advantage of being freed from the 
necessity of specifying in advance the form of each of the components of 
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signal at the nonlinearity input. Thus one can study, in a restricted sense to 
be sure, system stability, general transient responses, and other response 
characteristics that do  not give rise to signal forms which can be known in 
advance. 

The conditions under which the gain of a nonlinearity to a bias function, 
B, can reasonably be interpreted as the gain of that nonlinearity to an 
arbitrary function, B(t), were discussed in Chap. 6 for the case in which B, 
or B(t), appears at the nonlinearity input, together with a sinusoid. Our 
present consideration of this subject differs only in that random signals, as 
well, may be present. Although the presence of a random signal does not 
change the basic nature of this problem, it does complicate the writing of 
quantitative conditions under which the generalized interpretation of B is 
accurate. Qualitatively, one may say that if the nonlinearity input is 
observed over an interval long enough to include one period of the sinusoid 
and the interval of significant correlation of the random signal, the function 
B(t) should appear essentially constant. But more than this is involved. 
The gains of the nonlinearity to the sinusoid and to the random signal depend 
on B; so if B changes, the system sinusoidal and random-signal response 
characteristics change. But we propose still to employ steady-state sinusoidal 
response characteristics and stationary (that is, steady-state) random response 
characteristics for the quasi-linearized system. So B(t) should also change 
slowly enough so that the system can be thought of as progressing through a 
continuous sequence of steady states as regards its sinusoidal and random 
response. 

The generalization of B to B ( t )  can be justified, not only in the case where 
B(t) changes slowly enough, but also in the case where B(t) is small enough. 
For small enough B(t), NA and NR are little influenced by the changing B, 
and the system displays its steady-state sinusoidal and random responses. 
Moreover, we note from Eq. (1.5-63) that 

and from Eq. (1.5-66) that 

lim NA = NR(A = 0) 
A-0 

This says that the gain of a nonlinearity to a bias signal in the presence of any 
assortment of other signals is the same as the gain of that nonlinearity to a 
sinusoid in the presence of the other signals if both the bias and the sinusoid 
are small enough; and in fact this gain is the same as the gain of the non- 
linearity to the random component of its input, which may be large or small. 
This suggests the thought that the gain of the nonlinearity to a smaN signal in 
the presence of other signals is the same regardless of the shape of the small 
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signal, and that this gain is the gain of the nonlinearity to the random com- 
ponent of input in the absence of the small signal. Just how small B(t) 
must be to qualify on the grounds of "smallness" rather than "siowness" 
cannot be stated in general; it depends on the nonlinearity. For those 
nonlinearities whose RIDFs are documented in Appendix E, the reader can 
see the range of B for which NA and NR are essentially independent of B, 
and NB is nearly equal to NR, and the range of A for which NA is essentially 
equal to NR. 

The gain of the nonlinearity to small signals B(t) is just what is needed to 
study the stability of a system for small signals in the presence of others. The 
interesting kind of behavior which this allows one to test for is comparable 
with the case indicated in Chap. 6 of a system which has a stable limit cycle 
mode, but in the presence of that limit cycle the system is unstable for small 
signals. In this case we can consider a system which is responding to a 
random input and is also circulating one or more sinusoids which may result 
either from inputs or a limit cycle or both. In the presence of these signals, 
we wish to test the stability of the system to small signals. This test has a 
particularly simple interpretation when a random signal is present. For 
clarity, let us consider just one sinusoid. The stability of the system to small 
signals is given by the stability of the quasi-linearized system in which the 
nonlinearity is replaced by NB(A7B,o) with B = 0. The appropriate values 
of A and a must be determined using the quasi-linearized system which 
propagates the sinusoid, in which the nonlinearity is replaced by N,(A,B,a) 
with B = 0, and the quasi-linearized'system which propagates the random 
signal, in which the nonlinearity is replaced by NR(A,B,a) with B = 0. 
But once the simultaneous relations which define A and a are solved, the 
stability to small signals is evident since 

Iim NB(A,B,a) = NR(A,O,o) 
B-0 

So if the quasi-linearized system which propagates the random signal is 
stable, the system is stable for arbitrary small signals in the presence of the 
random signal and sinusoid. 

Popov (Ref. 35) solved this problem, taking a somewhat more complicated 
point of view. He considered a system with a bias and a random process and 
used the same gains as the describing functions NB(B,o) and NR(B,u) 
defined here to model the effect of the nonlinearity in transferring the bias and 
the random process. For the given random input to the system and for 
every arbitrary choice of B, the rms value of the random process a t  the 
nonlinearity input can be determined, using standard quasi-linear techniques. 
This gives a value of a corresponding to every choice of B. Using this a(B), 
the gain to the bias function, NB(B,o), is determined simply as a function of 
B. Now one can study a new nonlinear system in which the input to the 
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nonlinearity is B generalized to B(t )  and the output is BNB. This system 
has no random process appearing explicitly, but the effect of the random 
input to the original system is accounted for in the modification of the 
original nonlinearity to the new nonlinearity. For the study of the stability 
of the system in the presence of the random input, Popov uses small-signal 
linearization of the new nonlinearity about its origin. That is, he replaces 
the nonlinearity by a gain which is the slope of BNB with respect to B at 
B = 0. But we now know, from Eq. (7.2-96), that 

so the gain derived in this way is exactly N,(a) for the value of o correspond-
ing to B = O! This procedure for the study of stability is then equivalent to 
the more direct approach described above. 

A procedure similar to this can be employed to treat more complicated 
problems which depend on the assumption that the gain of the nonlinearity 
to a small or slowly varying signal B(t )is equal to the gain of the nonlinearity 
to a bias signal B in the presence of the same additional signals. Smith 
(Ref. 40) gives an example of the calculation of the transient response of a 
nonlinear system to a ramp input which is corrupted by an additive noise. 
The first part of the procedure is the determination of the equivalent non- 
linearity for a noise-free system in which the effect of the noise in the original 
system is accounted for in the transformation of the original nonlinearity to 
the new nonlinearity. This is done as described above by considering the 
output of the new nonlinearity to be BNB, in which the dependence upon 
a has been eliminated by use of NR(B,o)to solve for the value of o correspond-
ing to each value of B. Having a new nonlinear system subjected to a noise- 
free ramp input, one can solve for the response in what seems to be the most 
convenient way. This is the most difficult step, since it may not admit of 
solution through quasi-linearization. We might note that if the problem 
were such that harmonic linearization of the new nonlinearity would lead to a 
solution, the result of the harmonic linearization of the new nonlinearity 
BNB(B)would be exactly N,(A,a), which might better have been calculated 
in the first place. Smith completed his example by treating the new non- 
linearity as piecewise-linear in two ranges. This gives the mean response of 
the system to the noisy ramp input. This mean response has the interpreta- 
tion that the response at every time is the mean, or average, of all possible 
responses at that time. It  is thus the time-varying mean over the ensemble 
of responses to all possible inputs, each input consisting of the sum of the 
deterministic ramp function and a member of the ensemble of all possible 
noise functions. An estimate of probable deviations from this mean response 
can now be calculated by determining the noise transferred to the point where 
the response is measured, using N,(B,a) and the value of o correspondjng to 
each value of B in the mean response. If the response is being measured a t  
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the input to the nonlinearity, this step is trivial, since the rms value of the 
noise at that point is already known as a function of B. 

The system treated by Smith in his example is shown in Fig. 7.4-6. The 
mean response can be measured only by repeating the solution many times 
with random noise at the input and averaging over these responses at each 
point in time. Smith averaged over 25 recorded responses to determine the 
mean error response to the noisy ramp input. The results are shown in Fig. 
7.4-7. Plotted in this figure are the theoretically computed mean error, the 
measured mean error at 0.1-sec intervals, and the 50 percent probable band 
for the distribution of the measured mean. Considering the fact that this 
calculation depends upon the approximations ordinarily involved in the 
application of describing function theory, and in addition uses stationary 
theory to process obviously nonstationary statistics, and uses the gain of the 
nonlinearity to the constant B as its gain to the slowly varying mean signal, 
the agreement seems quite good. 

This use of RIDF analysis has little justification in theory. However, it 
does provide a means of attack on a very complicated class of problems-an 
attack which is both workable and somewhat satisfying physically. 

7.5 A L T E R N A T E  A P P R O A C H  F O R  N O N L l N E A R l T l E S  
WlTH M E M O R Y  

Throughout this chapter, attention has been restricted to static single-valued 
nonlinearities. This is not due to any limitation in the theory of multiple- 
input describing functions. The general describing function theory developed 
in Chap. 1 is valid for dynamic and multiple-valued nonlinearities as well, 
and in fact, application of the theory poses no great hurdle if nonlinearity 
inputs consisting of a bias and sinusoids only are considered. The difficulty 
with random inputs to a memory-type nonlinearity is purely a practical one: 
the optimum quasi-linear filter to pass the random input component is a 
dynamic filter in this case, and its determination requires solution of an 

Figure 7.4-6 Smith's example system. (Ref. 40.) 
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Circles: mean of 25 measured responses 
Bars indicate probable error of measured mean 

Figure 7.4-7 Results of Smith's example. (Ref. 40.) 

integral equation of the Wiener-Hopf form [Eq. (1.5-44)]. The statistics 
which must be provided to effect the solution are the autocorrelation function 
for the random input and the cross correlation between the present output of 
the nonlinearity and all prior values of the random input. Just the evalua- 
tion of these statistics seems a forbidding chore, to say nothing of solving the 
integral equation. All this was found to simplify greatly in the case of static 
single-valued nonlinearities. 

An entirely different approach to the determination of quasi-linear 
approximators to dynamic or multiple-valued nonlinearities with random 
inputs may be preferable. Because of the difficulty of calculating the 
distribution of random signals in dynamic nonlinear systems, we are con- 
strained, as a practical matter, to assume the random signal appearing at the 
input to the nonlinearity to be gaussian. This assumption depends on the 
low-pass-filtering properties of the linear part of the system. But any 
gaussian random process can be expressed in the form of sinusoids: either as 
a sinusoidal function with random amplitude and phase or as the limit of a 
Fourier series with random coefficients (Ref. 38). With this description of 
the random input process, one can propagate the sinusoids representing the 
gaussian input, together with the actual sinusoidal input components and 
bias, through the nonlinearity, and identify the output components which are 
correlated with the input components. These relations, when averaged over 
the distributions of the random variables associated with the representation 
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of the input gaussian process, define the quasi-linear approximator based on 
the property of cross-correlation equivalence. These techniques are discussed 
by Levadi and Cosgriff (Ref. 24) and Mahalanabis and Nath (Ref. 25). 

It may well be that the labor involved in quasi-linear approximation of 
dynamic and implicit nonlinearities enclosed in feedback systems renders the 
technique of little value in this case. The whole virtue of describing function 
analysis, as opposed, for example, to computer simulation of the system under 
study, is the understanding one gains of the system performance charac- 
teristics and the basis it provides for the rational design of systems. When 
the labor required to apply the technique exceeds some reasonable bound- 
and this bound depends strongly on each individual's facility in the 
technique-one's understanding of the system tends to be obscured, and the 
value of the analytic procedure in system design is decreased. This simply 
underscores the fact that we are dealing with very complicated problems. 
The impressive thing is the breadth of the range of complex and practically 
significant system situations in which quasi-linear techniques can be applied 
with reasonable facility. 
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PROBLEMS 

7-1. An alternative means of statistical linearization for static single-valued nonlinearities 
is to define an equivalent gain as the ratio of rms nonlinearity output to rms input. 
Consider the nonlinearity input to be an unbiased gaussian process, and compute this 
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equivalent gain for the cubic nonlinearity, nonlinearity 18 of Appendix E. The inte- 
gral form of Eq. (7.2-25) will be helpful in this calculation. Compare the result with 
NR given in Appendix E. 

7-2. Compute the rms equivalent gain for the relay with dead zone, nonlinearity 3 of 
Appendix E, and compare the result with N ,  for a range of values of u/6. 

7-3. Compute the rms equivalent gain for the limiter, nonlinearity 7 of Appendix E, and 
compare the result with NR for a range of values of a/& 

7-4. Compute the gaussian-plus-bias-input RIDFs, N,(a,B) and NB(o,B),for the piece- 
wise-linear nonlinearity, nonlinearity 13 of Appendix E,  using Eqs. (7.2-69) and 
(7.2-70) and the previously given expressions for I, and I,. 

7-5. Note how NRand N, can be obtained for nonlinearities 3 to 5, 7 to 9, and 12 of 
Appendix E by specializing the results of Prob. 7-4. 

7-6. Calculate N, and N, for nonlinearity 7 of Appendix E by specializing the results for .. ~ -

nonlinearity 6. 
7-7. Calculate N, and NB for nonlinearity 8 of Appendix E by writing the nonlinear 

function as the sum of a linear function plus nonlinearity 7. Note that this could 
also be done in the case of the three-input RIDFs, using the graphed data for the 
limiter. 

7-8. Calculate NRand NBfor nonlinearity 11 of Appendix E by specializing the results for 
nonlinearity 6, and by expressing the nonlinear function as the sum of two nonlinear- 
ities of the form of nonlinearity 8. 

7-9. Calculate N, and NB for nonlinearity 13 of Appendix E by expressing the nonlinear 
function as the sum of a linear function plus nonlinearity 12, and by expressing it as 
the sum of nonlinear functions of the forms 3 and 9. 

7-10. Calculate approximate values for the gaussian-plus-bias-input RIDFs for the limiter, 
nonlinearity 7 of Appendix E, for several choices of 016 and B/S,using the integration 
formulas (7.2-85) and (7.2-86). Try both 10- and 20-point integration formulas, and 
compare the results with the analytic answers given in Appendix E. 

7-1 1 .  Verify the relation 

in the case of the two nonlinearities for which analytic forms of the three-input 
RIDFs are given in Sec. E-3. 

7-12. What is the steady-state mean-squared error in the system of Fig. 7-1 when driven by a 
gaussian process having the given power spectral density function? 

y = 
T = 1sec 

a, = 2 units I 1 

Figure 7-1 
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7-13. Using the results of Prob. 7-1, compute the theoretical value of cr, corresponding to 
several choices of o, and a for which experimental points are plotted in Fig. 7.3-5. 
Compare these theoretical results, using the rms equivalent gain for the nonlinearity, 
with the experimental values and the theoretical results, using the describing function 
of this book (Fig. 7.3-5), and note that in almost every instance the describing function 
defined here gives more accurate results. 

7-14. Do the same comparison as in Prob. 7-13, using the results of Prob. 7-2 and the data 
of Fig. 7.3-6. 

7-15. D o  the same comparison as in Prob. 7-13, using the results of Prob. 7-3 and the data 
of Fig. 7.3-7. 

7-16. ~ e t e r k i n e  the optimum linear compensator G(s) and the resulting mean-squared 
error for the system of Fig. 7-2. The desired output is the signal component of the 
input. 

Figure 7-2 

7-17. Determine the minimum rms value of gaussian dither, d(r), which assures that the 
system of Fig. 7-3 will not limit-cycle in the absence of other inputs. 

Figure 7-3 

7-18. The system of Fig. 7-4 responds primarily to constant input commands and random 
disturbances. Plot the mean and standard deviation of the error, e( t ) ,  for constant 
inputs ranging from 0 to 25 units. 
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Figure 7-4 

7-19. The system of Fig. 7-5 responds to a ramp command input and a gaussian disturbance 
input. What are the steady-state mean and variance of x ( t )  under the following 
conditions: 

m = 2 unitslsec 
D = 2 units 
K = 2 sec-I 

Odd(s)= 5 units2/cps 

Figure 7-5 

7-20. The system of Fig. 7-6 responds to a sinusoidal command input, a constant dis- 
turbance input, and a gaussian measurement noise in the feedback signal generator. 
What values of R, D, o, result in the error, ~ ( r ) ,having a bias component of 1 unit, 
a sinusoidal component with amplitude 2 units, and a gaussian component with rms 
value of 1 unit? 

Figure 7-6 
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7-21. Solve the three-input illustration problem of Sec. 7.4 (system of Fig. 7.4-4) for the 
characteristics of the error, x( t ) ,  in the case of the following parameter values: 

k = 1 unitlsec 
D = 0.5 unit 
7 = 0.1 sec 
o, = 1 unit 

7-22. Determine the modified nonlinearity for the system of Fig. 7.4-6 which accounts for 
the presence of noise in the system, and which can subsequently be used to evaluate 
the response to other inputs under the generalization of the bias signal to an arbitrary 
small or slow signal. 




