
8NONOSCILLATORY TRANSIENTS 
IN NONLINEAR SYSTEMS 

8.0 INTRODUCTION 

In general, describing function concepts are directed primarily at the steady-
state responses of nonlinear systems. The test inputs used to develop most 
describing functions are therefore based upon signal forms which are expected 
in steady-state system operation. We have seen this to be the case in the 
formulation of the sinusoidal-input describing function (DF), two-sinusoid- 
input describing function (TSIDF), and dual-input describing function 
(DIDF) of previous chapters. In the latter instance the linearization em- 
ployed also permitted determination of the transient response of a limit cycling 
nonlinear system under certain conditions. When a random process was 
considered, its statistical properties were determined on a steady-state basis. 
If, on the other hand, an approximate solution for the transient response of a 
non-limit-cycling nonlinear system is desired, we are led to consider aperiodic 
nonlinearity test inputs. 

In this chapter we treat two describing functions based on aperiodic test 
inputs. One is the transient-input describing function due to Chen (Refs. 



TRANSIENT- INPUT DESCRIBING F U N C T I O N  439 

3, 4). It  is formulated in a way considerably different from that presented 
in earlier sections of the text. Second is the exponential-input describing 
function. This new describing function is based on an exponential test 
input and follows very closely the describing function framework established 
earlier in the text. Both describing functions, emphasizing simplicity in 
use, are intended to facilitate the design of nonlinear systems. 

8.1 T R A N S I E N T - I N P U T  DESCRIBING F U N C T I O N  

The philosophy of quasi-linearization employed here is adopted specifically 
for the purpose of studying the transient response of nonlinear systems. For 
convenience, in transient investigation we take the input to be a step. This 
assumption, however, need not exclude the consideration of another form of 
input, which may be regarded as generated by the step response of a certain 
linear network. Nonlinearities under consideration are taken to be piece- 
wise-linear as a result of the approximation procedure to be presented. These 
are assumed to be followed by linear low-pass elements, as in conventional 
describing function theory. 

At the outset, a problem of circular nature arises. In order to perform an 
appropriate quasi-linearization of a nonlinear element it is necessary to test 
that element with a signal which simulates the actual input; however, 
determination of the actual input depends upon the nonlinearity quasi- 
linearization, which has allowed the system investigation in the first place. 
This apparent difficulty may be resolved by recalling that, since the non- 
linearity under consideration is piecewise-linear, resulting in a piecewise-
linear overall system, the shifting of the nonlinearity operating point during 
the transient can be readily determined on a "marching" basis. A rough 
determination of the actual transient response in the first linear range via 
ordinary linear techniques determines the test function for the nonlinearity 
in the first two linear ranges. The quasi-linearization so obtained permits a 
rough evaluation of the actual transient response in the second linear range. 
This, in turn, determines the test function for the nonlinearity in the first 
three linear ranges, etc. This procedure is shown to provide useful guidance 
in design work through yielding a qualitative indication of the dependence of 
system transient response on system parameters. 

The above-outlined quasi-linearization procedure is well illuminated by 
the following example. Consider the simple system of Fig. 8.1-1, containing 
a limiter and a pure integrator. Note, first, that this system cannot limit- 
cycle. Immediately following application of a step input of magnitude R 
(for R > a), the limiter output assumes the value D. Accordingly, the 
actual nonlinearity input is 

R - 6  
x ( t )  = R - DKt for 0I t < - (8.1-1)

DK 



440 N O N O S C I L L A T O R Y  TRANSIENTS IN N O N L I N E A R  SYSTEMS 

Figure 8.1-1 Simple nonlinear system. 

which therefore is used as the test input. Figure 8.1-2 illustrates both non- 
linearity input and output signals. At this point the appropriate transient- 
input describing function can be constructed. This is accomplished by 
obtaining the nonlinearity output as the summation of a static operation on 
its input less a residual x,(t), chosen so as to complete the required total 
output signal description. Figure 8.1-3a shows the resultant dynamic 
quasi-linear element, of which the static part is the transient-input describing 
function, K,, = D/6. As is the case in this example, K,, is generally chosen 
to be the slope of the nonlinearity at the origin. Figure 8.1-3b illustrates 
an equivalent block-diagram representation in which x,(t) is derived by a 
linear operation, L,(s), on the system input. L,(s) is derived as follows: 

- (R-S)D-!?!![ 1 - exp (--- RDids)] (8.1-2)
R6 R6s 

Having formulated the nonlinearity quasi-linearization in terms of the block 
diagram of Fig. 8.1-3b, the resultant overall linear system can be redrawn as 
in Fig. 8.1-4a. Consideration of operation reveals that the linear system of 
Fig. 8.1-4a is a precise duplicator of the input-output dynamics of its non- 
linear predecessor over the entire class of input step functions, because the 
example nonlinear system response cannot overshoot. The nonlinearity 
mode of operation (for R > 6) is therefore first in saturation, then always 
thereafter in the linear range. The transient-input describing function is 
simply the linear region gain of the nonlinearity, wherewith the residual has 
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Figure 8.1-2 Testing nonlinearity by actual input. (Chen, Ref. 3.) 

been chosen to correct the net linearized nonlinearity output while the non- 
linearity is actually in the saturated operating region. 

Quasi-linearization of the non-limit-cycling nonlinear system has'been 
accomplished by the use of a transient-input describing function and an 
appropriate residual x,(t). In contrast to the describing functions of 
previous chapters, the transient-input describing function is itself not a 
function of the input signal; however, the residual in this case may not 
be ignored. The residual alone accounts for nonlinear operation. The effect 
of the nonlinearity is evident in both sections of the quasi-linearized system 
of Fig. 8.1-4b, which is a somewhat simplified arrangement of Fig. 8.1-4a. 
Further, since L,(s) is a function of R, the overall system clearly displays the 
input-signal dependence characteristic of all nonlinear systems. 

Success of the quasi-linearization procedure described depends upon the 
extent to which the linearized nonlinearity output describes its actual counter- 
part. To be sure, it is always possible to generate the exact nonlinearity 
output by treating the transient problem in several stages, each one of which 
is exactly described by a linear constant-coefficient differential equation. 
This follows from the hypothesized piecewise-linear description of all 
nonlinearities under consideration. However, the intent here is to generate 
rapidly an approximate nonlinearity output based upon dominant modes and 
upon the empirical procedures regularly employed in the study of linear 
systems; and from there to extrapolate the nonlinear-system transient 
response. Since the value of the proposed quasi-linearization scheme lies 
primarily in its use in design for specified transient response of nonlinear 
systems, and since the transient response is commonly specified by approxi- 
mation concepts derived from the theory of linear systems, it is desirable to 
examine these concepts. 
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Residual
Transient-

input x A t )  

describing Ifunction 

( a )  Defining the transient-input describing function 

~ ( 1 )  -- D- + - Y O )  
6 .J 

(b)  Equivalent block diagram 

Figure 8.1-3 Active yuasi-linear element. (Adapted from Chen, Ref. 3.) 
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Quasi-linearized nonlinearity r ( t )  
1


I I
I I
I Lr(s) I 
I Transient-input I 
I describing function residual I -I - I 

r( t )  I D_I Kq =sI -
I I 

(a) Replacement of the nonlinearity 

(b) Equivalent block-diagram representation 

Figure 8.1-4 Quasi-linearized nonlinear system. (Adapted from Chen, Ref. 3.) 

8.2 LINEAR-SYSTEM APPROXIMATIONS 

Two distinct problem areas in which linear approximation techniques are 
employed are the derivation of a simplified pole-zero model for the quasi- 
linearized nonlinear system and determination of the transient response of 
this model. The former problem relates to the development of a simplified 
treatment for handling residuals, x,(t), as discussed below. 

DEALING W I T H  T H E  RESIDUAL 

It is possible to generate the approximate residual required in a given situation 
by graphical means. Consider, for example, a nonlinear system of the form 
shown in Fig. 8.1-1, but in which the transfer function of the linear element 
includes additional denominator dynamics. For transient responses which 
may overshoot, but in which the peak overshoot does not exceed 6, x,(t) may 
be derived from Fig. 8.2-1. At any time t = ti, x,(t) is simply the difference 
between the output of a linear element of gain Dl6 (the transient-input 
describing function for this example) and the actual limiter output. This 
gives the residual as an explicit function of the nonlinearity input x. 
Provided that x can be obtained as a function of time, x,(t) directly follows. 
At this point engineering approximation is essential for ultimate usability of 
the technique; c(t) must be estimated. Of course, it is always possible to 
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~ o " g h l ~estimated 
[ x ( t )= r ( t ) -  c ( t )  I 

Figure 8.2-1 Example derivation of x,(t). 

compute the required portion of c(t)  exactly. With the exception of the 
simplest cases, however, such a calculation is undesirable. In the hypothet- 
ical example under consideration, c ( t )  often can be described by a dead time, 
followed by a ramplike function in the initial stages of the transient response. 
Such is the initial part of the step response of the linear elements. A crude 
estimate of the dead time serves to calibrate the time axis, which allows 
determination of x,(t), as indicated graphically in Fig. 8.2-1. T, is the 
estimated output step-response dead time, and T, + T,  is the estimated 
time at which the output c(t) reaches the value R - 6.  Thus we have 
derived a trapezoidal residual. It can be further approximated by straight- 
line segments, as in Fig. 8.2-2. Since this residual shape is of use in a variety 
of cases, we continue studying it. 
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residual ( 

Figure 8.2-2 Approximation of a trapezoidalpulse by a single 
exponential function. (Chen, Ref. 3.) 

The method of quasi-linearization employed defines the residual x,(t) as 
the step response of a linear network. Even in the simple example considered 
in Sec. 8.1 ,  the transfer function of this linear network, L,(s), is found to be 
relatively complex. It  is of advantage to find a finite nontranscendental 
linear-network transfer function with which to approximate L,(s). Such 
can be found by utilization of the Pad6 approximation (Ref. 6). The 
resulting network, denoted by E,(s), is required to have as its transfer 
function a ratio of polynomials in s .  Its use is based on the assumption of 
low-pass loop linear elements, a requirement common to all describing 
function methods. 

Returning to the trapezoidal residual of Fig. 8.2-2, the exact transfer 
function of the linear residual shaping network, L,(s), is observed to be 

The approximating network, in general, is taken as 

E,(s) can be chosen equivalent to L,(s) in the Pad6 sense by expanding each 
in ascending powers of s and choosing the coefficients a ,  and bi to force 
equality up to terms of order 2n in s. This procedure assures identical 
output moments, up to order 2n,  in the time domain. In other words, 

m 

~ * r , ( t ) t k  = q ( r ) t k  dt for 0 r k g 2n (8.2-3)dl 
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The expansion of L,(s) is 

For simplicity in the final analysis E,(s) is taken to be of the first order. 
The required expansion is 

= a, + (a ,  - a,b,)s - bl(al - a,bl)s2 - .. . (8.2-5) 

Equations (8.2-4) and (8.2-5), compared, indicate the result that 

The step response of this network, I ,( t) ,  is sketched in Fig. 8.2-2. To obtain 
the proper initial value of T,(t) it is desirable to alter Z,(s) slightly, by so 
choosing bl as to yield 

This function both supplies the correct initial value of X , ( t )  and possesses the 
same output response area (0th moment) as the ideal residual shaping net- 
work response of Eq. (8.2-1). The simplicity of this approximating network 
is evidenced upon application of it in the example system in the following 
section. Where the initial value of &(t)  is not of concern, a denominator 
time constant given by (3T,  + 2Tb)/6yields a useful second approximation 
which is exact with respect to Eq. (8.2-6) at the extremes Ta= 0 or Tb= 0. 

It is true that higher-order functions E,(s) can lead to far better approxi- 
mations to x,(t). For example, it is possible to find a second-order filter 
with step response. 

T,(t) = Ae-at cos (Pt + y )  (8.2-8) 

which can be fairly closely fitted to x,(t) of Fig. 8.2-2. Certainly, the 
approximation is better than that obtained with the residual forming filter 
of Eq. (8.2-6). The price paid for this refinement is increased computational 
difficulty. 

A P P R O X I M A T I O N S  F O R  LINEAR-SYSTEM T R A N S I E N T  RESPONSE 

The final form of the quasi-linearized nonlinear system is a rational linear 
transfer function, the parameters of which are determined by the original 
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nonlinear system and the input. All the well-known empirical rules linking 
transient response with either frequency response or pole-zero data can 
therefore be brought to bear on the design problem. Conventional measures 
of transient response, such as rise time, time to peak, peak overshoot, and 
settling time, are extremely useful in this endeavor. Their application is 
addressed to a system description in terms of dominant behavioral modes 
(e.g., a dominant complex pole pair). Since these are treated at length in 
standard servo texts, they are not repeated here (see, for example, Refs. 5 
and 7). 

An important concept in relating the time and frequency or complex 
domains relates to the regions in each which are dominantly responsible for 
response characteristics in the other. In particular, it is well known that the 
low-frequency region (corresponding to poles and zeros near the origin) bears 
heavily on the final stages of transient response; the high-frequency region 
(corresponding to poles and zeros far from the origin) bears heavily on the 
initial stages of transient response; and so on for the intermediate ranges of 
each. This concept underlies the usefulness of so-called error coeficients, 
which directly relate the response of a linear network to the input and its 
derivatives or integrals (Ref. 2). 

In brief demonstration of the type of approximation to be employed, 
consider the following quick method of determining delay time, suggested by 
Chen (Ref. 3). A linear transfer function L(s) is assumed describable in the 
form 

where the pole and zero at -1/T, and -l/Tl, respectively, are much farther 
from the origin than any poles and zeros of L,(s). L(s) may thus be 
approximated, relative to its contribution to the final portion of the transient 
(that is, t > 0 or s small), by 

In this form it is clear that the transient response delay time increases with 
far removed left-half-plane poles and decreases with far removed left-half- 
plane zeros. Since poles and zeros are not commonly found under the 
limiting circumstances described, the rule of thumb applicable is to weight 
the net delay time by a factor of +. Thus, for the example in question, 

Poles or zeros in the right half-plane may be readily accounted for by 
utilizing the proper sign in Eq. (8.2-1 1). 

The delay-time concept is by itself most valuable in systems whose initial 
transient slope is zero or near zero. This slope is quite easily related to the 
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system poles and zeros. For the general linear network given by 

the slope of the transient response is 

which, at time zero, by the initial-value theorem of Laplace transform 
analysis, is simply 

The suggested procedure for approximating the residual by a trapezoidal 
signal followed by the determination of an approximation to the transfer 
function which yields such a signal from a step input is certainly not the only 
possible line of approach. Any reasoning which leads to a suitable residual 
shaping network is admissible. The technique is suggested simply as a 
standardized procedure useful in a variety of instances. 

Armed with a quasi-linear system and the rules of thumb so valuable 
in linear-system work, the designer may proceed to the main question of 
nonlinear-system transient response. 

8.3 TRANSIENT RESPONSE O F  NON-LIMIT-CYCLING 
NONLINEAR SYSTEMS 

Utilizing the transient-input describing function and including the residual 
in the overall quasi-linear system formulation, we can develop a pole-zero 
description of the system dynamics. Some of the poles and zeros result as 
functions of the transient-input amplitude R, correctly indicating that the 
nonlinear-system response is generally input-amplitude-dependent. 

The nonlinear system of Fig. 8.1-1, for example, leads to the quasi-linear 
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Transient-
input 

describing Linear 
function elements Effect of nonlinearitv 

Figure 8.3-1 Quasi-linearized example system. Note that the effect of the nonlinearity 
appears as an external lag network ( R  L 6). 

system of Fig. 8.3-1. The derivation follows from Fig. 8.1-4b, in which 
1 - (G/D)L,(s) is replaced according to 

where E,(s) is obtained from Eq. (8.2-7) with T, = 0, T,, = (R - 6)/DK, 
and M = (R - 6)(D/6). 

A sequence of pole-zero plots for the example system at the values R = 6, 
26, 56, 96 is shown in Fig. 8.3-2. The progression of the pole-zero pattern 
with increasing R (denoted by arrows) clearly indicates the changing transient 
response character. For R 6 the system dynamics appear independent of 
R, and are so indicated. As R begins to exceed 6, a pole-zero pair (represent- 
ing nonlinear operation) moves in toward the origin along the negative real 
axis. In the limit of increasing R, the system develops a pure integration, 
and the variable zero asymptotically approaches the value -2DK/6 or 
-217. 

The initial slope of the approximated transient response for all R 2 6, as 
given by Eq. (8.2-14), is 

C ( E )
dc R 2DK
- ( t = O ) = R
dt R - 6  
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T T 

(b)  R = 26 ( c )  R = 56 I 

Figure 8.3-2 Pole-zero plots for various input amplitudes, R .  (Arrows indicate variable 
pole and zero migration directions with increasing R . )  

'This value is exact. The transient response settling time (time to within 95 
to 105 percent of final value) is approxin~ately given by three dominant 
system time constants. For R 2 56 it takes the value 

Use of this type of approximation enables sketching the transient response 
of the quasi-linear system. 

For the simple system of Fig. 8.3-1, the transient response is readily 
determined by linear theory as 

This function is plotted in Fig. 8.3-3 for R = 6, 26, 56, 96, together with the 
exact transient responses of the original nonlinear system, given by 

R - S
O l t < -

1 DK g c(t) = 
6 R - 6  DK R - 6  

t > --[I - ji exp (--a) exp (-7t ) ]  DK 
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-Exact nonlinear system response R-= 9--- Quasi-linearized system response 

.% 

1 2 3 4 5 6 7 8 9 1 0 f-
T 

Figure 8.3-3 Exact and quasi-linear example-system responses. 

At R/6 = 1,  of course, the exact and quasi-linearized responses coincide. 
With increasing R/8,  the difference between exact and approximated 
responses increases because of the limitations existing in any two-exponential 
fit to a straight line, the now dominant portion of the actual nonlinear-system 
response. In fact, in view of this difficulty, one must conclude that the 
simple linear-system approximation to the actual nonlinear-system response 
is rather good. All major aspects of the transient response are indeed 
accounted for in quasi-linearization. More important, the system poles 
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and zeros, and hence the transient response descriptors, are given in terms 
of system parameters. 

The simple system used as the vehicle with which to convey the concept of 
quasi-linearization for transient response could well have been studied more 
exhaustively, and in fact with greater ease, by the phase-plane approach 
mentioned in Chap. 1. A third-order linear part to the example system 
would, however, require recourse to phase-space techniques; a fourth-order 
linear part could not be studied at all without substantial approximations 
reducing the order of the system. The transient-input describing function 
method, on the other hand, is not limited by the order of the system. 

8.4 D E S I G N  PROCEDURE F O R  A SPECIFIED 
T R A N S I E N T  RESPONSE 

The limiting factor in general utilization of the method described above relates 
to the difficulty in determining the residual, x,(t), and hence in obtaining a 
satisfactory residual shaping network L,(s) with which to account adequately 
for nonlinear behavior. Again it is pointed out that the nonlinear-system 
response solution can always be obtained by the piecewise-linear point of 
view, giving x ( t )  analytically and exactly. From this comes the required 
x,(t); whence it follows that L,(s) can be exactly determined. Unfortunately, 
L,(s) generally results as a very complicated transcendental function. The 
use of a simplified nontranscendental residual shaping network L,(s), of no 
higher than second order, is mandatory for the eventual pencil-and-paper 
application of this method. The approximations which, in practice, must 
be made in the determination of L,(s) represent the most critical calculations 
incurred. Given that these can be executed according to reasonable engineer- 
ing judgment, the resulting quasi-linear systems provide a useful analytical 
means for describing nonlinear-system transient behavior. 

Chen (Ref. 4 )  suggests a very interesting technique which mitigates the 
above problem in design. Figure 8.4-la illustrates the class of nonlinear sys- 
tems to which this design procedure is applicable. Based on the given 
system specifications, one first seeks for a suitable hypothetical totally linear 
system and interprets this linear system in terms of a unity feedback configura- 
tion. Now, if the actual nonlinear system is to behave like the hypothetical 
linear system, the error signals in each instance must be quite similar. Hence 
the error signal derived from the linear system is used to test the nonlinearity, 
and thereby determine a suitable x,(t). This procedure is diagramed in 
Fig. 8.4-2. 

Once x,(t) is obtained, the procedure outlined in Sec. 8.2 is followed to give 
a suitable residual-forming network L,(s). Manipulating the now linear 
system block diagram as in Fig. 8.1-4 enables the residual-forming filter to be 
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Given Linear Given 
nonlinear compensation linear 
element to be designed element- -H(s) L(s)  

Transient-
input 

describing 
function 

r( t)- - c( t )  
-Ll(s)  +J 

r K,,  H(s) + U s )  

Figure 8.4-1 (a)  AIIowable control-system configuration. (b) Configuration of the guasi- 
linearized system. (Adapted from Chen, Ref. 4.) 

transferred to a series connection with the closed loop. This defines L,(s) in 
Fig. 8.4-lb. The compensation network H(s) is now chosen by purely 
linear design techniques to enable the quasi-linearized system to meet 
overall specifications. 

At this point the compensated nonlinear system is simulated on an analog 
computer, and the response obtained. If the response does not meet 
specifications, either the transient-input describing function representation 

Transient-input 
describing function 

xr(1) 
Kes * 

; ;
Original nonlinearity 

N 

Forward element of a -kc
4) suitable linear system , . c(t)  
+ - LAs) 

Figure 8.4-2 Computer setup for approximate determination of the residual. (Adapted 
from Chen, Ref. 4.) 
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can be changed slightly and the process repeated, or H(s )  can be refined. 
Regarding this procedure the reader should note that the analog computer 
has been applied in a systematic way. Intuition has not been heavily relied 
on, and a gross parameter-search procedure has been avoided. 

8.5 EXPONENTIAL- l  N P U T  DESCRIBING F U N C T I O N  (EIDF) 

In this section we present a new and quite useful technique of approximate 
solution for the transient response of nonlinear systems. The basis for this 
new approach, the exponential-input describing function, closely follows the 
main theme of this book. Thus, the ensuing presentation is brief and to the 
point. A related viewpoint can be found elsewhere (Ref. 1). 

Consider the nonlinear system of Fig. 8.5-la. If the output increases 
monotonically to its steady-state value when excited by a step input, the 

r ( t )  x ( t )  -
P 

Nonlinearity 
N 

Y ( t )  --. 
Linear 

elements 
~ ( t )  

U s )  

(a) 

Figure 8.54 (a )  Nonlinear system with nonoscillatory transient response. (b) Corresponding 
EIDF formulation. 
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signal x(t) will correspondingly decrease in a monotonic way. Thus, we are 
led to consider a modelinput which is an exponential. The EIDF representa- 
tion of the nonlinearity is arrived at by minimizing the integral-squared error 
in a linear approximation to the actual nonlinearity output; see Fig. 8.5-lb. 
The representation error, e ,  is 

where NE is a fixed linear gain. The corresponding squared error, integrated 
over all time, is 

Minimizing this expression by differentiating with respect to NE and setting 
the result to zero yields the EIDF, 

NE = for x(t) = Ee-tlr (8.5-3)r m  

Calculation of the EIDF proceeds easily. In the case of the sharp 
saturation (limiter) nonlinearity, for example, we get ( E  > 6) 

Noting that 

we obtain 

EIDFs for other common nonlinearities are presented in Fig. 8.5-2. Note 
that in the case of all static nonlinearities, the EIDF is independent of 7. 

This fact greatly facilitates its use, as we see in the following examples. 
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(a) Relay with dead zone 

( b )  Sharp saturation 

( c )  Deadband gain 

( d )  Gain-changing element 

2 M
N -- ( I  - cos mE)

- m~~ 

U )Harmonic nonlinearity 

Figure 8.5-2 Exponential-input describing functions for some common nonlinearities. 
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Example 8.5-1 Solve for the transient response of the system illustrated in Fig. 8.1-1 by 
the exponential-input describing function method. 

The first step is to replace the limiter by its exponential-input describing function, 

Next, for the resulting linearized system, we write 

where E, the peak exponential-input model amplitude, has been set equal to R. Inverse 
transforming to obtain c( t )yields 

This solution, simpler than that of Eq. (8.3-4), is almost as good an approximation to 
the exact system response. 

Example 8.5-2 Use the exponential-input describing function to compute the approximate 
transient response of the system illustrated in Fig. 4.1-2 when subject to the initial conditions 
c(t = 0 )  = c(0)and i ( t  = 0 )  = 0. 

The exponential-input describing function for the ideal relay can be obtained by setting 
6 to zero in the corresponding expression for the relay with dead zone, Fig. 8.5-2. The 
result is 

2 0  2 0
f , r E = - = -

IEI ~ ( 0 )  

where we have identified E, the peak value of the exponential-input model, as being equal 
to -c(O). Replacing the ideal relay nonlinearity with the exponential-input describing 
function and treating the resulting linearized system by familiar transform techniques yields 

Dividing the numerator and denominator of the right-hand side of this equation by be and 
employing the normalized variables 

DK 
p = and v =  -

b 

results in 
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- Exact solution --- Approximate solution 

Figure 8.5-3 Solution of Example 8.5-2. 

For the specific case in which c(0) = V this becomes 

p ~ + ~ + 2 6  
r -I 

which, upon inversion in mind the fact that 2'-I = bc(bt)I ,yields 

1/Zj
= Ve-r12(cos -7 + -iisin -7 )~(7) .r 

where T = bt. This result is plotted in Fig. 8.5-3, along with the exact system response. 
The approximate transient response curve is seen to be quite good, considering the 

degree of ease with which it was obtained. The nature of the response as well as its 
approximate settling time are reasonably well determined. It must be kept in mind that 
the oscillatory C(T) is the actual nonlinearity input, whereas an exponential was originally 
assumed for the purpose of quasi-linearization! 

Certainly, the EIDF is an extremely simple device to use. For this reason 
it has significant use as a nonlinear-system design tool in the area of transient 
response, where only little of design value can be said by other means. On 
the other hand, it can be expected only to provide gross transient response 
characteristics. 



PROBLEMS 459 

From the way in which it has been formulated, it can be seen that the 
EIDF quasi-linearized system will always have the dynamics associated with a 
closed-loop system composed of the original linear elements and an input- 
sensitive gain factor. Thus, certain transient effects can not be observed. 
This was seen in Example 8.5-2, where the exact solution had a time-variable 
oscillation frequency. The techniques of Chap. 4 are required to ascertain 
that level of detail in the transient response. But, if a system designer 
wanted quick insight into the behavior of this system, the EIDF transient 
solution coupled with the D F  steady-state limit cycle solution [zero (small) 
amplitude at infinite (high) frequency] surely do provide the required informa- 
tion. System compensation could then be designed on an analytic basis, 
to be checked by subsequent computer simulation. 
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PROBLEMS 

8-1. Show that for the nonlinear system of Fig. 8-1 the quasi-linearized transient response 
is 

c( t )  = ( R  - 6)[1 - exp --( RD?6t)] 

and compare this with the exact transient response. 

Figure 8-1 Nonlinear relay system. 



NONOSCILLATORY TRANSIENTS IN N O N L I N E A R  SYSTEMS 

Repeat Prob. 8-1 but with the transfer function K/s(Ts + 1) rather than K/s. Hint: 
[2T(R -@I

Determine by expanding an exponential, that TA2w 
DK 

The input-output specification for the nonlinear system of Fig. 8-2 is given in the form 
of a desired second-order response, with 5 = 0.7 and w, = 1. Design a compensa- 
tion network H(s) to achieve this response. [Hint:Approximate x ( t )by straight-line 
segments.] 

Figure 8-2 Example system for transient response compensation. 

(a )Show that the EIDF technique is not restricted to systems with unity gain feedback 
links. What configuration restrictions do apply? 
(b) Discuss the "filter hypothesis" as it relates to accuracy of the EIDF method. 
(c) Consider the use of a more accurate EIDF model input given by ~e-"-~d'''where 
Tdis the delay time of the loop linear elements. In what way does T,affect calculation 
of the EIDF? How would you employ this formulation? 
(d) Investigate the utility of a more complex model input than that presented in the 
text, namely, ~ e - " ~cos ( o r  + a). Does this lead to a tractable EIDF calculation? 
(e)  What avenues of approach can you suggest for EIDF method accuracy enhance- 
ment ? 
Solve Probs. 8-1 to 8-3 using the EIDF method. What can be said about system 
output stand-off errors in the case of nonlinearities with dead zone? 
Compute the EIDF for the dynamic nonlinearity given by 

How would you use this result in solving for the transient response of a system with 
linear elemehts L(s) = K/[s(s+ I)]? 




