
9 OSCILLATIONS IN 
NONLINEAR SAMPLED-DATA 
SYSTEMS 

9.0 INTRODUCTION 

All the material of the preceding chapters has been concerned with systems 
which process signals continuously around the loop. This chapter takes 
under consideration the describing function analysis of nonlinear systems 
which at some point process discrete samples of signals. It should not come 
as a surprise that the analysis of nonlinear sampled-data systems is more 
complicated, or at least more laborious, than the corresponding analysis of 
nonlinear continuous-data systems. The treatment in this chapter considers 
just bias and single-sinusoid signals present at the input to the nonlinear part 
of the system. Even in the simplest case of a single sinusoid, the presence of 
another periodic process in the system-the sampling operation-gives rise 
to complications of the same kind as are encountered in the study of continu- 
ous systems with two sinusoidal components at the nonlinearity input. These 
complications are significant when the frequencies of the two periodic 
processes are rationally related, and this is the case of first importance in the 
study of nonlinear sampled-data systems. 
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Sampled-data systems have come into practical importance for a variety 
of reasons. The earliest of these had primarily to do with economy in the 
design and use of equipment. Many problems in impedance matching or 
power-level matching can be avoided if critical components are isolated- 
disconnected-most of the time, and the connection made only briefly a t  
periodic intervals to read out a sample of the signal. The possibility of time- 
sharing one component among several systems also gives rise to a sampled 
form of signal processing. A major increase in interest in sampled-data 
systems was caused by the development of radar systems during the 1940s. 
Most radars provide information only in the form of periodic samples either 
because of a periodic scanning process or because of pulsed transmission of 
the microwave energy. A more recent surge of interest has been due to the 
increasing utilization of digital computers as controllers in feedback systems. 
In some areas of application, especially aerospace guidance and control, the 
use of discrete-data processors is often a practical necessity. Thus many 
system engineers find themselves concerned almost exclusively with the 
design of sampled-data systems. And as with continuous systems, these 
systems may be designed with, or otherwise may suffer from, a number of 
important nonlinear effects. 

T H E  EFFECTS OF SAMPLING 

In this chapter, as in most of the preceding material, attention is centered on 
systems which can be reduced to single-loop configurations having a single 
nonlinear part separated from the linear part. The linear part in this case 
may include any number of continuous linear elements and discrete, or 
pulsed, linear elements. The ordering of these elements around the loop is 
of some consequence to the application of describing function theory, 
because in this case higher-frequency, and possibly lower-frequency, com- 
ponents are generated, not only by the nonlinear part, but by the sampling 
operations as well. Consider the system configuration of Fig. 9.0-la. In 
the study of steady-state oscillations in this system, the nonlinearity input, 
being the output of the continuous linear filter, may reasonably be taken as a 
sinusoid for the purpose of quasi-linearization. The output of the non-
linearity, y(t), then contains harmonic components at the fundamental and 
higher harmonic frequencies. On a two-sided frequency scale, the harmonic 
components of y(t) would in general have the frequencies * k w ,  k = 0, 
1, 2, . . . , where w is the frequency of the input sinusoid. The sampling 
operation modulates y(t) with the frequencies h l w , ,  I = 0, 1, 2, . . . ,where 
o,is the frequency of closure of the sampling switch.l Thus y*(t) contains 

The reader who needs a basic treatment of the description of the sampling operation, 
the transfer of sampled signals through linear systems, and z-transform theory is directed 
to any one of a number of texts on the subject. Among them are Jury (Ref. 7), Kuo (Ref. 
15), Raggazzini and Franklin (Ref. 22), and Tou (Ref. 27). 
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Figure 9.0-1 Nonlinear sampled-data system confgurations. N = static nonlinear elemenr; 
H = data hold; D = discrete linear element; L = continuous linear element. Asterisks 
denote sampled signals. 

harmonic components with frequencies fkw  f Zw,. These frequencies, 
which appear in the loop, determine to a large extent the possibility of 
successful application of describing function theory. 

1. If the frequency ratio w/w, is irrational, y* ( t )  is aperiodic. It  contains 
a harmonic component with frequency o; in fact, that component is just 
1/T, times the fundamental component of the nonlinearity output. This 
may be seen from the familiar expression for the transform of y* ( t ) :  

If w, is not rationally related to o,the only term in this sum with frequency 
w is the primary term for I = 0. Thus, if describing function theory can be 
applied at all in the case of irrational frequencies, the describing function 
relating x(t )  to y* ( t )  is just 1/T, times the ordinary single-sinusoid-input 
describing function for the nonlinearity which relates x(t )  to y(t) .  The 
question of applicability is raised because y* ( t )  in this case may very well 
contain harmonic components with frequencies lower than w. These 
components cannot be discarded on the basis of the filter hypothesis. The 
low-frequency components in y* ( t )  are due to higher harmonics of y ( t )  
which lie close to lo,, and thus are modulated to frequencies near zero. 
Describing function theory would then seem to be applicable only if w is 
so small that the effect of the sampling on the operation of the system is 
trivial. 

2. If the frequency ratio w/w, is rational, o/ws = m/n, y* ( t )  is periodic 
with a frequency which is an integral multiple of wlm. Again y* ( t )  may 
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contain harmonic components with lower frequencies than w ,  and essentially 
the same comments about applicability of describing function theory made in 
regard to irrational frequencies are pertinent in this case. 

3. If the frequency ratio w / w ,  is a whole fraction, w / o ,  = Iln, y*( t )  is 
periodic with frequency o .  It  contains no harmonic component with 
frequency lower than o ,  except possibly for a dc component, if o < 40,. 
With the possible effects of a dc component taken into consideration, these 
are the right conditions for applicability of describing function theory, and 
the remainder of the chapter is restricted to this case. Fortunately, this 
includes a most important class of problems since the limit cycles which are 
most commonly observed in sampled nonlinear systems have periods which 
are whole multiples of the sampling period. It  is important to observe that 
the component of frequency w in y*( t )  is not just l /Tstimes the corresponding 
component of y( t ) .  Thus it would be quite incorrect to employ a describing 
function which relates x( t )  to y ( t )  and ignores the higher harmonics of a 
signal which is being sampled. It is essential that the describing function 
characterize directly the relation between x( t )  and y*( t ) .  

As another illustration, consider the system configuration of Fig. 9.0-lb. 
In this case the higher harmonics in y ( t )  are attenuated by the continuous 
linear filter before being sampled. Thus the modulating effect of the sampler 
on these harmonics may be of little importance. The greater question in this 
case is whether the input to the nonlinearity can be assumed a sinusoid. 
The hold does not provide very complete filtering of the high-frequency 
content of the sampled signal. Thus, unless there were additional filtering 
in the position of the hold, it might be necessary to characterize the transfer 
from z ( t )  to y ( t )  by a describing function-a task which promises to be 
laborious. 

The following sections deal with the determination of and stability of 
limit cycle modes in sampled nonlinear systems, where the limit cycles tested 
have periods which are whole multiples of the sampling period. These are 
not the only limit cycles which may be possible in such systems but experience 
with both real and simulated systems has shown these to be by far the most 
commonly occurring modes. This does not exhaust the usefulness of 
describing function theory in its application to sampled nonlinear systems. 
But other applications, such as the study of forced sinusoidal response, must 
be considered carefully in each individual case because of the possibility of 
lower-frequency components, as discussed above under irrationally related 
frequencies, and the possible existence of limit cycle modes in addition to 
the forced response. A very important special-case system which can be 
dealt with by a simple extension of previous techniques is treated in the 
following section. Then, in the next, we turn to the study of limit cycles in 
more general systems. 
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9.1 LIMIT CYCLES IN SAMPLED TWO-LEVEL 
RELAY SYSTEMS 

The material presented in Sec. 9.2 is readily applicable to the study of 
limit cycles in two-level relay systems, but these systems are of such impor- 
tance that it seems worth exploiting the simpler approach which is possible in 
this case. 

The configuration of the system is shown in Fig. 9.1-1. The two-level 
relay is shown as having possible hysteresis. A zero-order hold is considered 
to follow the sampling switch. A great many systems do employ a zero- 
order hold or simple clamp which clamps a sampled signal to  a constant over 
the following sampling period. This analysis is not, however, limited to such 
systems. If the actual system does not include a hold, or uses a higher- 
ordered hold, the transfer function of that hold is included in the linear part, 
as shown in Fig. 9.1-1, along with the reciprocal of the zero-order-hold 
transfer function. The linear part may include any number of continuous 
and discrete linear elements. 

T H E  DESCRIBING F U N C T I O N  

One has free choice in deciding how much of the system to characterize with a 
describing function, so long as the nonlinear part is included. The analysis 
of this system is most like the analysis of continuous systems considered 
heretofore, if one chooses to represent the effect of the nonlinearity, the 
sampling switch, and the zero-order hold by a describing function. To this 
end, x ( t )  is taken to be a sinusoid, unbiased to begin with, and the funda- 
mental harmonic component of z( t )  is calculated. The frequencies we shall 
consider, according to the discussion of the preceding section, are whole 
fractions of the sampling frequency o,. Moreover, we shall center attention 
on the even fractions, 9 ,  t ,Q, . . . , since these are the limit cycle modes one 
might expect to see in the very common case in which the linear part of the 
system includes a pole at the origin, an integration. In that case z(t)  must 
be an unbiased function in any steady-state limit cycle with no input to the 
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Figure 9.1-1 Two-level relay system configurarion. 
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system. The drive signal into the linear part will then consist of a periodic 
cycle which includes an equal number of sampling periods of plus and minus 
drive. The only arrangement of these periods of plus and minus drive which 
is consistent with the sinusoid assumed as the input to the nonlinearity is 
n positive drive periods followed by n negative drive periods in the case of a 
cycle with period 2nTs, T ,  being the sampling period. Such a cycle will be 
termed an n ,  n  mode. 

The input and output waveforms for the 2 ,  2 mode are shown in Fig. 
9.1-2. x ( t ) is a sinusoid with period 4Ts ,  and z ( t ) is a square wave with that 
period. The output of the hold, z ( t ) ,  is shown lagging the output of the 
nonlinearity, y ( t ) ,  because y ( t )  is not in phase with the sampling points. 
The lag between the zero crossing of y ( t )  and the next sampling point is not 
known a priori; evidently it can take any value between 0 and T,in time or 0 
and n-/n in phase angle. The amplitude of the fundamental harmonic of 
z ( t )  is ( 4 / n ) D ,  and the phase lag of that component relative to x ( t )  is 
sin-' ( 6 / A )+ y ,  where p is the sampling lag. The describing function for 
the chain of elements-nonlinearity, sampling switch, and hold-is then 

This expression holds for an n ,  n  mode of any order. 

T H E  LINEAR PART 

The remainder of the system, the linear part as shown in Fig. 9.1-1, is now 
characterized by its steady-state sinusoidal response at the frequency (1 /2n)o , .  

Ss i n  

L T , ~  
Sampling points 

Figure 9.1-2 Signal wai-eforms for the 2 ,  2 mode. 
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If this is a continuous linear operator, the only requirement for applicability 
of describing function theory is that it attenuate the higher harmonics of 
z ( t )  sufficiently to return essentially the fundamental sinusoid to x(t).  If 
this includes samplers and discrete linear elements, a more restrictive condi- 
tion is placed on them. Consider the linear elements in Fig. 9.1-3. In this 
example, L, and L,  represent continuous linear filters, whereas D represents 
a discrete linear filter. It  may be mechanized as a pulsed analog filter, or 
perhaps as a digital computer solving a linear difference equation. L, andlor 
L,  may include data holds. We wish to find the sinusoidal component of 
frequency w in the steady-state output of this chain when the input is 
periodic with that frequency. 

C(jw) = L,( j o )  V*(jw) 

= ~ , ( j w ) D ( j w ) W * ( j o )  (9.1-2) 

1
and W*(jw>= 2 Ll[j(w + Iw,)lZ[ j(w + Zw,)] 

From this expression one can see that if z ( t )were just a sinusoid of frequency 
w < +w,, none of the complementary components of w*(t)would have the 
frequency w.  The only component of c( t )which would have the frequency 
w is that due to the I = 0 term in the sum of Eq. (9.1-3). Thus the sinusoidal 
response function representing the fundamental transfer through the chain 
of elements in Fig. 9.1-3 would be just (l/T,)L,(jw)D(jw)L,(jw). 

This result is complicated, however, by the fact that, in the system under 
study, z ( t ) is a periodic function which includes harmonics in addition to the 
fundamental component. With o an  even fraction of w,,  some of the odd 
harmonics of z ( t )  are modulated to additional components of w*(t) at the 
frequency w. The harmonics which contribute to the fundamental com- 
ponent after sampling are those with frequencies equal to Iw, Lt w ,  for all 
integers I .  The effect of any significant contributors could be included by 
calculating the harmonics of z ( t ) ,  passing them through L,(jkw) (k  is the 
order of the harmonic), and adding the term in Eq. (9.1-3). However, for 

Figure 9.1-3 An example linear part. 
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simple application of the theory of this section, we must insist that the 
harmonic content of z(t) be sufficiently attenuated before it reaches the first 
sampler in the linear part. An alternative procedure to treat this problem 
is discussed in the following section. 

DETERMINATION OF MODES 

Having a describing function N(A,v) to characterize the nonlinear part, 
sampler, and hold, and a steady-state sinusoidal response function L(jw) to 
characterize the remaining linear part, the condition for the possible existence 
of a limit cycle mode is, as always, 

The gain-phase plot is a convenient means of displaying the solutions to this 
equation. Although only the frequencies (1/2n)ws are of interest, it is often 
useful-especially for the later design of compensation-to plot the complete 
L(jw) function. A typical curve is shown in Fig. 9.1-4. Solutions of Eq. 
(9.1-4) are represented by intersections of this curve of L(jw) with 
- / N ( A ) .  N(A,y), in this case, is defined only for the discrete set of 
frequencies (1/2n)ws, and it depends both on A and n, the order of the mode. 
It  is convenient to separate that part of N which depends only on A from 
that which depends on n for simplicity in plotting the function. Thus define 

which is the describing function given in Eq. (9.1-l), except for the sampling 
lag q. This may take any value in the range (0, ~rln),  and since this range 
depends on n-and thus w-the bands of possible sampling lags can con- 
veniently be shown as lines originating at the point of L(jw) for each 
frequency and extending a distance corresponding to nln. With the sampling 
lag accounted for separately in this manner, the describing function which is 
plotted, -l/N1(A), is nothing more than the describing function for the 
two-level relay with hysteresis as it appears in continuous systems. 

The completed plot (Fig. 9.1-4) indicates all possible limit cycle modes. 
For the typical case shown, the only intersections of L(jw) plus the sampling 
lag with -l/N1(A) occur at the frequencies &w, and iw,. Thus only the 3, 3 
and 4 , 4  modes are possible in this case. The higher-frequency modes are not 
possible because the nonlinearity and linear part have too much phase lag 
even if the sampling action contributes none, and the lower-frequency modes 
are not possible because even with the maximum possible sampling delay, 
the sinusoidal signal does not accumulate 360" of phase lag around the 
loop. The intersections indicating the possible modes are encircled in the 
figure. The frequency of each mode is indicated on the scale of L(jw) at that 
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-180" 

Phase 

Figure 9.1-4 Gain-phase plot for sampled t wo-level relay system. 

point; the amplitude of each mode a t  the input to the nonlinearity is indicated 
on the scale of - I  /N'(A)  at that point; and the phase lag due to the sampling 
delay in each mode is indicated by the phase difference between L( jo)  
and -l /N'(A)  at those points. 

Notice that for frequencies much smaller than the sampling frequency, the 
possible limit cycle frequencies become closely spaced and the maximum 
sampling lag is small. In this low-frequency region the sampling has little 
effect on the behavior of the system. 

When more than one limit cycle mode is possible, the limit cycle which will 
be observed depends on the prior history of the system variables. If the 
modes are stable (this matter is discussed in a later section), there is some 
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region of initial conditions from which the system will settle into each mode. 
These regions are often much smaller for some modes than for others, and 
so some modes are more likely to occur than others. In any case, a system 
must be designed so that all possible modes are acceptable. If one or more 
indicated modes are not acceptable, usually because the amplitude a t  some 
point in the system is too large, these modes must be eliminated by 
compensation. 

DESIGN O F  COMPENSATION 

It  is at this point in the design of systems that one of the great advantages of 
the use of describing functions becomes apparent. In most instances the 
compensation required to improve those performance characteristics which 
can be evaluated by the use of describing functions is quite evident. So it is 
in this instance. If the 4,4 mode as indicated on Fig. 9.1-4 has an unaccept- 
ably large amplitude, it can be eliminated by providing at least (45 - 91~)deg 
of phase lead at the frequency +w, somewhere around the loop. After such 
compensation, the 3 , 3  mode will still be possible, and in all likelihood one or 
both of the higher-frequency modes as well. If the 3, 3 mode is to be 
eliminated also, the compensation is designed to provide at least (45 - 91,) 
deg of lead at i w ,  and at least (60 - q,) deg of lead at &w,. The amplitudes 
of the remaining possible modes a t  various stations around the loop will differ 
with the location of the compensation, and this can be evaluated using just 
steady-state frequency response characteristics. 

This linear compensation can be implemented with either a continuous or 
discrete compensator. Alternatively, the design problem might be to find 
that value of hysteresis, 6, in the switching characteristic which will allow 
only modes up to order n, for some specified value of n. In this case, too, the 
answer to the problem is fairly evident, using describing function theory. 
For the case pictured in Fig. 9.1-4, the 4,4 mode can be eliminated by 
reducing 6, but other modes would remain possible since, in the limit as 
6 -.0, the curve of -I / N 1 ( A )extends along the entire phase = -180" line. 

BIAS OFFSET 

In the foregoing discussion, the limit cycie modes have been considered 
unbiased sinusoids. The fact that some systems may sustain a dc offset 
around part of the loop is anothcr important difference between sampled and 
continuous systems. If the linear part of the system does not include an 
integrator, a steady-state bias signal could exist only if such a signal could 
regenerate itself when propagated around the loop. But this will not be 
possible with this nonlinearity and ordinary linear parts because a positive 
bias in x ( t )  (refer to Fig. 9.1-1) will cause a positive bias, if any, in z( t ) ,and 
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this will be transferred through the linear part to a positive bias in c(t). But 
this is inconsistent with the assumed positive bias in x(t). Thus, if the 
system is stable to the low-frequency signal in the presence of the limit cycle, 
the bias will decay to zero at all stations around the loop. 

If the linear part includes an integrator, the input to it, z(t) in Fig. 9.1-1, 
must be unbiased in any steady-state mode with no input to the system. This 
does not, however, preclude a bias in c(t) and x(t). Any bias in these 
signals is possible so long as the output of the nonlinearity remains unbiased. 
The range of possible bias offsets can be seen in Fig. 9.1-5, where the signal 
waveforms through the nonlinearity and hold have been drawn for the 3 , 3  
mode of the system of Fig. 9.1-4, and the proper sampling lag, y,, taken from 
that figure, is shown. The points in time at which the samples are taken are 
shown as dots on the x(t) waveform. It  is clear that the x(t) curve could be 
shifted up or down by a small bias without changing the output z(t) at all. 
The range of this possible offset, to which the system is insensitive, is 
determined by noting how far x(t) can be shifted without changing y(t) (see 
Fig. 9.1-1) at the sampling points. For the case shown in Fig. 9.1-5, it is the 
sampling points a t  which z(t) switches which are critical, and the range of 
possible bias offset is indicated. In other cases, it may be one of the other 
sampled points which first causes a change in z(t) .  The bias range shown in 
the figure is that of x(t), the input to the nonlinearity. This range can be 
reflected to other signals in the linear part of the system, using the dc gain of 
the system between the two points. The signals between z(t) and the 
integrator in the linear part remain unbiased. 

t t t t t t t t 
Sampling points 

Figure 9.1-5 Nonlinearity input and ourput showing range of possible bias offset. 
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Compensation designed to improve limit cycle moding will affect the range 
of bias offset as well, sometimes adversely. In some systems, the possibility 
of a dc error which the system does not respond to is of greater consequence 
than the possible limit cycle modes. If the bias range is unacceptably large, 
compensation must be designed to reduce it. This is done by introducing (if 
possible) a larger dc gain relative to the limit cycle gain between the error 
point and the input to the nonlinearity. This can be achieved by a conven- 
tional lag-lead compensator which has high gain at low frequencies and unity 
gain with negligible phase lag at the limit cycle frequencies. An integrator 
with a bypass can eliminate the dc offset at the error point altogether. 

9.2 L I M I T  CYCLES IN O T H E R  SAMPLED 
N O N L I N E A R  SYSTEMS 

From the experience of the preceding section we observe some of the 
important characteristics of a describing function analysis of sampled 
nonlinear systems. The describing function was found to depend not only 
on  the amplitude of the sinusoid assumed at the input to the nonlinearity, but 
also on the ratio of the sinusoidal frequency to the sampling frequency and the 
phase of the sampling points relative to the input sinusoid. The frequency- 
ratio and phase-angle dependencies were also found in the two-sinusoid-input 
describing function for continuous systems in the case of rationally related 
frequencies. The present situation is somewhat analogous to that: again, 
there are two periodic processes operative in the system, and their periods are 
rationally related. Instead of two periodic signals, however, the periodic 
processes in this case are one sinusoidal signal and the periodic sampling 
process. 

Analysis of limit cycles in sampled two-level relay systems was found to be 
not much more difficult than the corresponding analysis of continuous two- 
level relay systems. This is due to the simple way in which the frequency- 
ratio and phase-angle dependencies enter that problem. The nonlinearity 
output in that case is known to be a square wave if it is nontrivial. Thus the 
fundamental amplitude of the output is independent of the frequency ratio 
or phase angle. The sampling phase simply adds directly to the phase angle 
of the describing function, and the frequency ratio plays no role other than 
to prescribe the bound on possible sampling lag. 

For other nonlinearities, the basic concepts remain unchanged, but the 
details are more complicated because the whole waveform of the non-
linearity output changes with sampling phase angle. This complicates 
considerably the calculation of the describing function for a sampled non- 
linearity for all input amplitudes, frequency ratios, and phase angles relative 
to the sampling points. However, once the computation is done and the 
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results graphed, the use of the describing function to analyze system limit 
cycles and to design compensation to meet specifications on possible limit 
cycle modes is just as easy and meaningful as it is for continuous systems. 

TWO POINTS OF VIEW 

The general system configuration under consideration is shown in Fig. 9.2-1. 
The configuration is characterized by a single loop with a single separable 
nonlinear part. The linear parts L,, L,, and L, provide continuous linear 
filtering, and may include samplers and discrete linear elements as well. 
The major requirement for applicability of describing function theory is that 
the signal which is assumed sinusoidal, x(t) in this case, must indeed approxi- 
mate that waveform. This means, in the case of sampled systems, that not 
only the harmonic content of the nonlinearity output, but also the harmonic 
content due to all samplers in the system, must be adequately attenuated in 
the linear filter which returns the signal to the nonlinearity input. 

In addition to any samplers which may be included in the linear parts, one 
is shown specifically following the nonlinearity. It  is a sampler such as this, 
operating directly a t  the input or output of a nonlinearity, which gives rise 
to the greatest difference between continuous- and sampled-nonlinear-system 
operation. For the system as shown, it would be a very poor approximation 
to use an ordinary describing function to characterize the transfer from x( t )  
to y(t) ,  and characterize the rest of the system by its steady-state sinusoidal 
response at the fundamental frequency. The major error in that approach 
would be the neglect of the higher harmonics of y( t )  in determining the 
fundamental component of y*(t).  The sampling operation modulates some 
of the higher harmonics of y(t)  down to fundamental-frequency components 
of y*(t).  Thus any reasonable describing function approach must model 
directly the transfer from x(t)to y*(t).  A similar situation would hold if the 
sampler preceded the nonlinearity, as shown in Fig. 9.2-2a. In that case, the 
hold does not filter the harmonics because of the sampling operation suffi- 
ciently to justify the assumption of a sinusoid at y( t ) ,  the input to the non- 
linearity. Thus the describing function must be defined to characterize 

Figure 9.2-1 The general sampled-nonlinear-system configuration considered in this 
section. L,, L,, L, may include additional samplers and both continuous and discrete 
linear elements. 
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Y ( f )  ~ ( t )= Hold 

Y * ( t q - pq-qY ( t )  ,
Hold 

Figure 9.2-2 Equivalent arrangements for static, single- 
valued nonlinearities. 

directly the transfer from x(t) to z(t). If the nonlinearity is static and single- 
valued so that the output depends only on the current value of the input, 
the three ordering of sampler, hold, and nonlinearity shown in Fig. 9.2-2 
are equivalent. This implies that in arrangement b the nonlinear.operation is 
carried out on the impulses at the input to yield impulses at the output whose 
areas or strengths are related to those at the input by the given nonlinear 
function. If the nonlinearity were dynamic or multiple-valued, the order 
of the arrangement would matter, and the describing function would have to 
be calculated for the given arrangement. For the present we shall refer to 
arrangement c, and include the hold in the linear part of the system. This is 
the arrangement shown in Fig. 9.2-1. 

Two different approaches to the describing function analysis of systems 
such as that of Fig. 9.2-1 have been set forth. One is the same approach 
taken in the preceding section as applied to two-level relay systems. Chow 
(Ref. 2) documented this point of view, which was being developed by 
Russell (Ref. 23) at the same time. They defined a describing function for a 
nonlinearity, sampler, and zero-order hold in the classical way-the 
amplitude and phase relation between an assumed sinusoid at the input and 
the fundamental component of the periodic output. The use of the hold in 
the chain of elements for which the describing function was defined is not 
essential to this approach. Referring again to Fig. 9.2-1, one can better 
calculate a describing function to characterize just the transfer from x(t) to 
y*(t)  using the same point of view-representation of the fundamental 
harmonic response of the nonlinearity and sampler. This has the advantage 
of greater generality since it is applicable to the sampled nonlinearity 
regardless of what kind of hold, if any, is used in the system. If a hold does 
indeed follow the sampler, it is then included in the linear part of the system. 
As a lesser advantage, it may be noted that the calculation of the fundamental 
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component of y*(t) is particularly simple since that function is just a sequence 
of impulses. The describing function which relates an assumed sinusoid at 
the input to a nonlinearity to the fundamental component of the sampled 
output of the nonlinearity will here be termed a sampled describingfunction. 

N(A,y) = sampled describing function 

-- phasor representation of fundamental component of y*(t) 
phasor representation of x(t) 

With the transfer from x(t) to the fundamental component of y*(t) in Fig. 
9.2-1 given by the sampled describing function, the linear part of the system 
is characterized by its steady-state sinusoidal response a t  the fundamental 
frequency. 

Another approach to this problem was documented by Kuo (Refs. 14, 
15). With the input to the nonlinearity, x(t), assumed to be a sinusoid of a 
frequency which is a whole fraction of the sampling frequency, the sampled 
output of the nonlinearity, y*(t), is a periodic sequence of impulses with the 
same period as the input. The z transform of the output sequence can be 
written explicitly, and the ratio of that z transform to the z transform of the 
input sinusoid is defined by Kuo to be the z-transform describingfunction for 
the nonlinearity and sampler. 

N*(A,p) = z-transform describing function 

z transform of y*(t) 
z transform of ~ ( t )Fundamental frequencyI 

With the relation between samples of x(t) to samples of y(t) defined by the 
z-transform describing function, the linear part of the system is characterized 
by its sampled transfer function, and the equation of loop closure which 
defines a possible limit cycle mode is evaluated at the fundamental 
frequency. 

These two points of view are basically different. The difference in results 
using the two approaches is trivial in some instances and quite significant in 
others. If one approach were superior on all counts, the other could be 
discarded a t  once. But this is not the case; so the control engineer should 
keep both techniques in his bag of analytic tools and understand when to use 
each one. The major advantage of the first approach, the sampled describing 
function, is its simplicity. The analytic manipulations involved, for example, 
in determining the range of system parameters for which a particular limit 
cycle mode is possible, are considerably simpler using the sampled describing 
function approach. This advantage in simplicity is due to the use of the 
ordinary sinusoidal response function for the linear part, rather than the 
sampled transfer function. For this same reason, the design of compensa-
tion to meet specifications on limit cycle modes is obvious when the sinusoidal 
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response function is used, but obscure when a new sampled transfer function 
must be calculated for the cascaded compensation and original linear part. 
The major advantage of the second approach, the z-transform describing 
function, is its better accuracy in some situations. Using this technique, 
the exact pulse sequence at the nonlinearity output is processed exactly 
through the linear part using z transforms. This can be done without 
approximation for any linear configuration of continuous elements, samplers, 
and discrete elements. The result is the z transform of the signal fed back to 
the nonlinearity input. This transform contains terms which define the 
fundamental frequency component of the fed-back samples, ripple terms, and 
the normal modes of the linear part of the system. This function is clearly 
not compatible with the simple sinusoid originally assumed at the nonlinearity 
input. But the process of equating the transform of the fed-back function to 
the transform of the originally assumed sinusoid when both are et~aluated at 
the fundamental frequency serves to select just the fundamental component 
of the fed-back samples and equate it to the assumed sinusoid. Thus the 
sequence of samples of the fed-back signal is being accurately determined in 
this case, and it is the fundamental harmonic component of this exact pulse 
train which is being equated to the sinusoid originally assumed at the 
nonlinearity input. 

By contrast, using the sampled describing function approach, the harmonics 
of y*( t )  are dropped immediately, and only the fundamental component is 
passed through the linear part. If the linear part contains no additional 
samplers, the fundamental component of the signal fed back to the non- 
linearity input is correctly determined by this procedure, and the only 
difference between the two techniques is the difference between the funda- 
mental component of the continuous signal fed back to the nonlinearity and 
the fundamental component of the samples of that signal. Since the 
fundamental component of the samples of a sinusoid, for w,  > 2w, is just 
1/T,times the sinusoid itself, it can be seen that the two techniques must give 
very nearly the same results if the assumption which is common to both is 
well satisfied, namely, that the signal fed back to the nonlinearity closely 
approximates a sinusoid. In that case, the sampled describing function is to 
be preferred because of its simplicity. If the linear part fails to filter the 
fed-back signal well enough, the fundamental component of the samples of 
the fed-back signal may differ from the fundamental component of the 
continuous fed-back signal, and in that case the z-transform describing 
function is likely to give the more nearly correct answer because it recognizes 
the fed-back signal only at the sampling instants, as does the nonlinearity. 
The fundamental component of the continuous fed-back signal, on the other 
hand, is influenced by the shape of the signal between the sampling points; 
and this is of no consequence to the nonlinearity. In this case of inadequate 
filtering, however, the use of describing function theory by either method is 
risky. 
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When the linear part contains additional samplers and discrete linear 
elements, the case for the z-transform describing function is stronger. As 
noted above, the samples of the fed-back signal can be determined exactly, 
no matter what the configuration of the linear part. Dropping the higher 
harmonics of y*(t) , as is done when using the sampled describing function, 
can be serious in this case because a sampler in the linear part will modulate 
some of these harmonics down to additional contributions to the fundamental 
frequency component. Thus, with additional samplers in the linear part, 
propagation of only the fundamental component of y*(t) through the 
sinusoidal response function for the linear part does not correctly determine 
the fundamental component of the fed-back signal a t  the nonlinearity input. 
The approximation will be good if the harmonics of y*(t) are well filtered 
before the signal encounters a sampler, but this is a requirement which need 
not be met for successful use of the z-transform describing function. 

A basic limitation of the z-transform describing function should also be 
noted. Using that technique, one only processes information about the 
samples of the signals circulating in the system. Sinusoidal signals are 
defined by their samples in the sense that the fundamental component of the 
sampled sinusoid is a constant times the sinusoid itself only if the sampling 
frequency is greater than twice the frequency of the sinusoid. This means 
that the very important case of limit cycle modes which have a frequency just 
3 the sampling frequency cannot be analyzed by the z-transform describing 
function method. 

Implementation of these two points of view will be clarified by an example 
analyzed by both methods. 

Example 9.2-1 The system of Fig. 9.2-3 uses an ideal two-level relay as a controller. 
It drives a digital integrator which implements the rectangular-rule integration formula 

which has the z transform 

The output of the integrator is held constant between sampling instants, and the held signal 
feeds back through a continuous linear filter, which we take to be 

This example is deliberately chosen to have poor filtering of the fed-back signal so that the 
difference between the two describing function methods will be dramatized. 

Determine theconditions under which the 2 , 2  limit cycle mode is possible in this system. 
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Fig. 9.2-3 System configuration for Example 9.2-1. 

First solufion The phase relation between the sinusoid assumed at x ( t )and the sampling 
points may vary between 0 and T, in time or 0 and n/2 radians in angle. Take the time 
origin to coincide with one of the sampling points. Then, with respect to this origin, x( t )  
is advanced in phase by an angle which may range between 0 and 90". 

y ( t ) is then a square wave with amplitude & D, and y*( t ) a periodic sequence of impulses 
with strengths +D, as shown in Fig. 9.2-4. The fundamental component of y*(t) ,  shown 
dashed in that figure, is obviously advanced in phase by 45"with respect to the time origin, 
and its amplitude can be computed directly as the amplitude of the fundamental frequency 
sine component having that phase angle. 

---1 (D sin 45" + D sin 135") 
T, 

= 42-D (9.2-5) 
Ts 


In the calculation of the fundamental component of a signal which consists of or includes 
impulse functions, impulses should not be included at both end points of the interval of 
integration. The integration can include the impulse at either end point, but not both. 
From Eqs. (9.2-4) and (9.2-5), the sampled describing function for the ideal two-level 
relay in the case of the 2, 2 mode is seen to be 

The sinusoidal response function for the linear part of this system is determined by the 
following calculation: 

W(jm)= L(jw)H(jw)V*(jw) 

= L(jw)H(jw)D*(jw)Y*(jw) (9.2-7) 

where H(jw) is the sinusoidal response function for the zero-order hold. For this linear 
part, the fundamental component of w(t)is correctly given by the fundamental component 
of y * ( f ) ,modified by the sinusoidal response function D*(jm)H(jw)L(jo),evaluated at the 
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Figure 9.2-4 Nonlinearity input and output for Example 9.2-1. 

frequency w = wJ4. If the nonlinearity and sampler were followed by a continuous linear 
element, and then a sampler and discrete linear element, this would not be true. In 
evaluating D*(z) at w = wJ4,  we note z = esTs-+ ei'1'4'0sTs= i. Also, the zero-order 
hold has the sinusoidal response function 

1 - e-joT., 
H(jw) = (9.2-8) 

i w  

Equating the fundamental component of w( t )to -x ( t )  requires 

2 4 :  KDT, 
or -- 45" - 180" - p, - tan-'- 71 -T = 1 /-180"

2 T, -

Solving for A and q,we find 



- - 
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Since p, must lie in the range (0,90°), Eq. (9,2-11) can be satisfied for all values of TIT, in 
the range 

It will later be determined that the indicated limit cycle mode is stable only if the open-loop 
system is stable. Thus one would conclude from application of sampled describing 
function theory that the 2, 2 limit cycle mode may exist if (0 < TIT, < 2/77). 

Secondsolution For application of z-transform describing function theory to this problem 
we first write the z transform of x(t). 

'-8 W,
x(t) = A cos p, sin - t + A sin p, cos - t (9.2-12)

4 4 

Use of a standard table of z transforms gives 

X*(z) = -A z 
(cos p, + z sin p,)

z2 + 1 

The sampled output of the nonlinearity is seen in Fig. 9.2-4 to have the transform 

The z-transform describing function is then 

D z + l-
A cos p, + z sin pl 

The sampled transfer function for the linear part of the system is calculated by standard 
procedures, again referring to a table of z transforms. 

where 
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Equating the fundamental component of the fed-back samples to -x ( t )  requires 

-D j + l  KT,(l - a)  
= 1 / -180"

A cos p, tj sin p, ( j- l ) ( j- a )  

Solving for A and p, yields, after some manipulation, 

with a given by Eq. (9.2-17). Again, p, must lie in the range (0,90°),but according to Eq. 
(9.2-20),it takes only negative values. Thus application of z-transform describing function 
theory leads to the conclusion that the 2 , 2  limit cycle mode cannot be sustained by this 
system-a conclusion quite different from that reached using the sampled describing 
function previously. 

Discussion Consideration of the shapes of the signals that would result in the linear part 
of this system for the given nonlinearity output readily confirms the conclusion reached by 
z-transform describing function analysis as correct. If the periodic pulse sequence y*( t )  
as shown in Fig. 9.2-4 were impressed on the linear part of this system, the steady-state 
response at c ( t )  and w( t ) is shown in Fig. 9.2-5. It is clear that at t = 0,w( t )  must be 
greater than zero, and thus x( t )  must be less than zero. But this is inconsistent with a 
positive impulse in y* ( t )  at t = 0 ;  so the mode is impossible. The failure of the sampled 
describing function method in this case is due to a rather slight difference in phase between 
the fundamental component of w( t )and the fundamental component of w*(t). The funda- 
mental component of w(t), for small enough values of 7/Ta,crosses zero to the left o f t  = 0 
and indicates that the mode is possible. But the fundamental component of w i ( t )  crosses 
zero to the right o f t  = 0 for all values of TIT,and correctly indicates that the mode is 
impossible. The fed-back signal in this case, especially for small values of 7/TS,does not 
approximate a sinusoid at all well, and one would expect possible difficulty in the use of 
describing function theory. 

As noted before, this example, using only first-order continuous linear 
filtering, was deliberately chosen to emphasize possible differences in results 
using the two describing function points of view. In cases where the signal 
returned to the nonlinearity is better filtered, and where there is no problem 
with sampling of harmonically distorted signals in the system linear part, the 
two procedures yield very similar results, both of which are in close agree- 
ment with exact results. As an indication of this, consider another example 
in which second-order continuous linear filtering exists. 

Example 9.2-2 The system of Fig. 9.2-6 uses an ideal two-level relay controller and 
first-order digital lead compensation. The remainder of the linear part consists of a zero- 
order hold and a continuous linear part 
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Y * ( I )  I 

Figure 9.2-5 Signal waveforms in Example 9.2-1. 

Determine the amount of lead (the value of a) necessary to render the 3,3 limit cyclemode 
impossible. 

Using procedures identical with those of the preceding example, we find 

= A sin r + p,) 0 < p, < 60'~ ( t )  

Using the sampled describing function approach, 

4 0
N(A,p,) = -/30° - p, 0 < p, < 60" 

3A T, ------



------------- 
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r ( t )  = 0 x( t )-
+? y(t)+y*(t2~~w~~a.L
1 -az-I 

hold 

~ ( 1 )  
L ( 5 )  i 

Figure 9.2-6 System configuration for Example 9.2-2. 

and 

The solution of 

gives 

0 . 8 6 6 ~  
p, = 43.7' + tan-' -

1 - 0 . 5 ~  

The requirement that p, lie in the interval (0,60°)dictates that the range of a for which the 
3, 3 limit cycle mode is possible is 

Values of a outside this range render the mode impossible. 
With the z-transform describing function approach we find 

D z 2 + z + 1  
N*(A,p,) = -

A ( z  + 1)[0.866cos p, + ( z  - 0.5)sin q] 
0 < p, < 60" 

and 
(0.3689 + 0.264)(z - a)

(D*HL)* = KT, 
Z(Z- l)(z - 0.368) 

The solution of 
N*(D*HL)*~ ,_ ,J~= - 1  

gives 
A = 0.836KDTs d ( 0 . 5  - a)2 + (0.866)' 

The requirement that p, lie in the interval (0,60")indicates in this instance that the range of a 
for which the 3 ,  3 limit cycle mode is possible is 

The calculated end points for this interval of a differ no more than 3 percent from those 
calculated by thesarnpled describing function technique. Also, in the two expressions for 
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the amplitude of the limit cycle, Eqs. (9.2-25) and (9.2-29), the two radicals involving a are 
identical; so the expressions are seen to differ by just 0.4 percent. 

Having discussed and illustrated these two points of view regarding 
describing function analysis of limit cycles in sampled nonlinear systems, we 
proceed to consider the calculation of these describing functions for non- 
linearities other than the two-level relay, which has already been treated. 
An important observation should be made at the outset. In the preceding 
discussion, the point of view taken was that the samples of the nonlinearity 
output, or their fundamental component, are processed around the loop, 
and the fundamental component of the signal returned to the nonlinearity 
input is equated to the sinusoid originally assumed. When the z-transform 
describing function is calculated in advance and graphed for convenient use, 
the ratio of Y* to X* is immediately evaluated a t  the fundamental frequency. 
But the evaluation of Y* at the fundamental frequency serves to select just 
the fundamental component from the y*( t )  waveform. Also, evaluation 
of X* at the fundamental frequency selects the fundamental component of 
x*(t) .  Since x( t )  is taken to be a sinusoid, the fundamental component of 
x*(t)  is just l /Ts times x ( t )for T > 2Ts. Thus, for T > 2T,, the z-transform 
describing function is exactly T, times the sampled describing function which 
relates the amplitude and phase of the fundamental component of y*( t )  to 
x(t) .  As noted before, for T = 2Ts the z-transform describing function is 
not applicable; the sampled describing function is. Since in other cases the 
two describing functions are related by a known constant, only one calcula- 
tion need be made. The easier calculation by far is that of the sampled 
describing function. The difference between the two points of view is then 
finally evidenced in the difference between the continuous and sampled 
transfer functions for the linear part of the system. 

T H E  THREE-LEVEL RELAY 

After the two-level relay, the nonlinearity of greatest importance in limit 
cycle analysis of sampled nonlinear systems is almost surely the three-level 
relay. In many instances in which a fixed drive level is desired, a zero level 
is included for the specific purpose of avoiding limit cycles in the absence of 
input. The nonlinearity under consideration is shown in Fig. 9.2-7. 
Calculation of the sampled describing function for this nonlinearity is in 
principle no different from the corresponding calculation for the two-level 
relay, but in practice is much more tedious because of the change in form of 
the output at the input level 6. This gives rise to a variety of different output 
mode shapes at every frequency, these modes depending on the amplitude 
and phase of the input. For most nonlinearities other than the two-level 
relay, the phase of the input sinusoid relative to the sampling points enters 
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Figure 9.2-7 The sampled three-level 
relay. 

the problem in a more complicated way in that it affects the shape of the 
output waveform. The labor involved in describing function calculation is 
due to the necessity of enumerating all possible mode shapes and dealing with 
each one. 

As an illustration of the calculation in the present case of the three-level 
relay, consider the possible modes of period 6Ts.  With the input assumed 
to be an unbiased sinusoid, 

x ( t )  = A sin ( o t  + p) 

With w = Qw, = n / 3 T s ,  
x ( t  + 3Ts) = - x ( t )  

so the values of y ( t )  at the first three sampling points determine y ( t )  at all 
other sampling points. The sampling lag can range between zero and one 
sampling period, or 

0 < p < 60" 

in this case. The nonlinearity input at the times of the first three samples is 
then 

x(0 )  = A sin p (9.2-33) 

x ( T J  = A sin (60" + p) (9.2-34) 

x(2TS)= A sin (120" + p) (9.2-35) 

In view of the limited range of p ,  it is clear that y ( t )  at these three sampling 
points can only be 0 or +D. This gives eight possible combinations of 
values, including the trivial zero output. But not all eight combinations are 
consistent with the sinusoidal form of the input. Notice that over the full 
range of p, x(T, )  is greater than x(0)  or x(2TS) .  Thus, if y ( T s ) is zero, y (0 )  
and y (2TJ  cannot be D. This leaves four possible modes other than the 
trivial one. The four y * ( t )  waveforms are pictured in Fig. 9.2-8. Each of 
these modes is possible for a restricted range of p which depends on the 
amplitude of the input. Take as an example the waveform b. The condition 
for y (0 )  = D is 

A sin p > 6 

or P,>*  (9.2-36) 

where we have defined 
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( d )  Figure 9.2-8 Possible modes for T = 6T,. 

The condition for y(T,) = D is 

A < p , + 6 0 ° <  180"-A (9.2-38) 

and the condition for y(2TJ = 0 is 

g, +.120" > 180" - A  

The boundaries of these ranges of p, can be plotted against A, and a region in 
the p,, A space identified in which the conditions of Eqs. (9.2-36), (9.2-38), 
and (9.2-39) are simultaneously satisfied. This region is shown in Fig. 
9.2-9 labeled (b). Also shown are the corresponding regions for the other 
waveforms of Fig. 9.2-8. 
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The describing function is now determined by calculating the fundamental 
component of each of the waveforms of Fig. 9.2-8. This is particularly easy 
to do since the harmonic analysis involves integrating functions which are 
sums of delta functions. The amplitude and phase relation between x(t) 
and the fundamental component of y*(t) is then the sampled describing 
function, which is also 1/T, times the z-transform describing function. For 
each of the modes of Fig. 9.2-8, this gives 

4 D
N = - - / 3 0 ° - p,

3 AT, (9.2-40a) 

2 D
N = - - / 3 0 °  - g,

3  AT, 

The range of 9 for which each of these modes can exist is given in terms of 
A = s i r 1  (GIA). Thus it is convenient to normalize N with 6 and keep 
6 / A  as the amplitude parameter. Limit cycle modes will be determined 
finally by plotting L versus -1IN; so the function -1/N can best be plotted 
immediately. 

Now, for every choice of A16 in the range ( I  ,co), the magnitude of -1/N in 
each mode is determined. Also, a range of phase angles for -1/N is given 
by these expressions and the indicated range of p, in Fig. 9.2-9 at the value of 
A = s i r 1  (GIA). These describing function regions can conveniently be 
graphed on a gain-phase plot. Such a graph is shown for T = 6Ts in Fig. 
9.2-10. The regions within which the different modes exist are indicated. 
The possibility of a limit cycle of period 6T, can be determined by evaluating 
the transfer function for the linear part of the system at the frequency Qw,, 
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Figure 9.2-9 Regions of existence 
for the dtfferent modes. 

multiplying it by D/dT,, and noting the resulting complex number on this 
graph. If the point falls within one of the regions corresponding to a 
particular mode, the system can sustain that limit cycle mode. The indicated 
magnitude and phase of the describing function, together with the relations 
of Eqs. (9.2-41), then yield the amplitude and phase of the mode. If one 
desires to compensate the system to eliminate any or all limit cycle modes of 
this frequency, the necessary magnitude and phase of linear compensation at 
this frequency are obvious from the graph. Notice that in several regions 
more than one limit cycle mode can exist. Which mode a system will 
display, if any, depends on its initial conditions. 

Calculation of the describing function for periods which are odd multiples 
of the sampling period is even more laborious than for even-multiple periods 
because no condition of symmetry such as Eq. (9.2-32) applies. This 
requires the value of y(t) at each sampling point in the cycle to be considered 
independently, and gives rise to more possible modes. Some of these modes, 
which exist in different regions of the 9,A plane (corresponding to Fig. 
9.2-9) map into the same describing function region (corresponding to Fig. 
9.2-10). This occurs in the case of modes which have the same waveshape 
but are shifted in phase by one or more sampling periods or are traversed in 
the opposite direction. 

In the case of even-multiple periods, all the possible y*(t) waveforms 
corresponding to unbiased sinusoidal inputs to the nonlinearity are unbiased 
functions. Both biased and unbiased waveforms are possible in the case of 
odd-multiple periods. However, only the unbiased modes are of con-
sequence if x ( t )  is assumed unbiased. If the linear part of the system includes 
an integrator (has a pole at the origin in the s plane), it is clear that y*(t) 
must be unbiased in any steady-state oscillation of the unexcited system. If 
the linear part has no pole at the origin, and also no zero, any bias in y*(t) 
would be propagated around the loop and appear at the nonlinearity input. 
Analysis of this situation would require two-input describing function theory. 
Only in the rare case of a linear part having a zero at the origin in the s 
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Figure 9.2-10 Sampled describing function for the three-level relay, 
T = 6T,. 

plane would a biased y* ( t )  waveform be consistent with an unbiased x ( t )  
for an unexcited system. Only the unbiased modes are included in the 
describing functions plotted in Appendix F. 

Systems with a pole at the origin can sustain a biased output from the 
linear part even if the input to that part is unbiased. This leads to a range of 
possible null offsets, or bias levels in the nonlinearity input, which may remain 
uncorrected in the presence of any limit cycle mode. The situation in the 
case of the three-level relay is no different from that discussed earlier in the 
case of the two-level relay. Having determined the limit cycle modes 
which may exist under the assumption of an unbiased x( t ) ,  the amplitude 
and phase angle of the sinusoid at x ( t )  are known. Direct observation of 
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this sinusoid at the sampling points indicates how far the cycle may be biased 
up and down without changing the nonlinearity output. This defines the 
range of possible null offsets in the presence of a given limit cycle mode. It  
appears rather obvious, and is proved by Chow (Ref. 2), that no new 
unbiased y*(t)  modes are introduced by the presence of a bias in x( t ) .  

The accuracy of describing function analysis applied to sampled nonlinear 
systems is of the same order as in the case of continuous systems. Many 
writers have done experimental studies to evaluate this accuracy. Among 
them are Chow (Ref. 2), Dixon (Ref. 5),  and Kuo (Refs. 14, 15), all of whom 
report that for sampled three-level relay systems with second-order linear 
parts, the error in describing function prediction of the amplitude of limit 
cycle modes ranges generally from 1 to 10 percent. The critical value of 
system gain, or nonlinearity dead zone, 6, for the existence of a particular 
mode is even better predicted: the error is usually less than 5 percent. There 
is, in the case of sampled systems, no error in the determination of limit cycle 
frequency. 

In calculating describing functions for the sampled three-level relay, the 
labor involved increases rapidly with the period of the limit cycle modes 
considered. At the same time, the importance of the sampling operation 
decreases as the period of the cycle increases. Thus, for long-period modes, 
an approximation to the describing function is both feasible and highly 
desirable. From the form of the describing functions plotted in Appendix F,  
one can anticipate the bounds on -1/N, which were derived by Chow (Ref. 
2) and Russell (Ref. 23). If the period of the oscillation is T = nT,, the 
negative reciprocal describing function exhibits phase angles within a band 
2r/n wide for n even, or r / n  wide for n odd, these bands being centered 
around the angle - r .  The minimum magnitude of the function 
-(D/GT,)(l/N) is 0.5 for n = 2, is 1.0 for some small values of n, and 
approaches 7712 = 1.57 for large n. The maximum magnitude is always 
infinite. Thus, except for n = 2, for which the exact describing function is 
given in Appendix F ,  one can lay out a rectangle on the gain-phase plot 
ranging from 1.0 to infinity in amplitude and from -r - r / n  to -r + r /n  
in phase, and be assured that -(D/GT,)(l IN) corresponding to all modes of 
period nT, will lie within that rectangle. If the design requirement is to 
avoid any limit cycle modes, this bound on the describing function can be 
used to account for all modes of longer period than those for which the 
describing function has been calculated. 

O T H E R  N O N L l N E A R l T l E S  

Describing function calculation for nonlinearities which have the same 
analytic description for all inputs is quite simple. Take as an illustration 
the cubic nonlinearity and sampler pictured in Fig. 9.2-1 1. Again, x( t )  is 
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y = x' 

Figure 9.2-11 The sampled cubic 
nonlinearity. 

taken to be a sinusoid as in Eq. (9.2-31). Thus 

The fundamental component of y*(t) for cc, = (I/n)o, is 

y*(t), = a sin wt + b cos wt 

= sin (wt + t a r 1  

1 
where y*(t) sin - cost dt 

n 


2A3 n-1 
= - 277 + g,) sin -

m 
ZP2 sin3 (i

nTs m=o n 

and 

The sampled describing function is then 

The expressions for a and b can be reduced by trigonometric manipulations, 
but this will not be pursued here. The amplitude of the input in this case 
affects only the magnitude of N, which is proportional to A2. For any order 
n of limit cycle mode, (1/A2)N describes a closed contour in the complex 
plane or on a gain-phase plot as g,varies from 0 to (1/n)2-rr. This contour is 
then just scaled in magnitude with A2. 

Lepschy and Ruberti (Ref. 16) have calculated the describing function for 
the dead-zone-gain nonlinearity with a sampler and zero-order hold. This 
nonlinearity is interesting not only in its own right, but also because parallel 
combinations of dead-zone gains can be used to synthesize any piecewise- 
linear continuous nonlinearity. As always, the sum of describing functions 
for the parallel elements is the describing function for the combination. To 
facilitate addition of the describing functions for dead-zone-gain elements, 
Lepschy and Ruberti have plotted their results, not only in terms of magni- 
tude and phase, but also in terms of real and imaginary parts. 
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Some nonlinearities, such as the limiter, are of less interest in the study of 
limit cycles in sampled nonlinear systems than in continuous nonlinear 
systems because of the very rare occurrence of stable limit cycle modes of 
interesting form in systems containing these nonlinearities. The stability of 
indicated limit cycle modes is the subject of the next section. 

9.3 STABILITY O F  LIMIT CYCLE MODES 

The analysis of the preceding sections has determined essentially the possible 
states of dynamic equilibrium of unexcited sampled nonlinear systems of a 
certain class. These equilibrium states, or limit cycles, can be either stable 
or unstable in that a small perturbation from the self-sustaining periodic 
mode may tend either to decay or grow. The determination of limit cycle 
modes simply identifies those signal histories which will reproduce themselves 
when propagated around a closed-loop system. This says nothing about the 
stability of the modes, or if stable, about the range of initial conditions which 
will result in eventual capture to a particular mode. 

The standard technique of perturbation analysis to study the stability of 
limit cycles has even wider applicability to sampled than to continuous 
systems. In either case one supposes a small perturbation p(t) to exist at 
the input to the nonlinearity, in addition to the limit cycle x(t). The output 
of the nonlinearity is then expanded approximately into the limit cycle output 
plus a'perturbation which is linearly related top(t). In the case of continuous 
systems, this expansion can be done only for nonlinearities which are 
differentiable over the range of inputs experienced in the limit cycle. This 
rules out such commonplace nonlinearities as two- and three-level relays. 
In the case of sampled systems, the nonlinearity need not be differentiable 
over any continuous range. The only points on the nonlinear characteristic 
which are of consequence are those at which the samples are taken in the 
limit cycle mode under consideration. Even in the case of discontinuous 
nonlinearities such as relays, the slope of the nonlinearity is well defined at 
those discrete points where the samples are taken in the limit cycle. 

If the output of the nonlinearity can be expanded into the sum of the limit 
cycle output plus a perturbation which is linearly related to theinput perturba- 
tion p(t), the effect of the nonlinearity on the perturbation is characterized 
as a linear gain which depends on the limit cycle input x(t), and hence is 
periodically time-varying. In the case of continuous systems, determination 
of the stability of linear systems containing a periodically time-varying gain is 
still a substantial chore. The same would be true of sampled systems, except 
that it is possible to transform the system from one containing a sampler with 
periodically varying gain into one containing multiple samplers with fixed 
gains in parallel. This complicates the configuration somewhat, but 
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permits the use of standard linear invariant theory to determine the stability 
of limit cycle modes. 

Nease (Ref. 18) proves that the stability of a periodic solution of a nonlinear 
set of difference equations is given by the stability of the linear set which 
approximates the action of the system on a small perturbation about the 
periodic solution. Nease also proves a theorem which establishes the 
stability of a linear set of difference equations with periodically varying 
coefficients. Because of its more likely appeal to control-system designers, 
we prefer to present here a technique for the study of stability suggested by 
Pyshkin (Ref. 21). Suppose that a sampled nonlinear system has been 
analyzed by the method of the preceding section, and the existence of a limit 
cycle of period T = nTs has been established. It  remains to determine 
whether this indicated limit cycle is stable or unstable. If the periodic 
signal x(t) which appears at the nonlinearity input in the steady-state limit 
cycle is perturbed by a small additive signal p(t), the perturbation in the 
nonlinearity output at the sampling times, q(mTs), is given to first order by 
p(mT,) times the slope of the nonlinear characteristic dyldx, evaluated at 
x(mT,). Considering the operation of the system on the perturbations only, 
the system configuration is the original configuration, with the nonlinearity 
replaced by the periodically time-varying gain (dy/dx)[x(mT,)]. This gain 
is defined a t  the sampling instants only, but it is of consequence only a t  those 
instants. 

The system whose stability determines the stability of the limit cycle 
contains one sampler (in addition to any samplers in the linear part of the 
original system), with sampling period Ts, preceded by a gain which takes a 
set of n discrete values a t  the sampling times and repeats them sequentially. 
This variable-gain sampler is indicated in Fig. 9.3-la. Rather than deal with 
the stability of a variable-gain system, we prefer to replace the variable-gain 
sampler with n samplers in parallel, each having a fixed gain and the sampling 
period nT,. The equivalent set of samplers is shown in Fig. 9.3-lb. 
Because ordinary sampled-data system analysis depends on the assumption 
that all samplers in the system operate synchronously, the various samplers 
in this equivalent configuration are preceded by ideal predictors, so that 
p(t) will be sampled at the appropriate times, and followed by ideal delays, 
so that the samples will appear at the output at the correct times. With this 
transformation, the system whose stability determines the stability of the 
limit cycle under consideration becomes a fixed-parameter linear sampled- 
data system, and ordinary linear sampled-data system theory is applicable. 

The characteristic equation of a system containing a parallel set of 
predictors, samplers, and delays, as in Fig. 9.3-lb, involves z transforms of 
functions with predictors or delays of a fraction of the sampling period. 
Such transforms can be found in tables of "modified z transforms" (Ref. 7) 
or "advanced z transforms" (Ref. 22). It  should also be noted that if an 
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K", = K O , K I , .. ., Kn-l, KO,KI , .  . . 
(a )  Single sampler with pK,, dically varying gain 

(6)  n samplers with fixed gains 

Figure 9.3-1 Eyuiualent sampling systems. 

unbiased even-period limit cycle mode (n even) is being tested for stability, 
and if the nonlinear characteristic is odd, then 

so the sequence of gains K,, appearing in Fig. 9.3-lb, repeats after the first 
n / 2  values. Thus only n/2  parallel paths are required, and each sampler 
operates with the period (n/2)Ts.  These points can be illustrated by an 
example. 

Example 9.3-1 Consider the sampled system containing a limiter shown in Fig. 9.3-2. 
The linear part includes a zero-order hold and an integrator. Test the stability of a limit 
cycle mode of period T = 4T, having the form y(mT,) = 1, a ,  -1 ,  - a  for m = 0, 1 ,  2, 
3. The constant a can be any value between zero and 1. 

First solution Just for illustration, work first with the full form of the equivalent sampling 
system for perturbation analysis as shown in Fig. 9.3-lb. The slope of the nonlinearity 
evaluated at the sampling points is 
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Figure 9.3-2 System for Example 9.3-1. 

The full form of the linearly perturbed system is shown in Fig. 9.3-3. The characteristic 
equation for this system can be found in the following steps [Qi(s)is the Laplace transform 
of qAt>l :  

* 1 - e-PT, 1 - e-STs 
:9 2  = - Q 2  7~ P Q k e - 2 s ~ s  ~ 

(9.3-1)
1 - e-STs 1 - e-8Ts 

= -a: keZsTs- Q: -kQ4 
s2 

Equivalently, 
(1 + F ~ Q :+ F;Q: = 0 

where 

The star indicates the z transform with respect to the sampling period T = 4T,. As 
an illustration of this calculation, find the transform F;. 

This transform is found directly in a table of modified or advanced z transforms. 

z - l  
Similarly, one finds 
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Figure 9.3-3 Full forA of perturbed system of Example 9.3-1. 

The characteristic equation of this system results from equating to zero the determinant 
of the coefficient matrix in Eqs. (9.3-2). 

With Eqs. (9.3-4) to (9.3-6) this becomes 

z = ( 1  - kT,y  

The closed-loop pole takes values between 0 and 1 for values of kT,  in the range 

This is the range of stability for the linearly perturbed system. Thus, if the original system 
had an indicated limit cycle mode of the stated form for a value of kT,  in this range, the 
mode would be stable. 

Second solution The analysis of this problem can be simplified because the limit cycle 
under consideration is an unbiased even-period mode and the nonlinearity is odd. Thus, 
only the first half of the parallel paths shown in Fig. 9.3-3 are needed if the period of the 
samplers is changed to 2T,. But this leaves only one path with a nonzero gain. This is the 
second path, which includes a one-unit predictor and a one-unit delay. With just a single 
path, airedictor and corresponding delay have no effect on system stability, and for the 
present purpose can be ignored. If there were multiple paths of this form, all predictors 
and delays could be shifted by the same time interval with no effect on the stability of the 
system. 

The simplified form of the perturbed system is shown in Fig. 9.3-4. This is just an 
ordinary single-path linear sampled-data system formed from the original nonlinear system 
by replacing the limiter by its gain in the linear region and changing the sampling period 
from T ,  to 2T,. The closed-loop root of this system is found to be located at 

Again the stable range is found to be 

0 < kT,  < 2 
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Figure 9.3-4 Simplified form of perturbed system of Example 9.3-1. 

At the unstable boundary, kT, = 2, the closed-loop pole in this case is located at z = - 1 ,  
which implies a characteristic mode whose samples oscillate between constant plus and 
minus values. In the previous case, Eq. (9.3-7) shows the closed-loop pole to be located 
at z = +1 for kT, = 2. This pole location implies a characteristic mode whosesamples are 
all the same constant value. This is not an inconsistency since z in Eq. (9.3-8) is esZT8, 
whereas z in Eq. (9.3-7) is e"%. The mode which oscillates between equal plus and minus 
values every 2T, displays the same constant value when sampled every 4T,. 

This example shows why limiters are somewhat uninteresting for limit 
cycle analysis of sampled nonlinear systems. If the system is designed to be 
stable within the linear range of the limiter, it is unusual for limit cycle modes 
of the partially saturated type considered in the example to exist. But if the 
gain or sampling period is increased to the point where such a mode does 
exist, it is quite likely that the system is unstable in the linear range with the 
sampling period T,;it is very rare that the system would be found stable with 
the sampling period 2Ts as required for stability of the limit cycle mode. 
Thus, for most limiter systems, the only stable limit cycle modes found are the 
fully saturated modes, in which the limiter acts just like a two-level relay. 

One may also note the simple interpretation of this stability analysis in the 
case of two- or three-level relay systems. Since the slope of these nonlinear 
characteristics at any sampling point is zero, the linearized system which 
processes perturbations on any limit cycle mode has a gain preceding the 
sampler which is zero at every sampling instant. Thus, as far as perturba- 
tions are concerned, there is no loop closed around the linear part of the 
system. These modes are then stable [f the open-loop linear part is stable, and 
unstable if the open-loop linear part is unstable. 

9.4 EXACT VERIFICATION OF LIMIT CYCLE MODES 

In Sec. 9.2 we discussed two points of view regarding the determination of 
possible limit cycle modes in sampled nonlinear systems, each depending on 
the describing function approximation that the input to the nonlinearity is a 
sinusoid. This approximation is a good one if the system has sufficient 
linear filtering of the harmonics generated by the nonlinearity and by the 
samplers. For the great majority of practical purposes, "sufficient" linear 
filtering is provided by second- or higher-order filters if the fundamental 
frequency is near or beyond the cutoff frequency of the filter. 
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In those cases in which one questions the adequacy of the linear filtering 
properties of a system for describing function analysis, he can verify exactly 
whether or not any suggested limit cycle can exist. Indeed, if one wishes, he 
can use an exact technique as his basic tool for limit cycle determination in 
the first place. The only objection to this is the greater labor involved and the 
uncertainty regarding how many possible modes to test. Using an exact 
technique, the test to determine whether or not any suggested limit cycle 
mode can exist in a system is an individual problem; it must be repeated 
for every suggested mode and for every system to be considered. The virtue 
of the describing function approach is that it allows separate characterization 
of the linear and nonlinear parts of the system. A particular nonlinearity 
can be considered quite independent of any system, and its describing function 
calculated for any number of modes. With these functions in hand, very 
likely graphed, one then need consider only the transfer characteristics of 
the linear parts of any systems which contain this nonlinearity to determine 
the existence of all the modes for which the describing function was originally 
calculated. In addition, the form of the describing function for the different 
modes considered, and the shape of the frequency response function for the 
linear part, often make it clear whether or not other modes are likely to exist. 

The procedure for testing the existence of a suggested mode is simple and 
obvious in principle. The mode to be tested is characterized by a particular 
periodic sequence of samples at the nonlinearity output. This sequence is 
the input to the linear part of the system; together with the unknown initial 
conditions in the linear part, it determines the output of the linear part. But 
this output is the input to the nonlinearity. If a set of initial conditions can 
be found which in the steady state will produce a nonlinearity input con- 
sistent with the nonlinearity output originally assumed, this will demonstrate 
the possible existence of the mode. Simple input forms, such as steps and 
fundamental frequency sinusoids, can also be included in this analysis. 
Many writers have employed this procedure, the differences in their 
approaches being in the technique used to propagate the assumed nonlinearity 
output through the linear part and the means of handling the initial and 
steady-state conditions. Bergen (Ref. 1) suggested use of the Laplace 
transform of y*(t) and the transfer function for the linear part to get the 
Laplace transform of x ( t ) ,  including initial-condition terms. The z trans-
form of this expression was taken, and the initial conditions chosen to 
eliminate the transient term, thus revealing the desired steady-state solution. 
Jury and Nishimura (Ref. 8) use z-transform theory to accumulate the 
incremental responses of the linear part to each impulse of y*(t), employ 
skip sampling to select the corresponding sampled value of x ( t )  in each 
period of the cycle, and apply the final-value theorem to determine the 
steady-state values of these samples. Special consideration must be given 
to the possible bias level which can exist in the case of systems with an 



integrator. Pai (Ref. 19) described the use of the z transform of the specified 
y*(t) and of the sampled transfer function for the linear part to calculate the 
z transform of x(t). He also prescribed the form of the z transform of the 
steady-state osciIlation at x(t), and equated coefficients of like powers of z 
to derive the algebraic equations to be solved simultaneously for the samples 
of x(t) .  Torng and Meserve (Refs. 17,26) first expand the periodic sequence 
of samples of y(t) into a series of orthogonal functions; they used sines and 
cosines with integral arguments. Using the difference equation for the 
linear part, they then solve for the coefficients in the expansion of the 
periodic sequence of samples of x(t). Having these coefficients, the samples 
themselves are determined. No account need be taken of initial conditions 
since the samples of y(t) and x(t) are taken in the form of steady-state 
periodic sequences a t  the outset. Torng (Ref. 25) later suggested use of 
complex exponentials as the basis for the series expansion. Such an expan- 
sion is, in effect, a Fourier transformation, and the coefficients in the expan- 
sion enjoy a multiplicative input-output relation for linear systems. 

Of all known techniques, two are described here as being perhaps the most 
direct. The most straightforward approach, conceptually, is the direct use 
of the difference equation for the linear part to write down a set of algebraic 
equations which determine the samples of x(t). Interestingly enough, none 
of the writers referred to above used this procedure. The resulting equations 
must be solved simultaneously, but most of the procedures mentioned above 
lead to the same equations to be solved. The second technique described 
uses the "transform" of the y*(tjand x*(t) sequences, or their expansion into 
series of complex exponentials. This procedure does not require solution of 
equations; it is a direct, step-by-step calculation. However, the calculation 
requires a great deal of complex algebra, and it is not clear that the labor 
involved is less than in the case of the first procedure. It should be 
emphasized that any of these procedures give only necessary conditions for 
the existence of a limit cycle mode. Whether or not such a mode will 
actually be observed depends first of all upon whether the mode is stable or 
unstable; and if stable, it depends on the system initial conditions. 

T H E  DIFFERENCE E Q U A T I O N  M E T H O D  

The object of our present endeavor is to see whether a postulated periodic 
sequence of samples of y(t), the nonlinearity output, will result in a sequence 
of samples of x(t), the nonlinearity input, which in the steady state will 
reproduce the postulated y*(t). Having the samples of y(t) given, the most 
obvious way to calculate the samples of x(t) is to make direct use of the 
difference equation for the linear part, which is evident from the z transform 
of its transfer function. This, in one sentence, is a complete description of 
the procedure. We proceed to an illustration. 
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Example 9.4-1 An example used to illustrate the sampled describing function and 
z-transform describing function techniques will be used here as well. This will afford an 
exact check on the results derived by the describing functions. The system under considera- 
tion is that of Example 9.2-2, for which the configuration is shown in Fig. 9.2-6. The 
question posed is the determination of the range of values of a, the parameter of the digital 
lead compensator, for which the 3,  3 limit cycle mode is impossible. 

The postulated sequence of nonlinearity output samples is y(mT,) = D, D,  D ,  - D ,  
- D ,  - D  for m = 0 ,  1, 2,  3 ,  4 ,  5 .  For simplicity, y(mT,) will hereafter be denoted y,. 
This sequence is periodically repeating: 

y m + e  =ym 

The sampled transfer function for the system linear part is 

-
using the notation 

As in Example 9.2-2, take Ts/r = 1. Then Eq. (9.4-2)implies the difference equation 

which holds for all m. They, are given for all m, and using the periodicity relation, 
[Eq. (9.4-I)],which holds for the x ,  as well as for they,, one can let m take the values 0 ,  
1 ,  2, ...,5 in Eq. (9.4-4)and write down six relations among the six unknowns xo to x,. 

These equations do not yield a unique solution for the x, since only five are linearly in- 
dependent. Thus five of the x, can be expressed in terms of the sixth. If one solves for 
x, to x,, the result is 

xo = x,  - KDT,(-0.837 + 0 . 5 5 7 ~ )> 0 
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The inequalities on the right have been added as the conditions required to sustain the 
postulated ym sequence. The easiest way to interpret these six conditions is to plot the 
boundaries between admissible and inadmissible values of x, as functions of a. The con- 
ditions on x2 and x, are found to conflict if a > 0.303. The conditions on x, and x3 
conflict if a < -2.45. Thus 

-2.45 < a < 0.303 

is the range of values of a for which the 3, 3 limit cycle mode is possible in this system. 
Values of a outside this range render the mode impossible, either because of too much lead 
in the linear part or too much lag. These boundaries on the range of a may be compared 
with -2.46, 0.289, derived using the sampled describing function, and -2.54, 0.283, 
obtained with the z-transform describing function. The errors in these describing function 
results range from 0.4 to 6.6 percent. 

For values of a within the range from -2.45 to 0.303, there is a range of values of x, 
for which all the inequalities of Eqs. (9.4-6) are satisfied. This range of freedom for x,, 
and thus for all the x,, represents the range of possible bias levels which can exist in x ( t )  
in the presence of the 3, 3 limit cycle mode. For example, if there were no digital lead, 
a = 0 ,  the 3, 3 mode would be possible and x, could take values ranging from 0 to 
-0.484KDTS. The symmetrical limit cycle would have x, = -0.242KDTS, and the null 
offset or bias could range between *0.242KDTs. 

In the case of an even-period mode such as this, a simpler procedure can be employed. 
The critical condition for the existence of a limit cycle mode always occurs for the unbiased, 
or symmetrical, mode. If the symmetry condition is postulated, 

just three of the x,  define the mode, and there is no remaining uncertainty due to bias level. 
Using Eq. (9.4-7) in the first three of Eqs. (9.4-5), 

These equations have a unique solution. Each of these x,, must be greater than zero to 
reproduce the postulated y,  sequence. The critical conditions are 

which again gives -2.45 < a < 0.303 as the condition for the existence of the 3, 3 mode. 
For values of a in this range, the mode is possible, and the possible range of bias levels is 
evident. 

T H E  TRANSFORM M E T H O D  

This is the technique described by Torng (Ref. 25). It centers attention not 
on the sequences of samples of y( t )  and x ( t )  directly, but rather on the 
coefficients of the expansions of these sequences into series of complex 
exponentials with integral arguments. The virtue of this is the fact that a 
periodic sequence can be processed through a linear discrete filter more 
readily in terms of these coefficients than in terms of the sequences themselves, 
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since a multiplicative input-output relation exists for the coefficients. In this 
and all other respects, a direct analogy exists between this theory and the 
familiar Fourier transform theory for continuous functions and systems. 

A discrete sequence of n values, 

which repeats periodically with the period n, can be expressed as a series of n 
complex exponential terms. 

k f l  

ym = 2 YLexp 
I=-k 

where k is defined by 
n odd 

and the convention Y,,, = 0 if n is odd will be observed. The coefficients 
in this expansion, or transformation, are given by 

1 n-1 

= - 2 Y ,  e ip  ( - j /  rn)
n m=o 

From this expression we note the property 

so the coefficients with negative indices need not be calculated separately. 
If this periodic sequence y ,  is the input to a discrete linear filter, and xm is 

the output, and if this filter has the sampled transfer function D ( z ) ,  

then the coefficients of the expansion of the x, sequence are given by 

If the modified or advanced z transform for the linear filter is used in this 
relation for XI, then the entire x ( t )  history is defined by the inverse transform 
[Eq. (9.4-1I)]. 

The procedure for testing the existence of a postulated limit cycle mode 
using the transform method is then to transform the postulated y ,  sequence, 
using Eq. (9.4-13),and to calculate the X, coefficients from Eq. (9.4-16) and 
the x m  sequence from Eq. (9.4-11). The conditions on the xm which will 
sustain the postulated y ,  sequence can then be applied. Steady-state 
conditions are assumed throughout, since the form of the transformation is 
applicable only to periodic sequences, and the input-output relation for 
linear systems gives the forced response only. 
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Example 9.42 Repeat Example 9.4-1, using the transform method. The y, sequence 
to be tested is 

y ,  = D, D,  D,  - D ,  - D ,  - D  (9.4-17) 

which repeats with period n = 6. According to Eq. (9.4-12), k = 2 in this case. Y,  
must be calculated for 1 = 0 ,  1 ,  2,  3, according to Eq. (9.4-13). As an illustration of this 
calculation, consider Y,. 

y1 = [I + exp ( - j ; )  + exp ( - j : 2 )  

= P[I + exp ( - j  i)+ exp ( - j  $)I 
The other Y,are computed in the same way. 

Yo= 0 

The sampled transfer function for the linear part of this system is found from Eq. (9.4-2), 
using Eq. (9.4-3)and T,/r  = 1, to be 

The X,  are now calculated from Eq. (9.4-16). Take XI as an illustration. 

-KTs[0.368 exp (j2?r/3)+ (0.264 - 0 . 3 6 8 ~ )exp (j7r/3)- 0.264a][(D/3)(1-jd\/3)1--
exp ( j r )  - 1.368 exp (j27r/3)+ 0.368 exp (j?r/3) 

= 0.435KDT,[0.670 + 0.264a + j(-0.691 + 0.926a)l (9.4-21) 

Needless to say, a fair amount of algebra has been omitted between these last steps. Xz 
and X ,  are calculated in the same way. 

The expression for Xo, however, is indeterminate. 



504 OSCILLATIONS IN NONLINEAR SAMPLED-DATA SYSTEMS 

Xowill be carried as an unknown coefficient. This is the manifestation of the undetermined 
bias level which can exist in the presence of the limit cycle. 

The x, sequence can now be calculated from Eq. (9.4-1 I), using the property X-z = X,*. 

x,  = 0.435KDT8[0.670+ 0.264~-j(-0.691 + 0.926a)l exp -J - rn1( .; 

+ X, + 0.435KDT,[0.670 + 0 .264~+ j(-0.691 + 0.926a)l exp 

+ 0.0127KDTs(1+ a) exp ( j rm)  

[0.670 + 0 .264~+ j(-0.691 + 0.926a)l exp (9.4-24) 

Substitution of the various values of rn in this expression yields the required results. 

Except for the Xo terms, these relations are identical with those derived by the difference 
equation method under the assumption of a symmetrical limit cycle, and they define the 
same range of values of a for which the postulated mode is possible. 

Application of either of these exact methods of determining or verifying 
the existence of limit cycle modes is considerably more tedious than use of 
the describing function techniques discussed in Sec. 9.2, especially the 
sampled describing function. An exact technique would ordinarily be 
required only when one has reason to question describing function results. 
Lack of sufficient continuous linear filtering is the primary reason for such a 
question. Another reason is a marginal situation in which a system design 
is near the boundary between possibility and impossibility for a particular 
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mode. Regardless of how the necessary conditions for existence of a limit 
cycle are established, the theory of Sec. 9.3 can be applied to test the stability 
of the mode. 

9.5 LIMIT CYCLES IN PULSE-WIDTH-MODULATED 
SYSTEMS 

A control system employing a pulse-width modulator, hereafter abbreviated 
PWM, 4s a special case of a sampled nonlinear system, and the techniques of 
the preceding sections can readily be applied to such a system. The primary 
reason for the utilization of a PWM in a control system is to achieve an 
approximation to proportional control in spite of a drive system which is 
only capable of-or for some reason is employed in-an on-off mode of 
operation. Somewhat varying forms of pulse-width modulators have been 
used, but the most common form is the linear lead modulator, which will be 
considered for the purpose of illustration here. The operation of this modu- 
lator is pictured in Fig. 9.5-1, and is defined by the following relations, 
which hold for all m = 0, 1, 2, . . . : 

D sgn [x(mTs)] mT, < t < mT, + k lx(rnT,)I 
YO) = C mTs + k Ix(mT,)I < t < (m + 1)T, 

(9.5-1) 

if k Ix(mTs)I < T,. Otherwise, 

if k Ix(rnT,)I > T,. 
Possible variations on this form of PWM are of two types. First, the 

relation between the sampled value of x(t) and the pulse width may be any 
well-defined relation whatever, rather than the proportional relation 
considered here. Second, the zero interval in each sampling period of y(t) 
may be placed in the first part of each period, with the nonzero interval 
following in the second part. This is known as a lag PWM. Neither of 
these variations complicates the application of the analytic techniques 
discussed here. In any case, even if the relation between x(mT,) and pulse 
width is linear, and if the possibility of saturation is ignored, the PWM 
operation is a nonlinear operation, and a nonlinear theory must be employed 
to  study the details of the performance of a system using a PWM. 

A number of writers have detailed various approaches to the exact deter- 
mination of limit cycles in PWM systems. The same point of view is used 
as in the case of other sampled nonlinear systems: the form of limit cycle 
mode is postulated, which defines the form of the nonlinearity output; this 
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Figure 9.5-1 Operarion of a linear lead P WM. 

signal form is processed through the linear part of the system to the non- 
linearity input; and conditions are applied which will produce the postulated 
output of the nonlinearity. Da-Chuan (Ref. 3) implemented this procedure 
for limit cycles of period T = 2Ts, using time response expressions directly. 
The procedure of Jury and Nishimura (Ref. 8), which was described in the 
preceding section in connection with other sampled nonlinear systems, can 
be applied equally well to PWM systems. Nease (Ref. 18) included PWM 
systems in his development of exact methods and general principles applicable 
to sampled nonlinear systems. The difference equation and transform 
methods described in Sec. 9.4 are not directly applicable to PWM systems 
because the input to the linear part of the system in this case is not a periodic 
train of impulses. However, direct time response, z transform, and Laplace 
transform techniques can all be used to calculate the response of the linear 
part to an input train of variable-width pulses. 

The describing function point of view can be applied to PWM systems in 
essentially the same way as it is applied to other sampled nonlinear systems. 
Delfeld and Murphy (Ref. 4) did this in an unnecessarily complicated way. 
Pyshkin (Ref. 21) took the straightforward approach, and treated limit cycles 
with periods 2Ts and 4Ts. Calculation of the  describing function for any 
particular form of PWM, such as the linear lead PWM considered for an 
illustration here, is quite simple in principle, the detail becoming tedious for 
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large-period modes because of the different modal forms of the same period 
which occur for different values of amplitude and sampling phase. The 
input to the modulator is taken in the standard form 

x ( t )  = A sin (wt + g,) (9.5-3) 

with the time origin chosen at one of the sampling points. The frequencies of 
interest in limit cycle analysis are whole fractions of the sampling frequency- 
and in fact, just the even fractions, since one would not anticipate odd- 
period modes in a PWM system, especially if the linear part includes an 
integration. For any chosen frequency, the output of the PWM correspond- 
ing to any pair of values for A ,  g, is defined, and the fundamental harmonic 
component of this waveform is readily computed. Thus the describing 
function of the PWM is defined as a function of the ratio of the sinusoidal 
frequency to the sampling frequency, the amplitude of the input sinusoid, 
and the phase of that sinusoid relative to the sampling points. The negative 
reciprocal describing function for the linear lead PWM defined by Eqs. 
(9.5-1)and (9.5-2) is plotted in Appendix F for sinusoidal periods of 2 ,  4, 6, 
and 8 sampling periods. The possible existence of a limit cycle mode in a 
PWM system may be determined by placing the point corresponding to the 
transfer function for the linear part of the system, evaluated at fundamental 
frequency, on one of these plots. If the point lies within the region spanned 
by the describing function curves, one or more modes of that period are 
possible, and the corresponding amplitude and phase may be found by 
interpolation among the curves. 

Any limit cycle found possible should be tested for stability. The technique 
described in Sec. 9.3 in relation to other sampled nonlinear systems can be 
applied, with a slight change of concept, to the present case as well. 
Consider a limit cycle x ( t )  to experience a small additive perturbation p( t ) .  
The output of the PWM is then a series of pulses with widths slightly 
perturbed from the pulse widths in the limit cycle. If the limit cycle signal at 
y ( t )  is subtracted from this perturbed signal, the remaining perturbation q ( t )  
is a series of narrow pulses occurring near the ends of the pulses in the limit 
cycle. These signals are pictured in Fig. 9.5-2. In view of the fact that 
PWM systems are usually designed with a sampling period short compared 
with the response time of the linear part of the system, so the ripple at 
sampling frequency is well attenuated at the output of the system, the 
pulses in the output perturbation shown in Fig. 9.5-2c are very narrow 
compared with the linear-part response time, and can properly be approxi- 
mated as impulses of the same area. The relation between input perturba- 
tion and output perturbation approximated as a sequence of impulses 
occurring at the ends of the pulses in the unperturbed limit cycle can then be 
linearized. In general, this requires the slope of the function which relates 
sampled input magnitude to pulse width. For the linear function of Eq. 
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(a)  PWM input: limit cycle plus perturbation 

( b ) PWM output: limit cycle plus perturbation 

(c) Perturbation at PWM output 

Figure 9.5-2 Operation of a PWM with a perturbed limit cycle input. 

(9.5-l),this slope is just k if the pulse is unsaturated, or zero if the pulse is 
saturated. If this slope, evaluated at the unperturbed limit cycle point 
x(mT,), is called K,,,, then the perturbation p(mT,) gives rise to an approxi- 
mate impulse of area p(mT,)K,D, occurring at the end of the pulse 
corresponding to x(mT,). 

This linearized relation between input and output perturbations can now be 
represented by a parallel set of phased samplers with fixed gains, as was done 
in Sec. 9.3. For a limit cycle of period T = nT,, where n is an even integer, 
n/2 such samplers are required, each with the sampling period &nT,. The 
configuration is shown in Fig. 9.5-3. This linearized representation of the 
operation of the PWM on perturbations added to a limit cycle can be used 
with the transfer function for the linear part of the system to define a linear 
fixed-parameter sampled-data system whose stability determines the stability 
of the limit cycle under consideration. It may be noted that the gain K ,  
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Figure 9.5-3 Linearized equivalent of P WMfor perturbation analysis. 

K, = slope of function relating input magnitude to pulse width, evaluated at the limit 
cycle value x(mT,). 

t ,  =pulse width corresponding to the limit cycle value x(mT,). 

associated with any saturated pulse is zero, and in effect the corresponding 
path is omitted from the configuration of Fig. 9.5-3. If a fully saturated 
limit cycle mode is considered, one in which every pulse is saturated, the 
PWM does not pass perturbations at all. Such a mode is thus stable if the 
open-loop linear part is stable, and unstable if the open-loop linear part is 
unstable. 
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PROBLEMS 

9-1. Consider the sampled ideal relay shown in Fig. 9-1, with x ( t )= A sin ( o f  + 45"). 
The t scale has one of the sampling points at its origin. Sketch the waveforms of 
x(t) ,  y( t ) ,  and y*(t) for several cycles of x( t ) ,in the case o / w ,  = I/.rr. Also indicate 
on a frequency scale the locations of the harmonic components of y*(t). What do 
you conclude about the applicability of describing function theory? 

Figure 9-1 I 1 I 

9-2. Repeat Prob. 9-1 with w/w, = $. 
9-3. Repeat Prob. 9-1 with w/w, = 4. 
9-4. (a) For T, = 1 see, KD = 10, T = 3 see, find the possible limit cycle modes of the 

system of Fig. 9-2 and the amplitude of each at c(t). 
(b) What is the general relation between T, and T which will ensure that there can 
be no very large amplitude limit cycle? 

Zero- -.C ( f )wK(Ts+ 1 )  
s* hold 

Figure 9-2 

9-5. What limit cycle modes might the system of Fig. 9-3 display with no compensation, 
G(s)= 1 ? What is the maximum possible average offset at the output? 

Design G(s)so that this system has only the 1 , l  limit cycle mode. What now is the 
maximum possible average offset at the output? Suggest an additional compensa- 
tion which will reduce this offset by a factor of 10. 

. -
Zero-r(l)= 0 10 -~ ( 1 )*G(s) *s (s+ l)(O.ls+ 1)
hold 

-
T,  = 0.8 sec 

Figure 9-3 
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9-6. Find the maximum permissible relay hysteresis 6 such that the system of Fig. 9-4 
will display no limit cycle mode of lower frequency than the 3, 3 mode. 

r ( t )  = , *odTl3-+-HTl 
+- hold s o 

Figure 9-4 

9-7. Calculate the z-transform describing function for the sampled relay with dead zone 
for each of the modes shown in Fig. 9.2-8. By comparison with Eqs. (9.2-40), verify 
in these cases the general relation 

9-8. Use the sampled describing function method as presented in Sec. 9.2 to find the range 
of r/Ts for which the 2, 2 limit cycle mode is possible in the system of Fig. 9-5. 
Interpret your result in terms of the graphical construction suggested for two-level 
relay systems in Sec. 9.1. 

Figure 9-5 

9-9. Solve Prob. 9-8 using the z-transform describing function method. 
9-10. For the system of Fig. 9-5, derive the conditions which define the 1 ,  1 limit cycle 

mode, using both the sampled and z-transform describing function methods. Note 
that in this case, where w = Iw,,  the z-transform describing function method gives a 
necessary condition, but not sufficient conditions to define the limit cycle. 

9-11. The system of Fig. 9-6 uses a unit-sensitivity digital lead compensator to stabilize 
an inertia plant. Use the sampled describing function method to determine the 
range of r/Tswhich makes the 4 , 4  limit cycle mode impossible. 

Figure 9-6 
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9-12. Solve Prob. 9-11, using the z-transform describing function method. 
9-13. What is the minimum permissible value of dead zone, 6, which guarantees that the 

system of Fig. 9-7 will not limit-cycle in the absence of input? 

K d r )  -
- + s ( s + l ) ' -

K = 2 sec D K = 4  

Figure 9-7 

9-14. If 6 = 1, in the system of Fig. 9-7, what limit cycle modes are possible? Suggest a 
compensation which will eliminate all but the 1 ,  1 mode. 

9-15. Determine the range of k for which a limit cycle of period T = 4Ts and form a, 
0,-a, 0 would be stable in the system of Fig. 9-8. 

r ( ~ )= 0 TS K Zero-order-
7 = 2 - 2 - '  - hold+-I 

1 --+.-
~ = l s e c  

7 -
Figure 9-8 

9-16. Use the difference-equation method to find the exact range of r/T,  which makes the 
4,  4 limit cycle mode impossible in the system of Fig. 9-6. Compare this result 
with those given by the describing functions in Probs. 9-11 and 9-12. 

9-17. Repeat Prob. 9-16, using the transform method. 
9-18. What is the maximum gain K that the pulse-width-modulated system of Fig. 9-9 

can tolerate without exhibiting any of the limit cycle modes for which the describing 
function is given in Appendix F? Suggest a compensation which will permit this 
gain to be doubled without a limit cycle. 

r ( r )  = = E0 

+-

;+I
PWM 

4 7 ,  j c ( t ) *  

s ( rs  + 1 ) 

T , =  1 sec T = 2 sec Dk = 5 sec 

Figure 9-9 




