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16.323	 Handout #6 
Prof. J. P. How	 April 25, 2008 

Due: May 8, 2008 

16.323 Homework Assignment #6 

1. Finish 4(b) and 4(c) of Homework #5. 

2. (total 15pts) Find the control input u(t) sequence that minimizes the cost functional 

J = −y(tf ) 

subject to the state constraints 

ẏ(t) = y(t)u(t) − y(t) − u 2(t) 

for an initial condition y(0) = 2 and final time tf = 5. Give both the control, the state 
response, and the costate. 

3. Given the plant dynamics, 

ẋ1(t) = x2(t) 

ẋ2(t) = x1(t) + u(t) + w(t) 

y(t) = x2(t) + v(t) 

and cost function, 

1 tf 

J = E (3x1
2(t) + 3x2

2(t) + u 2(t))dt 
2 0 

where w(t) ∼ N (0, 4) and v(t) ∼ N (0, 0.5) are Gaussian, white noises and tf = 15. 

(a) Numerically integrate the Riccati equations for LQR and the LQE to find the 
time-varying regulator and estimator gains. 

(b) The full stochastic linear optimal output feedback problem involves using u(t) = 
−Kx̂(t). For this control policy, the compensator is of the form, 

ẋc(t) = Acxc(t) + Bcy(t) (1) 

u(t) = −Ccxc(t) (2) 

For this example, write down the dynamic equations for the combined plant and 
x 

compensator system . Simulate the full closed-loop system in MATLAB using 
xc 

10 0 
the gains found in Part (a) and the initial conditions, x0 = and x̂0 = . −10 0 
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(c) Show that the eigenvalues of the closed-loop dynamics are equal to those of the 
steady-state regulator and estimator. Compare the performance of the compen
sator in Part (b) to the performance you obtain when you use these steady state 
values of the regulator and estimator gains. 

(d) Find the steady-state mean-squared values of the regulator and estimator (x1(t), 
x2(t), x̂1(t) and x̂2(t)). 

4. Given a system with a state space representation, 

ẋ(t) = Ax(t) + Buu(t) (3) 

y(t) = Cyx(t) (4) 

we have investigated various types of observer-based controllers that can be written as 

ż(t) = Az(t) + Buu(t) + Hr(t) (5) 

u(t) = −Gz(t) (6) 

where r(t) is the residual signal [r(t) = y(t) − Cyz(t)] and the state vectors x and z 
have the same size. Assume that we have selected H and G so that the closed-loop 
system is stable. We can modify the original compensator in Eqs. 5–6 to obtain a very 
general form for the compensator: 

ż(t) = Az(t) + Buu(t) + Hr(t) Original Comp dynamics (7) 

ẇ(t) = Fw(t) + Qr(t) Other stable dynamics (8) 

u(t) = −Gz(t) + Pw(t) (9) 

so that the residual is filtered by another set of stable dynamics and then added to 
the control signal. The dimension (k) of w is arbitrary, but the eigenvalues of F are 
assumed to have negative real parts. 

(a) (50%) Show that a “separation” type principle still holds for the closed-loop eigen
values. 

(b) (50%) Show that under the assumptions given, this new compensator still leads 
to a stable closed-loop system. 

Point of Interest Later control courses will show how to use this extra freedom 
in the compensator to achieve additional desirable properties of the closed-loop 
system. 
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5. For the following system, design a H∞ controller that minimizes the cost function 

WsS 
WuGcS ∞ 

where 
s/M + ωB

Ws(s) = 
s + ωBA 

with M = 2, ωB = 5, and A = 0.01. As discussed in class, the weight Wu should be 
adjusted so that we meet the sensitivity specification. 

You should then design a H2 optimal (LQG) controller that yields a similar settling 
time of the step response and directly compare the graphs listed below for the H2 and 
H∞ controllers. One way to do this for a SISO system is set Bu = Bw, Cz = Cy, choose 
Rww = 0.1 and Rzz = 1. Then set Ruu = Rvv = ρ and use ρ � 1 as the basic design 
parameter. You can then iterate on the choice of Rww and Rzz as needed. 

Use this procedure to design a controller (follow the code given in the notes) for the 
following system (ω1 = 1, ω2 = 5, ω3 = 10) 

1 
G1(s) = 

(−s/ω1 + 1)(s/ω2 + 1)(s/ω3 + 1) 

For each case, draw the following plots: 

•	 Sensitivity and inverse of Ws weight to show that you meet the specification. 

•	 The Nyquist/Nichols plot to show that you have the correct number of encir
clements 

•	 A Bode graph that contains Gi(s), Gc(s), and L = GiGc(s). Clearly label each 
curve and identify the gain/phase cross-over points. 

•	 The root locus obtained by freezing the controller dynamics and then using a con
troller αGc(s), where α ∈ {0, 2} (assuming that nominally α = 1) to investigate 
the robustness of your design to gain errors. 

•	 The step response of the closed-loop system. 

The reason for drawing these plots is to develop some insight into what a typically 
H∞ controller “looks like”. So use your results to comment on how the H∞ controller 
modifies the plant dynamics to achieve the desired performance. 
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