All images in this presentation are property of NASA and in the public domain.

Design Reference Missions and ISS as Analog for

Mars Transit

MIT Aerospace Human Factors Lecture 3

John B. Charles, Ph.D. chief scientist, NASA Human Research Program

Where to Next? The Flexible Path

Mars

Surface

- NASA Authorization Act of 2010 "Sec 202: HSF and Exploration Goals and Objectives"
 - Long term goal To expand permanent human presence beyond LEO and so where practical, in a manner involving international partners
 - Key objectives (as related to ISS as an analog for exploration):
 - Sustain the capability for long-duration presence in LEO
 - Determine if humans can live in an extended manner in space with decreasing reliance on Earth, starting with utilization of LEO infrastructure
- NASA established Human Exploration Framework Team (HEFT) in 2010 to develop insights for future human exploration missions esp. systems requirements and technology drivers required for mission success
 - Provided impetus of "capability driven framework"
 - Note: HEFT superseded by Human Architecture Team (HAT) in 2011.
- Results of these ongoing efforts are utilized in identifying technology investments and mission planning for across NASA

Capability Driven Exploration

Common Capabilities Identified for Exploration

Capability Driven Human Space Exploration

Capability Driven Architecture Elements (Building Blocks)

Ground

Operations

Commercial Cargo/Crew

SLS

MPCV

Robotic Systems

SEV

CPS

DSH

Advanced Propulsion

Destination Systems

Mission Operations

EVA

Systems

Technologies, Research, and Science

OCT Cross Cutting Technology Developments

HEO and SMD Cross Cutting Research & Science

Human Exploration Specific Research (such as ECLSS. EVA)

Human Exploration Specific Technologies

A Sequence for an Asteroid

NASA

Reference NEA Mission: DRM 34B (NEA 2008EV5 with SEP)

Mars Design Reference Architecture

Earth

-

Mars)

NASA

Near-Earth Asteroids, 6-month (12-month?) missions

Mars, 30-month missions

 Artificial gravity option under consideration for new DRM

www.nasa.gov/exploration/humanresearch

Exploration Mission Risks

Reference: Human Spaceflight Architecture Team (HAT)

ID	Exploration Mission RISK	ISS Demo Candidate (DRAFT)
M-EDL	EDL of large Mars payloads	
E-EDL	Earth re-entry at high velocities	
LV	Launch vehicle failures	
Lndr	Lander propulsion systems failure	
CSM	Long duration low/zero boiloff cryo-storage and management	Х
CFT	In-space cryogenic fluid transfer	Х
ISP	In-space propulsion failures	Х
A-ISP	Reliability verification of advanced in-space propulsion	
Env	Environmental risks: radiation, MMOD, dust, electromagnetic	Х
Dock	Docking/assembly failures	Х
Sys	Systems failures: ECLSS, power, avionics, thermal	Х
EVA	EVA system/suit failure	Х
Comm	Operations under time delayed communication	Х
Aut	Autonomous crew/vehicle operation	Х
Health	Crew health: behavioral, health care/remote medical, micro-gravity	X
SW	Software failure	X
Hum	Human error	X
ISRU	ISRU equipment failure: propellant, consumables	X

	ID	HAT Exploration Mission RISKS
	M-EDL	EDL of large Mars payloads
ĩ	E-EDL	Earth re-entry at high velocities
5	LV	Launch vehicle failures
1	Lndr	Lander propulsion systems failure
	сѕм	Long duration low/zero boiloff cryo-storage and management
	CFT	In-space cryogenic fluid transfer
	ISP	In-space propulsion failures
200	A-ISP	Reliability verification of advanced in-space propulsion
	Env	Environmental risks: radiation, MMOD, dust, electromagnetic
	Dock	Docking/assembly failures
	Sys	Systems failures: ECLSS, power, avionics, thermal
F	EVA	EVA system/suit failure
ĺ	Comm	Operations under time delayed communication
d,	Aut	Autonomous crew/vehicle operation
	Health	Crew health: behavioral, health care/remote medical, micro-gravity
	SW	Software failure
	Hum	Human error
		ISRU equipment failure: propellant,
	ISRU	consumables

Analogs and Risk Reduction

Evaluate proposed candidates -• Risk reduction,

- need, priority, feasibility • Analog integration
- [Are we using the right analog to buy
- down the risk?]

HAT

Candidate Analog Exploration Proposals

Analog Platforms

•Terrestrial Analogs DRATS, Haughton-Mars, Mars-500 •Partial Gravity NEEMO, NBL, bedrest •No gravity ISS

Why ISS as a Mars Analog?

- Crew durations that mimic Mars transit phase (approx 6 mos)
- Continuous operations in zero-g provides systems durations that span the Mars mission – validates system performance requirements
- Long duration "microgravity" environment pressurized and un-pressurized payloads
- Science laboratories from four international space agencies: US, Europe, Japan, Russia
- Life support, power, data, and facilities for 6 astronauts (subjects and operators)
- Ground control and on-orbit support for 24/7 operations

Potential Exploration Candidates for ISS Testing Roadmap

Human research on ISS supports crew health and performance for current and future space missions

Pre-screening
Exercise
Nutrition
Pharmaceuticals
Operational workarounds
Other countermeasures as needed

w.nasa.gov/exploration/humanres

ISS as an Exploration Test Bed - Objectives

- Evaluate new exploration technologies as they become available
- Advance preparations for crew autonomous operations for Mars or NEA exploration
- Exercise ground elements training and technology development

Long Term Goal

.....Conduct long duration Mars Transit and Landing Transition simulations using technology and operational tools & concepts developed and tested during previous On-Orbit and Earth-based Analogs

What can ISS offer to human research in a simulated Mars transit?

Strengths

Weightless duration comparable to oppositionclass mission Earth-to-Mars and Mars-to-Earth transits Physiology and countermeasures development and validation High-fidelity representation of astronauts in a spacecraft in the flight environment with operational tasks and facing meaningful risks

- Behavioral health and performance
- Human factors

<u>Weaknesses</u>

- Shielded from deep-space radiation environment
- Proximity to Earth
 - Minimal time delay in communications
 - Frequent abort opportunities
 - Earth is always just outside the window

Exploration-related NASA biomedical planning

"Mars Surface Analog Project"

- NASA JSC, 2002-2003
- Three workshops of long-duration astronauts, flight medicine specialists, biomedical researchers
- Discussed capabilities of astronauts on Mars immediately after 6month transit
- ISS Expedition 6, May 2003
- Bloomberg, Functional Task Test
- HRP established in 2005 for Mars-focused human research and technology

"ISS Crew Increment Durations: Extension and Simulation of Mars Missions"

- NASA HRP/JSC/ARC, Sep. 2009
- A workshop of NASA subject matter experts
- How to extend ISS crew increments to 9-12 months?
- How to use ISS to mimic a Mars mission?

"ISS as Testbed for Analog Research (ISTAR)"

- NASA-wide since Sep. 2010
 - HRP planning meeting "Toward a unified HRP perspective on ISS as Mars transit analog," Jan. 2011
 - Bill Gerstenmaier quoted in *Aviation Week & Space Technology*, Mar. 7, 2011
- Early ISTAR emphasis includes time-delay, crew autonomy aspects of simulated Earth-Mars transit

Use of International Space Station to Simulate Interplanetary Transit: Human Health and Performance Applicability of Current Increment Durations and Extended Durations

John B. Charles NASA Johnson Space Center Houston, TX 77058

Maneesh Arya Wyle Integrated Science and Engineering Houston, Texas, USA

Craig E. Kundrot NASA Johnson Space Center Houston, TX 77058

Exploration Capability Phased Development Strategy

International Space Station Test bed for Analog Research (ISTAR)

- ISTAR is a joint collaboration project between NASA's Exploration and International Space Station (ISS) Programs
 - An ISTAR Integrated Product Team (IPT) has been established
 - NASA Multi-center team including Exploration Systems, Exploration Analogs, Flight Crew, Human Research Program, Mission Operations, ISS Utilization, Engineering
 - Defines and ranks Exploration Development Test Objectives (xDTOs)

ISTAR xDTO categories established to mitigate Key Exploration Risks and answer Architectural Questions

- Human Research including Behavioral, Medical, and Performance
- Autonomous Operations
- Mission Planning & Execution
- Exploration Technology Demonstration

ISTAR collaborates with NASA Earth-based analogs

- DRATS Desert Research and Technology Studies
- NEEMO NASA Extreme Environment Mission Operations
- PLRP Pavillion Lake Research Project
- Space Station Training Facility (SSTF), Neutral Buoyancy Lab (NBL), MCC (!), etc.

4 Phased Approach for ISS as Mars or NEA Testbed

Phase	Major features of plan
A Eval ISS capabilities [2011]	ISTAR will use planned ISS operations and activities for Mars and NEA Risk Abatement. Operational, experimental protocols to protect safety, health, efficiency of ISS crewmembers are evaluated for their applicability to Mars (and NEA) missions. Other analog environments are reviewed to ensure maximum utilization & lessons learned prior to manifesting on ISS.
B Short-period simulations & experiment packages [2012-2013]	An initial Mars transit mission simulation is planned for Summer 2012. This simulation will include evaluation of countermeasures for communications delays, medical and behavioral experiments, technology / process improvement research and human/robot interactions. Crew procedures and MCC oversight will be modified to provide more realistic experience in autonomous operations to both crew and ground personnel. Emphasis on crew and ground behavioral and performance measures, autonomy. Architectural risk mitigation limited due to hardware development, processing and manifesting timelines.
C Longer-period simulations & experiment packages [2014-2016]	Longer periods of autonomy will be simulated. Comm delays will be used to simulate those that will be encountered in Mars transitions. Crew procedures and MCC oversight continue to be modified to provide more realistic experience in autonomous operations to both crew and ground personnel. Other technology and process improvement research experiments will also be conducted. Increasing emphasis on DTOs for hardware, subsystems, food systems, logistics, etc. May include IV and EV experiments. Post-landing multi-day activities will be conducted.
D 6 month mission and crew [2016-2020]	Transits to Mars (and NEAs) will be simulated as rigorously as feasible in low Earth orbit with existing infrastructure. Progressively increasing communications delays may be introduced, reaching the maximum delay after 6 months to mimic Mars proximity. On-board science operations to be compatible with Mars-like mission parameters. Emphasis gradually shifting to efficacy of countermeasures for behavioral, health and performance. Subsystem level hardware analysis, e.g. ECLSS, EPS, etc. Post-landing exploration mission analogs will be expanded.

ISTAR - 5 Year Strategic Plan

Utilizes phased approach to reduce Exploration Risks, answer Architectural Questions, and execute long-duration Exploration Mission Simulations

- Begin with short duration ISTAR Analogs to test risk mitigating technologies & operational tools
- Establish baselines for crew performance, behavior, and medical procedure; develop and test countermeasures
- Increase periods of Crew/Vehicle Autonomy Simulations
 - Crew procedures & Mission Control operations will be modified to provide more realistic experience to crew/ground control personnel.
 - Perform Comm Delays leading to full (voice/data/command) Mars Transit-delays by 2016 (<u>Notional</u>) ~ 12 minutes each way
- Post-landing exploration mission analogs will be added eventually
- Continue development of ISTAR Analog Groundrules & Constraints
- Continue working with technology & science experiment developers of risk mitigating xDTOs candidates and map them to future ISS Increments
- ISTAR 5 Year Plan will be integrated with larger multi-year plan for all Exploration Analogs

Assumptions

No Mars Mission related test will place ISS vehicle or astronauts at risk

- Develop rules for simulation breakouts for ISS nominal events and anomalies, while maximizing continuous simulation time
- Assume an ISS flight control team for comm, timelines, systems experts
- Effects on "non-Mars" payloads to be minimized
- Agreement by, and involvement of, all ISS partners is sought
- Use current Soyuz crew rotation scheme, and preserve or accommodate original ISS visiting vehicle schedule
- Involve flight crewmembers <u>and</u> ground elements (possibly up to and including families) <u>and</u> technology development
- This will not be a one-time event
 - Multiple opportunities throughout ISS operational life
 - Initial tests: days to weeks to evaluate test protocols
 - Later: weeks to months to evaluate complex FTO's
 - Exploit early (low cost or no cost) opportunities for ISS to advance preparations for Mars and NEO missions

Variation in Distance and Communications Delay Between Earth and Mars (example: 2001-2005)

- Human Research Program (HRP) is developing a comm delay research investigation JSC-HRP-076 [Voice Comm Delay] to fly on Incr 35/36.
- In preparation for HRP comm delay research, the ISTAR team has prepared a proposal for Incr 31/32 and 33/34 to evaluate operational countermeasures for the crew and ground to use when voice comm is not available [video clips, text, voice sound clips (eg: MP3 files)]

Objectives for Incr 31/32

- Evaluate comm-delay countermeasures for use in long duration zero-g missions
- Begin training the FCT for more autonomous crew operations

ISTAR 1 xDTOs Planned for ISS Increment 31-32 (Mar – Sep 2012)	Risk Reduction				
ISTAR ID Proposer xDTO Name Description of Candidate	Aut Ops	EVA	Sys Fail	Env	Crew Health
JSC- HEDS-001 HEDS Communications Delay Countermeasures Evaluate countermeasures for voice communication delays. Identify what types of tasks are most affected by a comm delay and which countermeasures provide the best results. Participants include flight crew and ground crew. Survey the flight and ground crews in flight for lessons learned that can be incorporated for additional testing later in the increment.	Х				
JSC-011JSC/SF2Active Shielding Proof of ConceptRadiation Shielding:Gather real-time in-orbit data on power consumption and particle trajectories to assess the feasibility of implementing a large-scale magnetic field to shield crew. No new hardware required. Will utilize Alpha Magnetic Spectrometer (AMS) measurements. [Requires PI approval]				х	х
JSC-017ARCSPHERES Free Flyer Simulated EVA InspectionThe Human Exploration Telerobotics project is working to upgrade the capabilities of the Synchronized Position HoldEngage Reorient Experimental Satellites (SPHERES) to enable interactive control (with crew or from the ground) andutilize an integrated vision system to inspect small IVA features to simulate EVA inspections for MMOD damage.Demonstrate how robotic inspection tasks can reduce the time required for inspections that are normally conductedby the crew.	х	x			
JSC-091JSC/ER4Robonaut 2 Simulated EVA Routine and Emergency OperationsRobonaut 2 (R2) brings an unprecedented level of robotics dexterity to ISS. Initially, R2 will earn its stripes in the IVA environment and a fixed base progressing over time toward mobility and EVA. In preparation for transitioning to an EVA version of R2, it is proposed to conduct EVA-like tasks using the IVA R2.	X	X			

www.nasa.gov/exploration/humanresearch

-

15 Sep. 2011

Phase A (Inc 31/32, Inc 33/34):

- Focus on how to deal with <u>communications delays</u>
 - Methods, countermeasures for communications delays
 - Begin developing criteria for <u>autonomous</u>ly executable procedures
 - Countermeasures tested under normal communications environment (no delay)
- Utilize USOS crew and MCC-H (see xDTO JSC-HEDS-001)
- ISTAR IPT to collect and review results and determine when ready to proceed to next Phase
 - Allow time to implement lessons learned from Phase A for Phase B
 - Review results and determine anything needed for Phase B
- Phase B (Inc 35/36...):
 - Continue testing from Phase A plus <u>comm delay</u>
 - Support for HRP <u>comm delay</u> investigations
- Phases C and Beyond: Increase complexity and depth of communications delays more autonomy

Timeline of Research on Autonomy: NASA Efforts

NASA

Analog	High Autonomy Condition	Low Autonomy Condition					
NEEMO	Measures:						
Haughton Mars- Project	Profile of Mood States Group Environment Scale						
Mars 105 Study	•Conesion •Work Environment S	Scale					

Across these analogs, results suggest that participants react positively in autonomous environment

Results also suggest some negative affective outcomes for some of the ground controllers that participated in these

- May suggest that autonomy may have adverse impacts on those that are affected by changes in autonomy during a space mission, especially if participants experience a lack of job clarity and role assignment
- Thus, important to consider space crews AND ground control

Other Relevant Evidence

	Participants	Protocol	Measures	Outcomes
MARS 105 (April 2009 – July 2009)	6 crewmembers in habitat (4 Russians and 2 Europeans); 19 mission control	First 10 weeks of 15 week protocol, real time com; last 5 weeks, 40- minute two-way with outside (also varied autonomy over schedule)	Weekly POMS, GES, WES, subjective performance assessment	 Communication delay was feasible to implement – no adverse outcomes Crewmembers found high autonomy to be positive, depending less on others for directions Russian crewmembers reported increased work pressure Mission control reported more tension, confusion and less task orientation No findings reported specific to communication delay
MARS 500 (June 2010 – Nov 2011)	6 crewmembers in habitat (three Russian, two European and one Chinese); mission control	First and last month, real time audio with mission control. For remaining time, only written com w/ mission control, with delay up to 24 minutes (delay varies from 8 sec to 24 minute two-way, with maximum delay on flight day 351; connection disruptions)		Ongoing
HMP – Telemedicine (2007)	Case study evaluating simulated appendectomy through telemedicine with a 15 minute, one- way delay in com bet. locations	Remote expert provided video instructions via 15 minute transmission delay to site. Non- expert conducted operation and provided video of procedure back to expert via 15 minute transmission delay to consulting location.	Subjective assessment of operations	 Delay during operative procedure feasible Total time required to perform appendectomy was 2.25 h, which included 1.5 h of built-in communication delays The simulated appendectomy was performed by a minimally trained operator using just-in-time education combined with remote asynchronous guidance delayed for extreme communication distances
NEEMO 12	4 NASA crewmembers and 8 "topside" personnel	five days of low autonomy and five days of high autonomy (where crewmembers had more flexibility to plan their own work schedule and experienced a 40- minute two-way communication delay with mission control)	At the middle and end of mission, completed a questionnaire containing many of the subscales from the POMS, GES, and WES.	 High autonomy condition was successfully employed in NEEMO 13 with no adverse results. Confusion increased for topside personnel during high autonomy condition No findings reported specific to communication delay Anecdotal report from NEEMO coordinator that NEEMO commander and crew demonstrated high compliance to following communication delays in accordance with protocol

NASA

15 Sep. 2011

www.nasa.gov/exploration/humanresearch

	Participants	Protocol	Measures	Outcomes
NEEMO 14	N/A	N/A	N/A	Study protocols did not include communication delay as independent variable; crew however tested feasibility of communication delay for future studies Anecdotal reports from NEEMO indicate that NEEMO commander and crew tested communication delay casually in accordance with no formal protocol
Laboratory Simulations John Hopkins (2004-2008)	Three-person mixed gender crews conducting a computer-based task (collecting 'samples')	Study A: drop in both audio and text com. Study B: three minute delay in text and whiteboard com and five second delay in audio.	Total value of collection samples	Study A: drop in total communication lead to decrease in performance Study B: 5-sec audio delay lead to decrease in performance Seeing trend of text/written com preferred over audio. Considerations: w/i crew interdependency and unanticipated communication changes

These investigations demonstrate:

- It is feasible to implement communication delay in space analogs
- Additional investigations are needed to accurately characterize the impact of a systematic communication delay on performance
- Accurate selection criteria and "communication milestones" (designated times where necessary information is relayed to mission control) can offset adverse outcomes (Otto, HMP Telemedicine)
- Essential to isolate variables to minimize confounds and provide more conclusive results; lack of findings specific to communication delays in RCS-105 and NEEMO 12 due to varying other criteria
- Participants should be "on board" with the protocol and attempts should be made to promote perception of "bounded autonomy" and/or communication delay (e.g., approach to communication delay varied between NEEMO 12 and NEEMO 14. NEEMO 12 provided clear protocol and buy-in from crew).

Bounded Autonomy: involves the conditions, constraints, and limits that influence the degree of discretion by the individual and [crew/team] over their choices, actions and support in accord with standard operating procedures.

Important tasks to target:

Overall, results suggest difference in performance cohesion (and other team results) between low and high autonomy conditions

ISTAR - ISS International Partner Participation

Some ISTAR xDTOs will seek International Partner (IP) participation or use of IP facilities

- "Behavioral" and "Crew Autonomy" investigations may impact visiting vehicle or spacewalk (EVA) scheduling
 - Communications/Data delay xDTOs could impact other operations (e.g. payloads)
 - Multilateral agreements will be required
- New crew planning and execution tool xDTOs are planned
 - All ISS Partners' Mission Control Center (MCC) procedures and tools for planning and execution are integrated and must stay in sync
- Post-Landing (if it affects landing site ops or crew return)

ISSP has initiated discussions with IPs to seek their cooperation

- Positive but reserved initial reaction received at ISS multi-lateral forums
- ISS IPs have expressed interest in executing their own xDTOs
- Process to integrate IPs' initiatives is in development

National Aeronautics and Space Administration

ISTAR International Space Station Test Bed for Analog Research

Design Reference Missions and Architectures

uman & Architectural Risks

RISK – Human Spaceflight Architecture Team (HAT)

EDL EID Architectural Questio

 V
 Lig
 What is the safet way to approach a small/ton-cooperative/norm

 Indr
 Lig
 What is the safet way to approach a small/ton-cooperative/norm

 Mark
 Mark is the safet way to approach a small/ton-cooperative/norm
 With it is the safet way to approach a small/ton-cooperative/norm
 With it is the safet way to approach a small/ton-cooperative/norm
 With it is the safet way to approach a small/ton-cooperative/norm
 With it is the safet way to approach a small/ton-cooperative/norm
 With it is the safet way to approach a small/ton-cooperative/norm
 With it is the safet way to approach a small/ton-cooperative/norm
 With it is the safet way to approach a small/ton-cooperative/norm
 With it is the safet way to approach a small/ton-cooperative/norm
 With it is the safet way to approach a small/ton-cooperative/norm
 With it is the safet way to approach a small/ton-cooperative/norm
 With it is the safet way to approach a small/ton-cooperative/norm
 With it is the safet way to approach a small way to approach

2012

"Using ISS as an analog test platform to develop and demonstrate new technologies and operational concepts. ISTAR xDTOs mitigate the risks and challenges facing astronauts on long distance voyages to asteroids, planet Mars and perhaps destinations even further from Earth."

ISTAR Process

NASA

- xDTO Solicitation
- xDTO Screening
- Increment Planning
- xDTO Candidates
 Selection
- Collaboration with Earth based Analogs

Earth-based Analogs

National Aeronautics and Space Administration

The End.

Questions?

Background

- Relationship to NASA 2010 Authorization Act
- Capability Driven Exploration
- Common Capabilities Identified for Exploration
- Mars Design Reference Architecture
- Exploration Mission Risks
- Analogs and risk reduction
- Why ISS as a Mars Analog?
- ISS as an Exploration Test Bed Objectives
- Exploration Capability Phased Development Strategy
- Potential Exploration Candidates for ISS Testing Roadmap
- International Space Station Test bed for Analog Research (ISTAR)
- 4 Phased Approach for ISS as Mars or NEA Test bed
- ISS Exploration Testing Flow
- Exploration mission plans for Summer 2012
- Future Plans

Increments 33 & 34 RP Development Planning

Example – Page 1a (Investigation Summary Overview)

Miniature Exercise Device (MED)

RESEARCH OBJECTIVES:

- The Miniature Exercise Device will demonstrate key motion system technology required to reduce the volume and weight of countermeasure equipment that will be needed for long term space flight.
- The goal is to develop countermeasure systems that are small and an order of magnitude lighter than existing systems.

OPERATIONS:

- The ISS Crew will train for installation and operations of the MED. This training is expected to be about 2 to 4 hours.
- The crew will install the MED device on the Advanced Resistive Exercise Device (ARED).
- The crew will use the MED at various load levels and modes of operation. Data will be recorded by the instrumentation on the MED and sent to the ground for evaluation.
- The crew will report observations on the performance of MED to the ground team.
- The ground team will analyze the data and determine control parameter adjustments as needed to tune the MED
- After making changes to the control parameters the crew will use the MED at various load levels and modes of operation.
- This cycle is repeated for a total of not less than 3 sessions.

National Aeronautics and Space Administration

Autonomy 'Tutorial': Mars/ISS Analog Mission

BHP Research Element

Autonomy Literature Review

Human Research Program Behavioral Health & Performance Element Space Medicine Division

March 24, 2010

Cristina Rubino, M.A. Kathryn E. Keeton, Ph.D.

National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas

Behavioral Health & Performance Research Element

Human Research Program

Space Medicine Division

Team Gap 6: Given the context of long duration missions, what are the optimal ways to support and enable multiple distributed autonomous teams to support task performance, teamwork, and psychosocial performance?

Decision Point: Are additional studies are needed in regards to Autonomy?

Summary:

The Behavioral Health & Performance Element (BHP) is one of six elements within the Human Research Program and is comprised of four Risks, namely the Risk of Behavioral Conditions, the Risk of Psychiatric Disorders (<u>BMed</u>), the Risk of Performance Decrements due to Inadequate Cooperation, Coordination, Communication, and Psychosocial Adaptation within a Team (Team), and the Risk of Performance Errors due to Sleep Loss, Circadian Desynchronization, Fatigue, and Work Overload (Sleep).

The Team Risk is comprised of four primary risk factors: cooperation, coordination, communication, and psychosocial adaptation. These primary risk factors represent the dimensions of teamwork as well as the component of individual and team adaptation to the unique spaceflight environment. Within the Team Risk there are also specific gaps that represent the areas in which critical knowledge is unknown or an adequate mitigation strategy is not yet developed. As long-duration missions are expected to have increased autonomy as a

- Continue near term ISTAR efforts to mature exploration capabilities via DTO's on ISS
 - DTO's are being proposed for future Increments
- More complex system level candidate proposals, from Candidate Roadmap, are being developed jointly between Exploration and ISS teams
 - White papers are being developed for EVA, ECLSS, Communication and Exploration Test Module (ECD = Fall 2011)

Overview of Hypothetical Mars Expedition

Overview of Hypothetical NEA Expedition

NEA expeditions

- Validate technologies and procedures for Mars missions
- Acquire additional unique deep-space data
 - Dust on and near asteroids
 - Near-NEA radiation environment
 - Behavioral health & performance

ISS expeditions of ~6 months duration simulate ~6-month+ Earth-to-NEA round trip

- 0-g baseline
- experience base

Earth-to-NEA transit: ~3-4 months

NEA surface ops: ~ 2 weeks

NEA-to-Earth transit: ~1-3 months

ISTAR - Phased Approach for ISS as Exploration Test Bed

Phase	Major features of plan						
A Eval ISS capabilities [2011-2012]	Primarily current ISS operations and activities. Operational, experimental protocols to protect safety, health, efficiency of ISS crewmembers are evaluated for their applicability to Mars (and NEO) missions.						
B Short-period sims [2013-2014]	Discrete Mars-forward activities inserted, such as intermittent multi-day periods of different degrees of bounded autonomy by ISS crew, including communications delays typical of Mars missions. Sets of assigned tasks to be accomplished with minimal intervention by MCC, but few alterations to on-board procedures and MCC monitoring of ISS systems. Minimize impact to non-Mars onboard science operations. Flight rules specify threshold at which simulation is broken in case of emergency or system malfunction. Add "exploration" tasks to post-landing timeline.						
C Longer-period sims [2014-2015]	More rigorous, longer periods of autonomy. Crew procedures, MCC oversight modified to provide more realistic experience in autonomous operations to both crew and ground personnel. Some impact to onboard non-Mars science operations. Post-landing multi-day exploration analogs.						
D 6 month mission and crew deconditioning [post 2015]	Transits to Mars (and NEOs) simulated as rigorously as feasible in low Earth orbit with existing infrastructure. Progressively increasing communications delays may be introduced, reaching the maximum delay after 6 months to mimic Mars proximity. On-board science operations to be compatible with Mars-like mission parameters. Expanded post-landing exploration mission analogs						

Notional Architecture Elements

Technology Applicability to Destination (1)

		LEO (31A)	Adv. LEO (31B)	Cis-Lunar (32A,B & 33A,B)	Lunar Surface - Sortie (33C)	Lunar Surface - GPOD (33X)	Min NEA (34A)	Full NEA (34B)	Mars Orbit	Mars Moons (35A)	Mars Surface (35B)
	LO2/LH2 reduced boiloff flight demo										
	LO2/LH2 reduced boiloff & other CPS tech development										
	LO2/LH2 Zero boiloff tech development										
	In-Space Cryo Prop Transfer										
	Energy Storage										
	Electrolysis for Life Support (part of Energy Storage)										
	Fire Prevention, Detection & Suppression (for 8 psi)										
	Environmental Monitoring and Control										
	High Reliability Life Support Systems										
	Closed-Loop, High Reliability, Life Support Systems										
	Proximity Communications										
	In-Space Timing and Navigation for Autonomy										
	High Data Rate Forward Link (Ground & Flight)										
	Hvbrid RF/Optical Terminal (Communications)										
Π	Behavioral Health										
	Optimized Exercise Countermeasures Hardware										
	Human Factors and Habitability										
	Long Duration Medical						Net		Duck		
Y	Biomedical countermeasures						NOT		Prob	abiy	
	Space Radiation Protection – Galactic Cosmic Rays (GCR)						applicat	ile ili	requ	reu	
	Space Radiation Protection – Solar Proton Events (SPE)						May be		Requ	ired	
	Space Radiation Shielding – GCR & SPE						required	1	techr	nology	
	Vehicle Systems Mgmt										
	Crew Autonomy										
	Mission Control Autonomy										
	Common Avionics										
	Advanced Software Development/Tools										
	Thermal Management (e.g., Fusible Heat Sinks)										
	Mechanisms for Long Duration, Deep Space Missions										
	Lightweight Structures and Materials (HLLV)										
	Lightweight Structures and Materials (In-Space Elements)										

- BHP developed a call to study autonomy for spaceflight in a NRA that was posted this summer
- Focused on mitigation strategies for space crew as well as ground control

MIT OpenCourseWare http://ocw.mit.edu

16.400 / 16.453 Human Factors Engineering Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.