Simulating and Testing Ice Screw Performance in the Laboratory

Final Presentation 04/28/03

Stefano A. Alziati Warren L. M. Bennett

Advisors: Dr. Kim Blair Dave Custer

Introduction

- Project Motivation
- Statement of Problem
- Description of Experiment
- Results & Discussion
- Conclusion
- Questions

Ice screw being pulled from Specimen

Project Motivation

- The attraction of extreme sports is aiding its rapidly increasing popularity.
- Present safety equipment ineffective bore accidents
- Project will be first step towards safer ice protection
- Very little published research available:
 - Harmston & Luebben Study, 1997

Primary Hypothesis & Objectives

• Primary Hypothesis:

The structure and morphology of different types of ice formations can be characterized and simulated in a lab to provide a "test bed" useful for assessment of ice screws.

• Primary Objective:

To develop a repeatable means of reproducing ice in a lab and to characterize this ice using rheological data.

• Success Criteria:

- a) If hypothesis 1 is true, then success is characterizing the critical properties of ice.
- b) If hypothesis 1 is false, then success is identifying why ice cannot be made successfully.

Secondary Hypothesis and Objective

• Secondary Hypothesis:

If the first hypothesis is true, using the simulated ice, the variables affecting screw placement safety can be determined.

• Secondary Objective:

To use laboratory created ice to test simulated falls on ice screws in a manner useful to climbers.

• Success Criteria:

If hypothesis 2 is true, then success is the development of a test for ice screw safety that produces consistent and repeatable data for differing ice types.

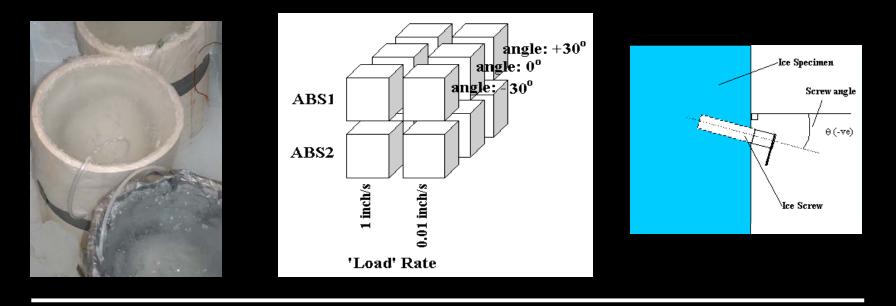
Description of Experiment

Stage 1: The characterization of ice

- Produced different types of ice using different methods.
- Ice types chosen on ease of production and difference in characteristics

Experiment (cont'd)

Apparatus setup for stage 1

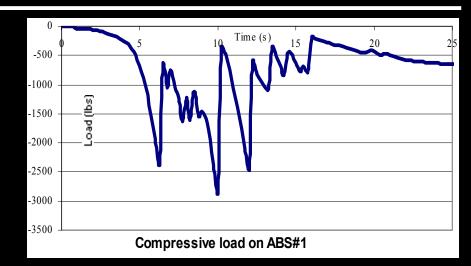

Preparing specimen for test

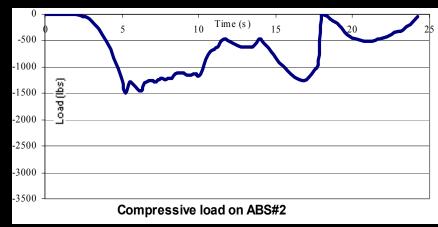
Experiment (cont'd)

Stage 2: Testing of ice screws in ice

- Produced the two ice types on a larger scale.
- Placed ice screws at different angles into each specimen and pulled at different load rates.

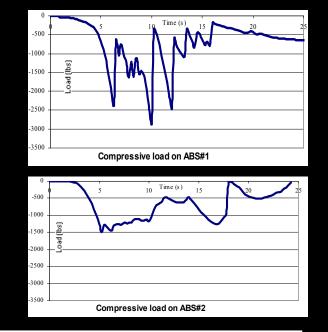
Experiment (cont'd)


Stage 2 Test Rig


Close-up of Ice Screw/MTS interface

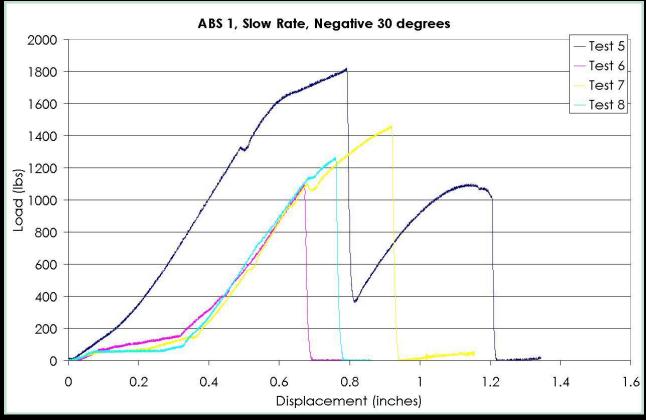
Compressive Tests:

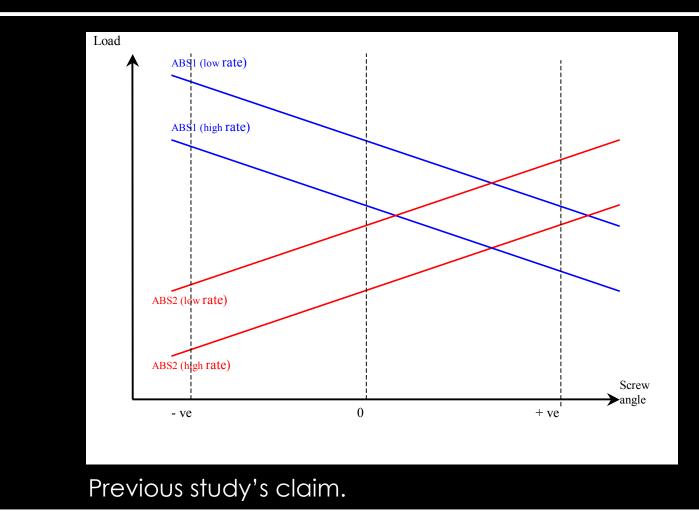
- ABS 1:
 - Compressive strength:
 2203 lbs
 - Std Dev: 638 lbs
- ABS 2:
 - Compressive strength:
 1802 lbs
 - Std Dev: 618 lbs
- F-Stat: **9%** chance of ABS1 being different to ABS2

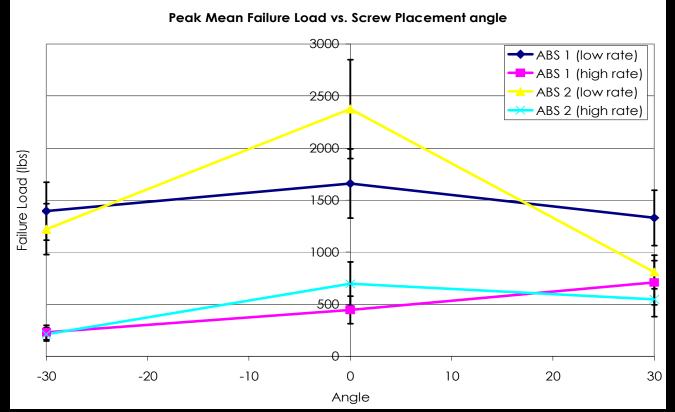


Results – Stage 1 (cont'd)

- Density:
 - ABS1: 913 kg m⁻³
 - ABS2: 804 kg m⁻³
 - F-Stat: 97% chance of ABS1 being different to ABS2.

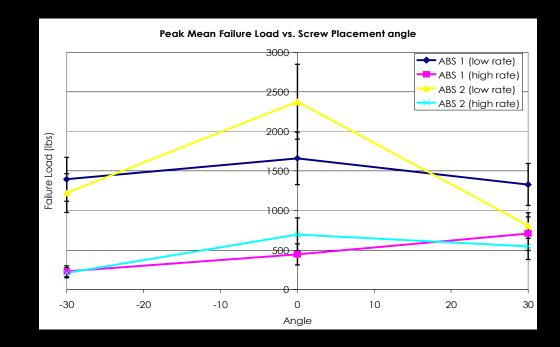

- Compressive Test:
 - Means are different, however this is not statistically significant
 - Qualitatively different after testing
 - ABS1 still sticks to fingers
 - ABS2 feels wet to touch
 - Graphs are different:
 - ABS1 peaks sharper
 - ABS2 peaks more rounded


- Density:
 - Shows definite difference between ABS1 and ABS2.
- Differentiated appearance between ABS1 and ABS2
- Relation to Hypothesis 1:
 - Valid hypothesis. Structure and morphology of different ice types were simulated and characterized in the lab successfully.



• Typical ice screw test data set.

ABS


Results from the experiment.

- Loading rate:
 - Loading rate more significant than screw placement angle or ice type.
 - Very useful for climbers.
 - loading rate can be controlled, using ropes that can stretch more and/or using a friction device for slowing fall.
 - No ice screw broken. Possibly due to:
 - development in ice screws over last six years
 - the length of screw
 - Temperature of the ice Screws
 - Loading rate of MTS machine not sufficient for breakage

- Screw placement:
 - Not much of an influence on the load taken. In general, zero angle is the one that will hold the most.

- Relation to Hypothesis:
 - Hypothesis proved.
 - Variables affecting screw placement safety identified and tested.
 - Ice type, loading rate and screw placement angle all affect safety.

Conclusion

- Compressive Testing is not necessarily a valid test to differentiate between ice types.
- Fall Rate significantly affects failure load
- Screws safest at zero degrees
 - Previous work not supported by study

Further work

- A test for assessing ice screw performance has been developed. Further improvements and developments possible:
 - Research on methods for making more different ice types.
 - Determination of other tests that can characterize ice
 - Research on the effect of screw length on load.



Acknowledgements

- Advisors Kim Blair & Dave Custer
- 622 Faculty Staff
 - Earl Murman, Ed Greitzer & Jennifer Pixley.
- Lab staff:
 - Dick Perdichizzi, John Kane, Don Wiener, Dave Robertson & Paul Bauer.

Questions

ABS

Ісе Туре	Rate	Angle	Mean	Std. Dev.	SD/ mean
ABS1	0.01	-30	1394	309	22%
ABS1	0.01	0	1660	294	18%
ABS1	0.01	+30	1329	322	24%
ABS2	0.01	-30	1220	410	34%
ABS2	0.01	0	2375	75	3%
ABS2	0.01	+30	810	243	30%
ABS1	1.0	-30	229.75	47	21%
ABS1	1.0	0	446	142	32%
ABS1	1.0	+30	708	481	68%
ABS2	1.0	-30	211	142	68%
ABS2	1.0	0	697	25	4%
ABS2	1.0	+30	547	276	51%

ABS