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Learning Objectives 
The main objectives for my learning in Satellite Engineering were to do significant 
research on many spacecraft subsystems, learn how they work together, improve my 
technical writing skills, and improve my abilities to work in a group.  Other learning 
objectives included improving my research abilities and learning more about tradeoffs 
between various spacecraft subsystems.  Finally, I desired to share my knowledge and 
experience from working for the previous two years at Boeing Satellite Systems in El 
Segundo, CA with other students in the class to help them understand the “real life” 
aspects about satellite engineering. 
 

Reflections 
In working on the various problem sets throughout the semester, I had the opportunity to 
perform in-depth research on a variety topics related to spacecraft engineering.  I 
researched topics such as lasers, space debris, how to support human life in space, 
attitude control systems, spacecraft shielding from radiation and debris, and cost 
modeling.  Before enrolling in 16.851, I had limited knowledge on these topics, but I now 
have a more in-depth understanding of them. 
 
Working in a different group for each problem set was a challenge, but it definitely paid-
off in the end.  I had the experience of working with new people every two weeks on a 
project.  This forced me and other students to meet new people and learn how to schedule 
meetings, tasks, and delegate work under somewhat stressful circumstances.  Friends 
were made as a result of this process as well as other contacts which may be beneficial in 
the future. 
 
I had intended to put many of my engineering skills learned while working at Boeing to 
use in Satellite Engineering, but that turned out not to be the case.  Other than using my 
CAD skills, many of my skills at structures and antenna design were not of any use in the 
problem sets for this class. 
 
Overall, I learned a great deal about spacecraft systems engineering from 16.851 as well 
as gained valuable experience from the class.  This portfolio contains the problem sets I 
was involved in working on as well as a summation of the software modules created.  
Finally, this portfolio details useful references found during the researching phase of each 
problem set. 
 
 



Problem Set 1:  Power System Design and Trade Study 
for a Satellite Killer Spacecraft 
 

Summary 
The purpose of this problem set was to investigate the power system design trades 
involved in the engineering of a satellite designed to disable enemy satellites in Low 
Earth Orbit (LEO) using a laser.  Based on the power requirements of the laser and the 
constant power requirements for the remainder of the spacecraft, the solar arrays and 
batteries for the spacecraft were sized. 
 
Various laser firing scenarios and battery/solar array designs were investigated to see 
which power system design is the most mass efficient.  The number of laser firings per 
orbit was varied.  Also, the possibility of only sending power to the laser from the 
batteries versus generating enough power constantly from the solar cells such that no 
battery power was required was investigated. 
 

Results 
After the analysis was complete, it was found that the optimal power system 
configuration was to draw 100% of the laser firing power from the batteries.  In addition, 
it was determined that the lowest power system mass per laser firing was to fire the laser 
four times per orbit rather than one or two firings. 
 

Useful References 
This problem set involving only one spacecraft subsystem relied almost completely on 
Space Mission Analysis and Design by Wertz and Larson.  Chapters 10 and 11 were used 
extensively for battery sizing, solar cell sizing, and other power system design 
procedures. 



Power System Design and Trade Study for a Satellite Killer Spacecraft 
 

Names withheld 
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 

 
 

A military “Satellite Killer” spacecraft is to be put into a Low Earth Orbit at an altitude of 600 km. It 
will have an average power requirement of 600 W during daylight and eclipse. In action it should be able to 
fire a 10 kW laser at a target enemy satellite in a similar a LEO. It is to be operational for five years. 

 
First determine how the laser could be used to disable the target satellite. Next, investigate various 

power system designs that meet the requirements, taking into account the degradation of the system over 
mission duration. Compare different power system designs and options and choose one that realizes the best 
compromise between the following factors: mass, and frequency of firings. Ignore orbit adjustment 
requirements to maneuver the “killer” spacecraft within striking range of its target. Also, ignore any laser 
refueling requirements and any laser tracking/pointing requirements. 

 
 
 

Nomenclature 
 

ACL = Solar array area required for charging 
batteries with power to fire laser 

APL = Solar array area required for powering 
laser directly 

Asa = Solar array area required to power satellite 
(not including laser) for one full orbit 

Atar  = Area of the target spotted by the laser  
Cr = Required battery capacity 
Ctar  = Average calorific capacity of the target  
DOD  = Battery depth-of-discharge 
Ecl = Energy required from solar cells to charge 

up laser batteries between two firings  
Elaser = Energy required to fire laser 
etar = Thickness of the target spotted by the laser  
fE = Eclipse fraction 
h = Altitude of Satellite Killer spacecraft 
Id = Inherent degradation of solar array 
LD = Lifetime degradation of solar array 
ma = Solar array mass 
mbatt = Mass of batteries 
n = Transmission efficiency between batteries 

and laser (assumed to be 0.9) 
N = Number of batteries 
P = Orbital period 
PCL = Power output by solar arrays to charge 

batteries used by laser 
Pd = Average power required during “day” 
Pe = Average power required during eclipse 
Plaser = Power of the laser  
P0 = Solar array power output 
Psa = Required solar array power for average 

S/C power for one orbit 
R = Radius of Earth 

tc = Battery charging time 
tcl = Laser battery charging time  
Te = Eclipse time 
Td = Time the S/C is in the sun (“day” time) 
tf = Laser firing time  
Xcl = Efficiency of electrical path from solar 

arrays to batteries  
Xe = Efficiency of electrical path from solar 

arrays to batteries and to laser 
Xd = Efficiency of electrical path from solar 

arrays to laser 
∆Ttar  = Temperature by which the target is heated 

up  
θ = Angle of incidence of the sunbeams on the 

solar cells 
β = Angle between the sun and orbit plane 

(Beta angle) 
µ = Gravitational constant * Earth’s mass 

(constant = 3.986 x 105 km3/s2)  
 
 

Introduction 
 
This paper answers the above question by designing 
the “best” power system for the Satellite Killer 
spacecraft.  Our major assumptions are given in the 
question.  Other assumptions are mentioned in the 
document as they are needed. 
 
This solution is primarily concerned with designing 
the power system for the Satellite Killer spacecraft.  
The design of the laser and supporting hardware is 
not the focus of this paper.  However, an attempt was 
made to make the laser data used in the design of the 
power system as realistic as possible. 



Our solution to the proposed question is that a power 
system comprised of solar arrays and batteries is the 
best choice for the Satellite Killer.  In addition, the 
most efficient use of mass for this power system is 
determined.  This directly influences the laser firing 
rate per orbit.  A firing rate of 4 per orbit was found 
to be the most efficient use of the Satellite Killer, 
based on our assumptions. 
 
 
Use of the Laser: General Considerations 

 
Lasers are now commonly used in industry to cut 
metals or other materials. To do so, the beam is 
focused to create a tiny spot of a power density 
greater than 100 kW/cm2. Such a power density 
requires a focus on the target that cannot be achieved 
if the target is not close enough to the laser source. 
This is not the case for the “Satellite Killer”: it will 
be shooting at its target from a much greater distance.  
 
The laser would not be used to damage the target in 
the way an industrial laser does. Instead, it will be 
used to heat up a larger portion of the target with a 
smaller power density than the industrial application, 
but over a much longer period of time. This is to be 
described later in a more quantitative way.  
 
The equation of heat transfer from the laser beam to 
the target is the following:  
 
 tartartartarflaser eATCtP ∆=  (1)  
 
It has been assumed here that all the power from the 
laser source is transferred to the target. The loss of 
energy of the target by radiation has also been 
ignored, which will be justified by the value of Atar. 
Ctar will be given equal to 1.6 MJ.K-1.m-3, which is 
the average value for metals. In the next paragraph, 
we will explain the choices that we have made for the 
values of ∆Ttar, Atar and etar.  
 

Quantitative Design of the Laser 
 
The aim of the firing is to heat up the target (or some 
part of it) by a sufficient temperature in order to 
disable it. Hence, the spacecraft should shoot at the 
target as it is in daylight, when its temperature is at a 
maximum. We will choose to heat it up by 
∆Ttar = 200ºC. Typical solar cells have an upper limit 
operating temperature of around 100-120ºC.  The 
temperature of the cells after the laser hits the target 
will be nearly 200ºC hotter than this upper 
temperature limit.  This should be enough to severely 
damage some fragile parts of the solar array. 

 
In order to hit a part of the target as wide as possible, 
the diameter of the beam will be chosen equal to the 
average width of the target, which is about 1.5 
meters. This corresponds to Atar = 1.77 m2. This 
target size was determined by assuming the size of 
the target satellite’s solar array.  The width of the 
rectangular-shaped array may be approximately 
1.5 m and several firings of the laser may be required 
to fully disable the target satellite’s power source.  
 
Note that we will need an appropriate optical system 
adapted to the laser to create a 1.5 meter spot on the 
target; calculations of diffraction would show that we 
would need a 60 cm lens to do so from 400 km away. 
This lens diameter dramatically increases with the 
distance to the target, which is the reason why the 
Satellite Killer and target satellite need to be in 
similar orbits.  This allows the Satellite Killer to 
shoot at a relatively close range (less than 400 km).  
 
The value of Atar also implies a power density of 
5,650 W/m2; this is much higher than the power 
density of natural radiation from the spacecraft. This 
value is given by Stephan-Boltzmann’s equation, and 
would be around 100 W/m2. Therefore, it is a correct 
assumption to ignore radiation cooling of the target in 
equation 1.  
 
As for the value of etar, it has been chosen equal to 
1 cm. Since the beam would most likely be aimed at 
a region of the target with a large surface area, 
perhaps at its solar arrays, one might think that etar 
should be taken equal to the thickness of the solar 
cells. As a matter of fact, the duration of shooting 
that is calculated later is not short enough to ignore 
cooling of the target solar array surface by 
conduction through the arrays structure. To take this 
into account, we shall consider the actual thickness of 
the solar arrays being heated up to be etar = 1 cm.  
 

Firing Energy Requirements 
 
Now that the values of the different parameters in 
equation 1 have been chosen, we can re-formulate 
this equation to calculate the firing duration:  
 

 
laser

tartartartar
f P

eATCt ∆
=  (2)  

which turns out to be equal to approximately 1 min. 
Knowing this figure, we are now able to determine 
the total amount of energy required to fire the 10 kW 
laser, Elaser:  
 



  (3)  flaserlaser tPE =
 
We can infer from equation 3 that Elaser = 170 W.hr. 
This value, along with the value of Plaser, is the key to 
the design of the power system associated with the 
laser.  
 
Investigation of Solar Array and Battery 

Power Source 
 
The first power system design to be studied is 
comprised of solar arrays and batteries.  For this 
power system design, the Sun is the primary power 
source.  Several sections to follow document the 
calculations used to size the appropriate solar power 
system for the Satellite Killer spacecraft. 
 

Calculation of Eclipse Time 
 
The first equation used in the calculation of the 
eclipse time of the Satellite Killer spacecraft is the 
eclipse fraction, shown in equation 4. 
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Since the maximum eclipse fraction is required for 
this study, the beta angle, β, is assumed to be equal to 
zero.  The resultant equation can be seen in 
equation 5.  The solution for the orbit of the Satellite 
Killer is shown in equation 6. 
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Once the eclipse fraction has been determined, the 
orbital period, P, must be calculated.  This is shown 
in equations 7 and 8. 
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Now that the orbital period and eclipse fractions have 
been found, the maximum eclipse period, , can 
be calculated using the following equation. 

MAXeT
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          (9) 

 
Selection of Solar Cell and Battery Types 

 
The two major types of available solar cells are made 
of silicon (Si) and gallium arsenide (GaAs).  For the 
purposes of this study, the GaAs solar cells have been 
chosen.  The performance and degradation rate of the 
GaAs cells is significantly better than the Si cells.  
Table 1 below illustrates this. 
 

Table 1   Comparison of Si and GaAs Solar Cells 

Cell 
Type 

Performance 
(W/m^2) 

Degradation per 
Year (%) 

Si 190 3.75 
GaAs 244 2.75 

 
The decision about which battery to use was 
primarily made by comparing the specific energy 
densities of space-qualified secondary batteries.  
Based on the data shown in Table 2, nickel hydrogen 
(NiH2) batteries were chosen to be used for this 
spacecraft. 

Table 2    Battery comparison 

Battery Type Specific Energy 
Density (W*hr/kg) 

Nickel cadmium 25-30 
Nickel hydrogen 
(individual 
pressure vessel 
design) 

25-40 

Nickel hydrogen 
(single pressure 
vessel design) 

43-57 

 
 

Solar Array Sizing for S/C Average 
Power Requirements 

 
The solar arrays necessary to provide power for the 
entire spacecraft except the firing of the laser are 
sized in this section.  The additional solar arrays 
needed to power the laser are sized in a later section.  
The solar arrays for the “Satellite Killer” are assumed 
to be of the deployed planar array type. 
 



A beginning-of-life (BOL) efficiency of the GaAs 
solar arrays is assumed to be 0.18.1 The solar 
illumination intensity on the planar solar arrays is 
assumed to be 1358 W/m2.  Also, the inherent 
degradation of the solar cell power transfer is 
assumed to be a factor of 0.77.  Therefore, the 
estimated BOL power output of the GaAs solar cells, 
P0, can be calculated.  This is shown in equation 10. 

 
( )( )( ) 22 9.18777.0135818.00 m

W
m
Wp ==    (10) 

 
We then need to reduce the value of P0 because the 
angle of the radiation of the sun onto the solar panels 
is not perfectly normal.  The following equation is 
used to make this correction. 
 

( ) )cos(00 θdBOL Ipp =               (11)  
 
where p0 = 244 W/m2 for GaAs solar cells, Id = 0.77, 
and θ = 20º (worst case), which gives us 
(p0)BOL = 177 W/m2. 
 
Now that the estimated BOL power output of the 
solar cells has been determined, the required power 
the solar array must provide during daylight to power 
the spacecraft for an entire orbit can be found, Psa. 
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A direct energy transfer power control system has 
been chosen for the purposes of this study, so the 
values of Xe and Xd are .065 and .085, respectively.1  
Once the values for the required spacecraft power, 
time of day, and time of eclipse are put into 
equation 11, the required solar array power is 
determined.  This is shown in equation 13. 
 

WPsa 1241=                           (13) 
 
The solar cell lifetime degradation is required to 
determine the solar array area needed to provide the 
required power at EOL.  This estimated degradation 
term is calculated using equation 14. 
 

87.)/deg1( =−= lifesatellite
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Using the degradation term above, the EOL power 
output of the solar cells can be determined.  This is 
shown in equation 15. 
 

( ) ( ) 215400 m
W

dBOLEOL Lpp ==          (15) 
 
Next, the EOL solar array area required for spacecraft 
average power can be determined.  This is shown 
below. 
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Therefore, 8.1 m2 of solar cells are required to 
provide 600 W of power to the spacecraft during 
daytime and eclipse. 
 
The mass of the planar solar arrays is estimated using 
equation 16.3 The resultant mass of the solar arrays 
for the spacecraft average power requirements is 
49.6 kg. 
 

( ) kgPM saavga 6.4904.0 ==           (17) 

 
 

Battery Sizing for S/C Average Power 
Requirements 

 
A major assumption made for the battery sizing was 
the EOL depth-of-discharge (DOD) of the batteries.  
This value was assumed to be 38%.  Also, a specific 
energy density of 50 W.hr/kg for the NiH2 batteries is 
assumed for use in the battery sizing calculations (see 
Table 2). 
 
The solution for the required battery capacity per 
battery is shown below in equation 17.  Note that the 
number of batteries, N, has been chosen to be 2 for 
redundancy. 
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Next, the total mass of batteries required to power the 
spacecraft during eclipse can be determined.  This is 
shown in the following equation. 
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If the battery mass is solved using the required 
battery capacity, Cr, the battery mass required to 
power the spacecraft during eclipse, is calculated to 
be 20.74kg. 



 
 

Solar Array Sizing for Laser Firing 
Power Requirements 

 
The Satellite Killer is located in such an orbit that it 
will be in sunlight for approximately one hour per 
orbit.  Therefore, it is possible to charge the batteries 
to fire the laser once per orbit or perhaps several 
times per orbit.  The faster the batteries can charge to 
the energy level required for the laser, Elaser, the 
higher the possible firing frequency of the laser.  For 
the purposes of this study, the charging times of 15, 
30, and 60 minutes were investigated.  This would 
allow firing rates of 4, 2, and 1 per orbit, 
respectively. 
 
Two additional scenarios were studied to find the 
optimal combination of solar and battery power 
required to power the laser during firing.  One 
scenario has 50% of the laser power source from 
batteries (5 kW) and 50% (5 kW) directly from the 
solar arrays.  The third scenario has no power from 
batteries and 100% (10 kW) of the laser power source 
from the solar arrays. 
 
In the 100% battery scenario, the following equation 
gives the relation between the energy required by the 
laser and the actual energy the solar arrays will have 
to deliver:  
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laser
cl X

EE =  (20)  

 
where Xcl = 0.9. Hence, by expressing energy as the 
product of power by duration, we get the actual 
power requirement on the solar cells:  
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We can then calculate the BOL power production 
capability per unit area of the array:  
 
 ( ) )cos(00 θdBOL Ipp =  (22)  
 
where p0 = 244 W/m2 for GaAs solar cells, Id = 0.77, 
and θ = 20º (worst case), which gives us 
(p0)BOL = 177 W/m2. 
 
Then we get (p0)EOL by using equation 15.  Based on 
a five-year mission, (p0)EOL = 154 W/m2. 
 
Next, with the help of equation 21, the relation 

between the area Acl of solar arrays needed and the 
charging duration tcl can be determined.  
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A value is then chosen for Acl.  This value depends 
on the number of consecutive times the Satellite 
Killer can fire its laser during a an approximate 
60 min daylight period, as shown in Figure 1 (upper 
curve). 
 
Figure 1 Relation between charging duration tcl 
and area of solar cells Acl, in regard of the firing 
frequency  
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Note: to get the curve for the 50%-battery scenario 
(lower curve), Plaser has been divided by 2.  
 
Based on the information in Figure 1, the solar array 
areas required for the different scenarios and various 
charging times are calculated.  The area of the solar 
arrays required to charge the batteries, ACL, and the 
area of the solar arrays required to provide direct 
power to the laser, APL, are determined.  The values 
for ACL were determined by using the curves in 
Figure 1.  The resulting values are shown in Table 3. 
 
Table 3 shows that the 100% battery charging 
scenario requires significantly smaller solar arrays 
than the other two scenarios for all three charging 
times.  This is due to the fact that no solar power is 
required to directly power the laser.  Only battery 
power is used. 
 



Table 3   Solar array areas for various charging 
scenarios 

% Battery 
Power / % 

Solar 
Power 

Battery 
Charge 
Time, 

tc (min) 

ACL(m^2) APL(m^2) 
Total Area 
Required 

(m^2) 

100 / 0 15 6.66 6.66 
100 / 0 30 3.33 3.33 
100 / 0 60 1.67 

0.00 
1.67 

50 / 50 15 3.33 35.80 
50 / 50 30 1.67 34.14 
50 / 50 60 0.83 

32.47 
33.30 

0 / 100 15 0 64.95 
0 / 100 30 0 64.95 
0 / 100 60 0 

64.95 
64.95 

 
Next, the masses of the solar arrays required for 
charging the batteries are calculated.  First, the power 
output of these solar arrays must be determined.  This 
is used using equation 24. 
 

c

fL

c

laser
CL t

tP
t

E
P ==                  (24) 

 
Finally, the total masses of the solar arrays required 
for three proposed scenarios are calculated using 
equation 17.  The results are shown in Table 4.  Note 
that the masses calculated here are only for the 
portion of the solar arrays used to for laser power. 

 

Table 4  Total mass of solar arrays for powering 
laser 

% Battery Power / 
% Solar Power 

Battery 
Charge 
Time, tc 
(min) 

(ma)laser 
(kg) 

100 / 0 15.00 29.63 
100 / 0 30.00 14.86 
100 / 0 60.00 7.41 
50 / 50 15.00 214.86 
50 / 50 30.00 207.41 
50 / 50 60.00 203.70 
0 / 100 15.00 400.00 
0 / 100 30.00 400.00 
0 / 100 60.00 400.00 

 
Table 4 shows that the 100% battery charging 
scenario requires significantly less mass than the 
other two scenarios for all three charging times. 
 

 
Battery Sizing for Laser Firing Power 

Requirements 
 

In order to size the batteries for the various laser 
firing power scenarios, the required battery capacity 
must be determined.  Equation 18 is used for these 
calculations.   In addition, the battery mass for each 
scenario is calculated using equation 19.  Once again, 
two batteries have been chosen for this portion of the 
energy storage (N=2).  The results for these 
calculations are shown below in Table 5.  Note that 
the masses calculated here are only for the portion of 
the batteries used to power the laser. 
 

Table 5  Required battery capacities and battery 
masses for various power storage scenarios 

% Battery 
Power / % 

Solar 
Power 

Battery 
Charge 
Time, 

tc (min) 

Cr 
(W*hr/battery)

(mbatt)L 
(kg) 

100 / 0 15.00 
100 / 0 30.00 
100 / 0 60.00 

243.71 9.75 

50 / 50 15.00 
50 / 50 30.00 
50 / 50 60.00 

121.86 4.87 

0 / 100 15.00 
0 / 100 30.00 
0 / 100 60.00 

0.00 0.00 

 
 
As seen in Table 5, a significant savings in battery 
mass is achieved by using solar arrays for a portion 
or all of the laser power required to fire. 
 
 

Solar Power System Design Options 
 

Now that the calculations have been made for the 
various solar power system design options, the 
various designs can be compared.  Mass is an 
important quantity to compare for space applications.  
Table 6 below compares the total masses of the solar 
power system design options considered in this study. 
 



Table 6  Mass comparison of solar power system 
designs 

% Battery 
Power / % 

Solar 
Power 

Battery 
Charge 
Time, 

tc (min) 

Total 
Solar 
Array 
Mass 
(kg) 

Total 
Battery 
Mass 
(kg) 

Array 
and 

Battery 
Mass 
(kg) 

100 / 0 15.00 79.23 109.72 
100 / 0 30.00 64.46 94.95 
100 / 0 60.00 57.01 

30.49 
87.50 

50 / 50 15.00 264.46 290.07 
50 / 50 30.00 257.01 282.62 
50 / 50 60.00 253.30 

25.61 
278.91 

0 / 100 15.00 449.60 470.34 
0 / 100 30.00 449.60 470.34 
0 / 100 60.00 449.60 

20.74 
470.34 

 
 
From Table 6, it is shown that the solar power system 
designs which use only battery power to power the 
laser for firing require significantly less mass than the 
other options. 
 
In addition, the 50%/50% and 0%/100% options are 
impractical because they require extremely large 
solar arrays to generate the constant power needed 
for the laser.  Table 3 shows those scenarios requiring 
over 30 and 60 m2 of solar array area, respectively.  
For a relatively “small” spacecraft like the Satellite 
Killer, those large array sizes would be difficult to 
incorporate into the spacecraft design. 
 
 

Other Power System Design Options 
 

The other major types of power systems to choose 
from are: nuclear reactors, radioisotope thermo-
electric generators (RTGs), and solar thermal 
dynamic power systems. 
 
Nuclear reactors typically provide large amounts of 
power (>25 kW) which is more than is required for 
the Satellite Killer.  The excess energy produced by 
the reactor would need to be dissipated by using large 
thermal radiators.  This is unnecessary.  In addition, 
nuclear reactors would be an unpopular idea for 
many people on Earth.  People would be afraid of 
having a nuclear reactor flying overhead in LEO.  
They would be worried what about the possible 
consequences if the spacecraft reentered the 
atmosphere with radioactive material onboard.  This 
problem may be avoided, however, if the satellite 
were a classified military satellites shrouded in 

secrecy.  Therefore, nuclear reactors should not be 
used for the power source on the “Satellite Killer” 
spacecraft. 
 
Radioisotope thermoelectric generators (RTGs), a 
second alternative to the solar power source for the 
Satellite Killer spacecraft, are not good power 
sources for some of the same reasons as the nuclear 
reactor.  People would be worried about having 
radioactive material orbiting in LEO.  In addition, 
RTGs are much more expensive than both nuclear 
reactors and solar power systems by nearly a factor 
of 6.4  
 
A solar thermal dynamic power system is another 
option to power the Satellite Killer.  However, this 
type of power system is more suited to interplanetary 
missions.  Since our satellite will “see” the same 
amount of sun after every orbit, a simple solar array 
and battery system should be necessary.  A dynamic 
power system is much more complex system 
involving heat exchangers and possibly even a 
nuclear reactor.  Therefore, a solar thermal dynamic 
power system is not recommended to power the 
Satellite Killer spacecraft. 
 
 

Conclusion 
 

Based on the sizing done for a solar array and battery 
power system for the Satellite Killer spacecraft and 
the lack of other reasonable power system options, 
the “best” power system to be used is a solar array 
and battery system. 
 
As seen in Table 6, the “best” solar power system 
design would be one in which all of the laser power 
required to fire would come from charged-up 
batteries (100%/0% scenario).  The mass savings 
makes this design attractive.  However, an additional 
power system design choice needs to be made.  The 
number of laser firings per orbit will vary with the 
required battery charging time.  The charging times 
of 15, 30, and 60 minutes were investigated.  Based 
on these charging times and since the spacecraft will 
be in sunlight for approximately one hour per orbit, 
the satellite has the option of firing the laser one, two, 
or four times per orbit.  The “best” design will be 
chosen by calculating the power system mass divided 
by the number of possible firings.  The results are 
shown in Table 7. 
 
 



Table 7  Mass per laser firing results 

 

% 
Battery 
Power / 

% 
Solar 
Power 

Battery 
Charge 
Time, 

tc (min) 

Firings 
per 

Orbit 

Array 
and 

Battery 
Mass 
(kg) 

Mass 
per 

Firing 
(kg) 

100 / 0 15 4 109.72 27.43 
100 / 0 30 2 94.95 47.48 
100 / 0 60 1 87.5 87.50 

Table 7 shows that power system mass is used most 
efficiently if the battery charging time is 15 minutes, 
resulting in four possible laser firings per orbit.  This 
is the most efficient design by nearly factors of 2 
and 4 over the second and third options in the table, 
respectively. 
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Problem Set 2: Study of Orbital Minefield from Rogue 
State 
 

Summary 
The increasing dependence of the United States on space assets expressed the need to 
investigate the feasibility of a rogue nation of damaging or disabling US space assets in 
Low Earth Orbit (LEO). 
 
This problem set first involved researching what satellites are in LEO and where they 
were located.  A likely launch vehicle to be used for such an attack was chosen, mines 
were selected, a mind dispersal device was designed, and software was developed to 
predict the orbit of the minefield and how it changes over time.  Finally, several attack 
scenarios were investigated to determine the effectiveness of the minefield against 
current LEO targets. 
 

Results 
Once the launch vehicle was selected, the type of mine to use was determined.  This 
selection process was driven by mine size and mine mass.  It was desired to have a mine 
large enough to penetrate existing spacecraft shielding but at the same time be fairly 
lightweight.  In addition, we desired that the mines be commercially available and 
therefore easy for terrorists to obtain.  We settled on BBs as the mines of choice for this 
exercise. 
 
The mine dispersal device (MDD) was basically a simple structure containing millions of 
BBs packed around explosives.  The amount of explosives required was determined by 
specifying the initial velocities of the particles after the detonation. 
 
Next, MATLAB code was written to determine how the orbit of the mines changes over 
time depending on the location of detonation of the minefield.  Atmospheric drag was 
considered in these calculations. 
 
Three attack scenarios were investigated for this project.  First, an attack on Iridium 
satellites was investigated.  It was found that we had a 10% chance of hitting a critical 
zone on an Iridium satellite within the first 30 days after detonation and 85% after 2 years 
in orbit. 
 
The attack on all LEO satellites was the next attack scenario.  This was accomplished by 
detonating the MDD over the equator.  The precession of the longitude of the ascending 
node allowed the minefield to spread out enough to surround the Earth.  Probabilities of 
3.1% and 4.3% over one and two years, respectively, were determined to be the 
likelihood of a mine impacting a satellite in LEO. 
 



The final attack scenario was an attack on the International Space Station.  It was found 
that our “shotgun blast” of mines would likely hit the space station within the first day of 
detonation, but the probability of hitting a critical system was only about 10%.  However, 
this would likely be too great of a threat to maintain humans on the space station if this 
scenario was likely to happen. 
 

Useful References 

Launch Vehicles 
Isakowitz, Steven J., International Reference Guide to Space Launch Systems, 3rd Ed., 
AIAA, 1999. 
 
This reference is the complete guide to all launch vehicles.  It contains specifications of 
each launch vehicle and as much detail as you will find anywhere. 
 

Orbital Debris 
Milne, Antony, Sky Static, Praeger, 2002, 
Johnson, Nicholas L., Artificial Space Debris, Krieger Publishing Co., 1991, 
Graves, R., Space Station Meteoroid and Orbital Debris Survivability, AIAA-2002-1607 
 
These references are useful for researching orbital debris, and the current and future 
methods being employed to protecting manned and unmanned spacecraft from orbital 
debris. 
 

Orbital Mechanics 
Bate, R., Mueller, D., and White, J., Fundamentals of Astrodynamics, Dover 
Publications, Inc., New York. 
Battin, Richard. An Introduction to the Mathematics and Methods of Atsrodynamics, 
Revised Edition.,AIAA, Reston, VA. 1999. 
Chobotov, Vladimir A. (editor), Orbital Mechanics, Third Edition, AIAA Educational 
Series, Reston, VA, 2002. 
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Motivation 
Since 2001, the Pentagon has warned that reliance on 
space technology is America’s Achilles heel.  Countries 
such as China and Russia are known to have programs 
underway to develop “means to disrupt, degrade, or 
defeat portions of the U.S. space support system.”1 
 
To this day, orbital debris has been mostly a nuisance to 
U.S. space assets.  However, it may be possible for an 
enemy of the United States to develop a method of 
significantly damaging space assets by intentionally 
injecting a debris field into orbit.  Understanding how 
such a debris field could be created and how it would 
affect space assets is a necessary and vital task. 
 

Problem Statement 
Study the threat of a rogue state “mining” low-Earth 
orbit (LEO) by utilizing one Delta IV Medium+ 
equivalent launch vehicle (near equivalent to China’s 
Long March CZ3B). 
 

Introduction 
Orbital debris has been a growing nuisance for the 
space community ever since man began launching 
objects into space in the mid-20th century.  Increasingly, 
orbital debris is taken into consideration when a 
satellite is designed.  Mission planners specify 
requirements for the satellite to be able to survive a 
certain size and frequency of debris impacts.  The 
design impact of orbital debris has been minimized due 
to engineering efforts. 
 
The purpose of this study is to determine if it is feasible 
for a foreign nation to deliberately create an orbital 
debris field in LEO with the intention of severely 
damaging US space assets.  This may be a method for a 
foreign nation to try to gain ground on the lead the 
United States currently has in the area of space assets 
and technology. 

 
Significant investigation is made to determine an 
approach that would effectively “mine” LEO.  The 
mines chosen for the purposes of this study are off-the-
shelf, inexpensive BBs.  The mines are dispersed in 
orbit by launching a Mine Dispersal Device (MDD), 
which deploys the mines at the required orbital 
location.  The mines are launched into a retrograde orbit 
so their relative velocity with respect to their target is 
roughly twice the circular speed at the target altitude.  
In LEO, that means a relative velocity of approximately 
15 km/s. 
 
There are hundreds of vulnerable satellites in LEO that 
are within striking distance of the MDD.  The 
International Space Station, the Hubble Space 
Telescope, and the Space Shuttle are several high-
profile targets to be found in LEO.  Several 
communications constellations orbit in LEO as well.  
Iridium and Orbcomm inhabit the higher regions of 
LEO around 800km in altitude.  There are also many 
weather and research satellites orbiting in LEO.  
Figures 1 and 2 are a survey of the altitudes and 
inclinations of satellites in LEO, based on current 
orbital elements from the Satellite Toolkit (STK). 
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Figure 1  LEO S/C altitude survey 
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Figure 2  LEO S/C inclination survey 

Figures 1 shows that most LEO satellites are orbiting 
between 750 and 850 km altitude.  Figure 2 shows that 
most of these same satellites have inclinations around 
90 (polar) to 97 (sun-synchronous) degrees.  There are 
also a significant number of satellites orbiting at around 
50 degrees inclination. 
 
Three “attack scenarios” are investigated in this study.  
First, an attack on a group of polar-orbiting spacecraft 
is investigated.  Next, an attack on nearly all LEO 
spacecraft is formulated.  Finally, a method of attacking 
the International Space Station (ISS) is studied. 
 
Methods to defeat or neutralize the enemy minefield are 
examined.  Effectiveness of current spacecraft shielding 
and possible use of current technology to provide 
additional protection when required are investigated for 
their effectiveness against the minefield. 
 

Launch Vehicle Selection 
A Delta IV Medium+ (5, 4) launch vehicle was selected 
for the purposes of this study.  This vehicle was 
selected based on its similarity of launch capability to 
the Chinese-built Long March CZ3B launch vehicle.  It 
was assumed that launch vehicle data would be easier 
to obtain for a US-built launch vehicle as opposed to a 
Chinese-built launch vehicle.  Both launch vehicles 
have the same payload capability of 13,600 kg for a 185 
km altitude, 28.5 degree inclination, circular orbit.  
Therefore, the Delta IV Medium+ (5, 4) launch vehicle 
is used throughout the rest of this paper in place of the 
Long March CZ3B. 
 
Table 1 shows the Delta IV Medium+ (5, 4) launch 
vehicle payload mass capabilities for the three attack 
scenarios covered in this study. 
 

 

 

 

Table 1  Delta IVM+ payload capabilities2 

Attack 
Scenario 

Altitude 
(km) 

Inclination 
(deg) 

Payload 
Capability 

(kg) 
ISS 380 51.6  5000 

Iridium/Other 780 90.0 10000 
 

Please note that the launch to attack the ISS is a 
retrograde launch.  This means the launch vehicle will 
be placed into an inclination of 128.4 degrees.  Since no 
data has been provided by the launch vehicle 
manufacturer about the retrograde launch capability of 
their launch vehicle, and launch vehicle calculations are 
outside the scope of this paper, it will be assumed that 
the launch capability to a retrograde orbit to attack the 
ISS will be roughly half that of the capability to a polar 
orbit (10,000kg).  This results in a retrograde capability 
of 5,000 kg as seen in Table 1. 
 
Table 2 shows the payload volume capabilities for the 
two types of fairings used on Delta IVM+ launch 
vehicles.   

 

Table 2  Delta IVM+ fairing volume options3 

Fairing Type 
Available 
Payload 

Volume (m3) 
4-meter dia. 75.0 
5-meter dia. 270.6 

 
Based on the information provided for the Delta IV 
Medium+ (5,4) launch vehicle, the capability of the 
vehicle to deliver mines could now be determined. 
 

Mine Selection 
A major factor in the selection of mines to be used in 
this study was the availability of mine materials.  In 
other words, the mines could be easily procured by a 
rogue state.  Therefore, it was decided to use simple, 
off-the-shelf objects to launch into orbit to act as mines.  
The objects used for this study are spherical, 6mm 
diameter, 0.2 gram, metallic BBs. 
 
Mine Effectiveness 
The size of the BBs was determined by two constraints.  
First, the mines must be undetectable from ground 
tracking stations.  It is known that “pieces of space 
debris that are larger than 10cm … present no problem 
because they can be observed from the ground and the 
crew can take avoiding action.”4  Since the BBs used as 
mines for this study are less than 10 cm in diameter, the 
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minefield created would be undetectable from any 
current ground tracking station.  Next, the mines must 
impact the target with enough energy to damage or 
destroy it.  The benchmark used in this study to 
determine if the mine can damage or destroy the target 
is if it can penetrate solid aluminum to a depth of 
approximately 1cm.  This number was chosen because 
most spacecraft structures are made of aluminum and 
will have an outer wall of a thickness much less than 
one centimeter, so the mine will penetrate the satellite 
and cause internal damage.  In order to determine the 
approximate penetration depth of the mines, the 
Summer equation is used.5  This equation is shown 
below. 
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In Equation 1, P is the penetration depth, d is the 
diameter of the orbital debris object, ρP is the density of 
the orbital debris object, ρT is the density of the target 
material, V is the relative velocity of the debris, and c is 
the speed of sound in the target material (5.1x106 for 
aluminum).  Solving for the penetration depth, it is 
found that the BBs selected for the minefield in this 
paper can penetrate solid aluminum to a depth of 1.6 
cm.  This exceeds the benchmark of 1 cm and therefore 
these mines are capable of damaging or destroying the 
target.  However, the Summer equation used here may 
be very conservative.  “NASA found that a piece of 
aluminum debris less than 1 mm had smashed through 
an aluminum wall 2.5 cm thick.”6 
 
One important consequence of using spherical-shaped 
objects as mines is the ability to pack them inside the 
launch vehicle.  When spheres are packed together as 
densely as possible, some void will remain.  The 
remaining void issue has been addressed in the Kepler 
Problem.  According to Kepler, the densest packing of 
spheres possible is 74.048% of a given volume.7 
 

Mine Dispersal Device (MDD) 
The purpose of the MDD is to contain explosives and 
mines, fit inside the required launch vehicle fairing, 
survive launch, and detonate the explosives at a 
specified location in orbit to deploy its payload of 
mines. 
 
The MDD has three main components.  First, it has a 
structure which contains the payload and mates with the 
payload adapter of the launch vehicle.  Second, the 
structure of the MDD contains millions of BBs being 
used as mines.  Third, a core of explosives is in the 
MDD at the core of the mines.  Based on the fact that 
the 4-meter diameter launch vehicle fairing can contain 

approximately 491 million BBs and no more than 50 
million BBs are used in any of the attack scenarios in 
this paper, it is clear that the fairing can easily 
accommodate the required MDD volume. 
 
The fact that only a small portion of the fairing volume 
is being used for the MDD demonstrates that mass 
limits the size of the MDD to a much greater extent 
than fairing volume.  Although only a small fraction of 
the available fairing volume is being used for the MDD, 
the MDD maximizes the mass launch capability of the 
launch vehicle selected for this study. 
 
The structure of the MDD will most likely be a 
lightweight sack or tube which will only be required to 
keep the mines and explosives together until detonation.  
The detailed design of the MDD canister is left as 
future work.  Being so lightweight, the mass of the 
structure of the MDD is assumed to be insignificant 
compared to the overall total mass of the MDD.  This 
structural mass will be neglected for the remainder of 
this paper. 
 
The mines are packed around a core of explosives 
which detonate in orbit to induce the scattering of the 
mines.  This scattering allows the mines to spread out 
quickly and become a hazard to a large volume of space 
in LEO.  The amount of explosives to be used depends 
on the number of mines in the MDD.  While the actual 
design of the explosive device is also left as future 
work, energy equations are used to approximate how 
much explosive to use for each attack scenario.  The 
chemical energy in TNT is equated to the kinetic 
energy imparted on the mines.  Equation 2 below is the 
main equation used for this calculation. 
 

TNTTNTOm Emvm =2

2
1

  (2) 

 
Here v0 is the initial velocity, mm is the mass of the 
mines, mTNT is the mass of the explosive, and ETNT is the 
specific energy of the explosive.  The initial velocity, 
v0, chosen to impart on each mine is 300 ft/s.  This 
number was chosen because it is a 1-sigma 
representation of the approximate speed of a bullet fired 
from a gun, 900 ft/s.  This guarantees that 3-sigma, or 
99.73% of the mines will have initial velocities less 
than 900 ft/s.  Knowing the energy stored in TNT is 
4.689 MJ/kg and the number of mines to be used in 
each attack scenario, the mass of TNT required can be 
determined.  The results are shown below in Table 3. 
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Table 3  TNT mass required for attack scenarios 

Attack 
Scenario 

Number 
of Mines 

(x106) 

Mass of 
Mines 
(kg) 

Required 
TNT 
Mass 
(kg) 

1 and 2 50 10000 8.9 
3 25 5000 4.5 

 
As can be seen from Table 3, the mass of TNT required 
is insignificant compared to the total weight of the 
MDD shown in Table 1.  For the purposes of this study, 
the mass of explosives will be neglected for the 
remainder of this paper. 
 

Attack Scenario #1: Iridium Satellites 
The Iridium satellite constellation is used primarily by 
the US military and the Department of Defense for 
global telephone communications.  The satellites in this 
constellation are located in polar orbits and at 780 km 
altitude.8 
 
Iridium satellites were picked as a target because they 
are well-known and are a good example of a type of 
satellite a rogue nation may want to destroy in LEO.  
There are many other satellites in similar orbits such as 
Landsat, ICEsat, and Orbcomm.  These satellites are 
used for research, communications, and other purposes. 
 
Target Size 
In order to find the size of the target to strike, a crude 
estimation of the size of the Iridium satellite bus was 
made from pictures found of the satellite.9  This 
estimation showed that one side of the triangular-
shaped Iridium bus had an area of 2.58 m2.  However, a 
strike inside this area will not necessarily hit vital 
components of the spacecraft that would disable or 
destroy it.  Therefore, the assumption is made that 
roughly 50% of the total area of the side of the Iridium 
bus is protecting vital, mission-critical components.  
Thus, components such as batteries, fuel tanks, 
computers, and ACS are assumed to fill an area of 
about 1.29 m2. 
 
Attack a Polar Orbit (Iridium) 
The MDD is used in this attack scenario to pose a 
serious threat to polar orbiting satellites in one specific 
polar orbit.  An Iridium satellite is located in such an 
orbit.  The minefield will also pose a smaller threat to 
other orbiting spacecraft which intersect the orbit of the 
minefield. 
 
The launch capability of the Delta IV Medium+ (5, 4) 
launch vehicle is 10000 kg to a 780 km circular, polar 
orbit.10  Therefore, it is possible to pack 50 million 

mines into the launch vehicle.  Please note that all 
figures generated using MATLAB only display 10,000 
mines.  This allows the Matlab figures to clearly display 
the distribution of the minefield in orbit.  All numerical 
results use the actual number of mines. 
 
The MDD is launched into a retrograde orbit in order to 
maximize the relative velocities of the mines and target.  
Since this attack involves launching into a polar 
retrograde orbit, there is no impact on the payload 
capability of the launch vehicle. 
 
The MDD is detonated over the North or South Pole to 
result in a “ring” shape of mines focused on the target 
polar orbit.  With the MDD detonation at the pole, the 
inclination angle of every particle is 90 degrees, 
regardless of initial conditions.  Thus, even though the 
argument of periapse does change, the longitude of the 
ascending node is constant (see Equation 24). This 
prevents the mines from spreading out to completely 
encapsulate the Earth. 
 
Minefield After 30 Days 
Figure 3 shows the distribution of mines in orbit 30 
days after being detonated over one of the poles.  Please 
note that the black circle in the figure shows the 
targeted orbit for this attack scenario. 
 

 
Figure 3  Minefield after 30 days 

 
It can be seen in Figure 3 that the mines have spread out 
to completely fill the targeted polar orbit.  Also note the 
“necking” effect at the top and bottom of the plot.  
Those locations are the North and South poles.  The 
mines do not appear to be spreading out much at those 
locations because the precession of the argument of 
periapse has no visible effect in polar orbits.  The 
“amount” of spreading out of the mines through various 
orbit altitudes can be seen in Figure 4, below. 
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Figure 4  Semi-major axes of mines after 30 days 

 
In addition to the initial dispersal of mines from the 
MDD detonation, a major contributor to the spreading 
out of the mines through various altitudes is 
atmospheric drag (see Equation 26). Even after 30 days, 
some mines have moved to orbits around 500km in 
altitude.  In fact, 5% of the mines have reentered the 
Earth’s atmosphere at this point. 
 
Despite the initial change in velocity caused by the 
explosion, the orbits of the mines are still largely 
circular.  This is typical of all of the scenarios presented 
in this report, and can be seen in Figure 5 for the 
present case. 
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Figure 5  Eccentricities of mines after 30 days 

 
The equation to determine the probability of impacting 
the target (Equation 29) requires the spatial density of 
the orbital debris.  The spatial density has a major 
impact on the probability of striking the target.  In order 
to achieve realistic probability numbers, the volume of 
the disk used to determine the spatial density of the 
minefield was refined from the total volume to a 3-

sigma volume (refer to software description for details).  
This 3-sigma volume contains approximately 99.73% 
of all particles in the minefield.  The following three 
figures show the difference between the total minefield 
volume and the 3-sigma volume.  The outer, red curves 
denote the total volume limits and the inner, blue curves 
denote the 3-sigma volume limits. 
 

 
Figure 6  Isometric view of minefield disk volume 

limits 

 

 
Figure 7  Side view of minefield disk volume limits 
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Figure 8  Front view of minefield disk volume limits 

 
It can be seen from Figures 6, 7, and 8 that the 
difference between the total and 3-sigma volumes is 
quite significant.  Since only a small percentage of 
mines are present outside the 3-sigma volume, it much 
more realistic to use the 3-sigma volume for the 
probability calculations. 
 
The probability that the targeted Iridium satellite will 
suffer a critical hit during the first 30 days of the 
deployment of the minefield is shown in Table 4 below.  
Please note that the out-of-plane probabilities are for 
target satellites not in the target orbit but are in other 
circular orbits which intersect the minefield. 
 

Table 4  Probabilities of impacting target satellite 
after 30 days 

Type of Probability Probability 
(%) 

In Plane, 3-sigma STD 
Volume 9.7 

In Plane, Total Volume 3.5 

Out of Plane, 3-sigma 
STD Volume 0.2 

Out of Plane, Total 
Volume 0.1 

 
Although the probabilities of impact may seem low, 
this is the percentage of all satellites in the path of the 
minefield of being critically impacted by a mine.  Even 
a 9.7% probability could result in the destruction of a 
number of satellites within a 30-day period.  
Additionally, this is a statistic for only thirty days, and 
it will be shown that the minefield will survive for 
significantly longer than this. 

 
 

Minefield After 2 Years 
The distribution of minefield particles can be seen 
below in Figure 9.  Please note that the black circle in 
the figure shows the targeted orbit for this attack 
scenario. 
 

 
Figure 9  Minefield after 2 years 

 
The minefield after two years looks similar to the 
picture in Figure 3 of the minefield after 30 days.  
However, there are significant differences.  First, the 
number of particles shown in Figure 9 is significantly 
less than that of Figure 3.  In fact, 51.5% of the 50 
million mines have reentered the Earth’s atmosphere at 
this point.  The second major difference is that the 
altitudes of the remaining mines have dropped 
dramatically closer to the Earth’s surface due to drag.  
The altitudes of the minefield particles after 2 years in 
orbit can be seen below in Figure 10. 
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Figure 10  Semi-major axes of mines after 2 years 

 
Figure 10 shows the mines have dropped in altitude 
significantly during 2 years in orbit.  Atmospheric drag 
has been slowly destroying the minefield over time. 
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The probability that the targeted Iridium satellite will 
suffer a critical hit during the first 2 years of the 
deployment of the minefield is shown in Table 5 below. 
 

Table 5  Probabilities of impact through 2 years 

Type of 
Probability 

Probability 
(%) 

In Plane, 3-
sigma STD 

Volume 
85.2 

In Plane, Total 
Volume 51.9 

Out of Plane, 3-
sigma STD 

Volume 
1.3 

Out of Plane, 
Total Volume 1.5 

 
Table 5 shows that the probability of impact over a long 
time period such as 2 years significantly increases the 
chances of striking a target spacecraft in the minefield.  
Theoretically, 85% of all satellites inside the minefield 
could be disabled or destroyed within two years of the 
minefield being deployed.  Note also that, as the 
altitude of the minefield is lowered by atmospheric 
drag, it passes through the less densely populated 
portions of LEO, potentially damaging that 
infrastructure as well. 
 
Minefield Effectiveness Over Time 
Figure 11 below displays the probability of a critical 
strike on the targeted Iridium satellite over time.  The 
probabilities in the following figure were calculated 
using time steps of 30 days.  This means that each 
probability in the plot at a given indicates the 
probability of strike if a spacecraft were in that 
minefield for 30 days.  This time step was chosen due 
to the long minefield duration.  Please note that the y-
axis values are decimal probabilities, not percentages. 
 
 

 
Figure 11  Critical impact probability vs. time 

 
Figure 11 clearly shows that the minefield used to 
attack the Iridium satellite will present a significant 
threat until approximately 700 days in orbit.  By the end 
of the 2nd year in orbit, the minefield’s 30-day 
probability of striking a satellite has decreased 
dramatically. 
 
It can also be seen in Figure 11 that the probability of a 
critical strike appears to increase slightly over the 1st 
year in orbit before the probability begins to decrease.  
This is caused by the method in which the 3-sigma 
volume in calculated; after a few months the lowest 
particles have been removed by the atmosphere while 
the upper particles have moved very little, causing the 
calculated volume to decrease and thus the apparent 
density to increase.  There comes a point after around 1 
year when the minefield has decayed in altitude too 
much to remain as much of a threat as it was during the 
first year in orbit. 

Attack Scenario #2: All LEO Satellites 
This attack scenario is similar to the previous scenario 
except the MDD is detonated over the equator.  This 
detonation point allows for the spreading of the 
minefield throughout the target orbit altitude around the 
Earth.  Since every particle no longer has an inclination 
of 90 degrees, as seen in Figure 14, the longitude of the 
ascending node is now free to move.  This precession 
over time results in the Earth being completely 
surrounded by the minefield. 
 
Minefield After 1 Year 
Figure 12 below shows the minefield in orbit after 1 
year. 
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Figure 12  Minefield after 1 year 

 
Figure 12 shows the minefield spread out around the 
Earth but mostly concentrated in a “ring” shape in the 
initial polar orbit.  Please note that the black circle in 
the figure shows the targeted orbit for this attack 
scenario. 
 
Figure 13 shows the effect of drag on the semi-major 
axes of the mines after 1 year. 
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Figure 13  Semi-major axes of mines after 1 year 

 
The altitudes of the mines are shown in Figure 13 to 
have spread out through most of the altitudes of LEO.  
Some mines have reentered the Earth’s atmosphere by 
this point.  In fact, 17.6% of the mines have reentered 
Earth’s atmosphere after 1 year. 
 
Figure 14 shows the distribution of the inclination angle 
of the individual mines.  While the data shown is the 
result of one year of propagation, the dispersion in 
inclination is due solely to the initial explosion at the 
equator. 
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Figure 14  Inclinations of mines after 1 year 

 
The probability that a targeted Iridium satellite will be 
struck by a minefield particle in a critical area within 
the first year of this minefield is shown below in Table 
6. 
 

Table 6 Probabilities of impact through 1 year 

Type of 
Probability 

Probability 
(%) 

In Plane, 3-
sigma STD 

Volume 
3.1 

In Plane, Total 
Volume 1.6 

Out of Plane, 3-
sigma STD 

Volume 
N/A 

Out of Plane, 
Total Volume N/A 

 
The reason why the out-of-plane probabilities are listed 
as not applicable in Table 6 is that the purpose of this 
attack is to spread the mines to form a spherical cloud 
of mines which surround the Earth.  By definition, there 
are no ‘out-of-plane’ satellites. 
 
The probabilities shown in Table 6 are somewhat low, 
but it must be mentioned that these percentages are now 
for nearly all circularly-orbiting LEO satellites.  This 
means that of the hundreds of active LEO satellites, 
roughly 3% of them could be destroyed within a year of 
the minefield being deployed.  This could have a major 
impact on the safety of LEO. 
 
Minefield After 2 Years 
Figure 15 below shows the minefield particles after 2 
years in orbit. 
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Figure 15  Minefield after 2 years 

Figure 15 shows that the minefield is now spread out 
around the Earth much more than after only 1 year.  
The minefield can now be seen virtually enclosing the 
Earth.  Please note that the black circle in the figure 
shows the targeted orbit for this attack scenario. 
 
Figure 16 shows the how drag effects the semi-major 
axes of the mines after 2 years in orbit. 
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Figure 16  Semi-major axes of mines after 2 years 

 
The altitudes of the mines are shown in Figure 16 to 
have been lowered due to atmospheric drag effects over 
2 years.  Many mines have reentered the Earth’s 
atmosphere by this point.  In fact, 52.3% of the mines 
have reentered Earth’s atmosphere after 2 years. 
 
The probability that a targeted Iridium satellite will be 
struck by a minefield particle in a critical area within 
the first 2 years of this minefield is shown below in 
Table 7. 
 

Table 7  Probabilities of impact through 2 years 

Type of 
Probability 

Probability 
(%) 

In Plane, 3-
sigma STD 

Volume 
4.3 

In Plane, Total 
Volume 2.8 

Out of Plane, 3-
sigma STD 

Volume 
N/A 

Out of Plane, 
Total Volume N/A 

 
The probabilities shown in Table 7 are somewhat low 
but still higher than the percentages after 1 year.  The 
probabilities above mean that of the hundreds of active 
LEO satellites, over 4% of them could be destroyed 
within 2 years of the minefield being deployed, in this 
conservative analysis.  This could have a major impact 
on the safety of LEO. 

 

 
Attack Scenarios 1 & 2: Environmental 

Impact and Countermeasures 
The Iridium satellite target will most likely not survive 
a direct strike from the minefield on the critical area of 
the spacecraft bus.  Based on the calculations done in 
the Mine Selection section, it was shown that one of the 
minefield particles can penetrate 1.6 cm of solid 
aluminum.  An Iridium satellite, or any other 
communications satellite, will most likely not have 
thick aluminum shielding to protect the sensitive 
components of the spacecraft.  Adding thick aluminum 
walls to the spacecraft bus would create a serious mass 
problem as well as potential thermal and structural 
problems.  Therefore, it is not practical for Iridium or 
most other satellites in similar LEO orbits to install 
aluminum shielding to protect their spacecraft from this 
minefield. 
 
It is also impossible for a ground controller to 
maneuver the targeted satellite out of the path of the 
minefield since it is not possible to track 6mm diameter 
debris particles from the ground. 
 
A Whipple-type shield could be integrated into the 
spacecraft design, but this type of shield may not 
protect the satellite either.  This type of shield is 
discussed in detail in the Attack Scenario 3: 
Environmental Impact and Countermeasures section of 
this paper. 
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Attack Scenario #3: International Space 
Station 

The International Space Station (ISS), shown in Figure 
17, is the result of decades of work by several countries, 
primarily the United States, and cost many billions of 
dollars.  A rogue state could strike a significant blow on 
US space assets if it were able to destroy or disable the 
ISS. 
 
An attack on the ISS by a deadly minefield may stall 
manned spaceflight indefinitely and could possibly 
eliminate any justification for continuing to use the 
Space Shuttle. 
 
 

 
Figure 17  International Space Station 

Target Size 
It can be seen in Figure 17 that the ISS “flies” around 
the earth in an upright “T” position.  This means the 
ISS will be flying into the minefield in this same 
position.  A crude estimation of the critical area of the 
ISS was made by multiplying the height of the 
habitable section of the ISS, 27.5 meters, by the width 
of the ISS components, 5 meters.  This results in a 
cross-sectional area of approximately 140m2.  Using the 
rule mentioned in the beginning of the Attack Scenario 
#1 section, the critical area was assumed to be 50% of 
the total habitable section area.  This results in a critical 
target area of the ISS of 70 m2. 
 
The total target area of the ISS was calculated by 
adding the 140m2 to the total ISS solar wing area of 
892m2.  This results in a total area in view of the 
minefield of 1032m2.11 
 
It should be mentioned that although the goal is to see 
the probability of striking a critical hit on the ISS, the 
solar wings and the Space Shuttle (when docked) will 
significantly increase the likelihood of the ISS being hit 
by the minefield.  Although these hits outside the 
critical area may not destroy the station, the repeated 
hits may degrade the power and other systems to a point 
that keeping the ISS manned and in use may be 
impractical.  In addition, repeated strikes to non-critical 

systems of the station will cause a local debris cloud 
that will contribute to the debris problem. 
 
Attack on the ISS 
The ISS is located at an approximate altitude of 380 km 
at an inclination of 51.6 degrees.  In order to maximize 
the relative velocities of the mines with respect to the 
ISS, the MDD is launched into a retrograde orbit which 
matches that of the ISS.  This results in the relative 
velocities of the mines being roughly 15 km/s. 
 
The MDD is deployed in this attack scenario to create a 
“shotgun blast” of particles which pose a serious threat 
to the ISS. Due to the lack of many spacecraft at 380 
km in altitude, the minefield will pose a minor threat to 
other orbiting spacecraft which intersect the orbit of the 
minefield. 
 
For the purposes of this study, it is assumed that the 
Delta IV Medium+ (5, 4) launch vehicle can lift 
approximately 50% of the payload into a retrograde 
orbit that it can lift into a polar orbit.  This results in a 
payload capability of approximately 5000 kg.  
Therefore, it is possible to pack 25 million mines into 
the launch vehicle.   
 
The MDD is detonated over the equator to result in a 
“ring” shape of mines focused on the target ISS orbit.  
The precession of periapse and line of nodes of the 
mines (relative to the station) is not a concern in this 
attack scenario.  The minefield is deployed fairly low in 
the atmosphere which results in increased atmospheric 
drag.  This causes the minefield to decay in orbit much 
faster than the previous two attack scenarios.  
Therefore, since the duration of the minefield is limited 
to days instead of years, the precessions are not a 
significant concern. 
 
Minefield After 1 Day 
Figure 18 shows the distribution of mines in orbit 1 day 
after the MDD was detonated over the equator. 
 

 
Figure 18  Minefield after 1 day 
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The black circle in Figure 18 shows the target orbit of 
the ISS.  Figure 18 also shows that the mines have 
spread out within 1 day to completely fill the targeted 
ISS orbit.  The various orbit altitudes of the mines after 
1 day can be seen below in Figure 19. 
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Figure 19  Semi-major axes of mines after 1 day 

 
It can be seen in Figure 19 that the mines have spread 
out to a wide range of altitudes after the initial 
deployment from the MDD.  However, one major factor 
in the movement of the mines through various altitudes 
is atmospheric drag. (See Equation 26)  Even after 1 
day, a significant portion of the minefield has reentered 
the atmosphere.  In fact, roughly 29% of the mines have 
reentered the Earth’s atmosphere at this point. 
 
The probability that the targeted International Space 
Station will suffer a hit during the first day of the 
deployment of the minefield is shown in Table 8 below. 
 

Table 8  Probabilities of impact through 1 day 

Type of 
Probability 

Critical Area 
Impact 

Probability 
(%) 

Total Area 
Impact 

Probability 
(%) 

In Plane, 3-
sigma STD 

Volume 
9.2 85.5 

In Plane, Total 
Volume 5.1 46.6 

Out of Plane, 3-
sigma STD 

Volume 
0.1 0.9 

Out of Plane, 
Total Volume 0.1 0.9 

 

Table 8 shows the probability of impact in the critical 
and total ISS areas through the first day of the minefield 
deployment. Based on these probabilities, the ISS has a 
roughly 9% chance of suffering a critical hit within the 
first day of the deployment of the minefield.  However, 
the probability of the ISS being hit anywhere by a mine 
is quite significant at 85.5%. 
 
It is also seen in Table 8 that the out of plane 
probabilities are extremely low for this attack scenario.  
This is due to the fact that the minefield, although 
spread out through the ISS orbit, is tightly-packed 
together and decaying in orbit fairly rapidly.  This 
means that satellites passing through the minefield orbit 
will “see” a small, concentrated area of mines as 
opposed to a larger, less concentrated mined region. 
 
Minefield After 10 Days 
Figure 20 shows the distribution of mines in orbit 10 
days after the MDD has been detonated over the 
equator. 
 

 
Figure 20  Minefield after 10 days 

The black circle in Figure 20 shows the target orbit of 
the ISS.  Figure 20 shows that after 10 days the 
minefield has become “bunched-up” on approximately 
half of the ISS orbit.  The reason for this is that after 10 
days, since approximately 85% of the mines have 
reentered Earth’s atmosphere (shown in Figure 21), the 
only remaining particles are those with high perigees.  
These “high perigee” particles were given a greater 
portion of energy in the detonation of the MDD that the 
rest of the mines.  This caused these remaining 15% of 
the mines to remain in orbit with similar perigees for a 
longer time period.  Since the orbits of these particles 
have similar perigees, they appear in Figure 20 to be 
somewhat bunched together in roughly half of the target 
orbit. 
 
Figure 21 shows the how drag has effected the semi-
major axes of the mines after 10 days in orbit. 
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Figure 21  Semi-major axes of mines after 10 days 

 
The altitudes of the mines are shown in Figure 21 to 
have been lowered due to atmospheric drag effects over 
10 days in LEO.  Many mines have reentered the 
Earth’s atmosphere by this point.  In fact, nearly 85% of 
the mines have reentered Earth’s atmosphere after only 
10 days in orbit.  The mines in this attack scenario have 
a much shorter duration in orbit than the previous two 
attack scenarios. 
 
The probability that the targeted International Space 
Station will suffer a hit during the first 10 days of the 
deployment of the minefield is shown in Table 9 below. 
 

Table 9  Probabilities of impact through 10 days 

Type of 
Probability 

Critical Area 
Impact 

Probability 
(%) 

Total Area 
Impact 

Probability 
(%) 

In Plane, 3-
sigma STD 

Volume 
19.2 99.0 

In Plane, Total 
Volume 11.0 88.7 

Out of Plane, 3-
sigma STD 

Volume 
0.2 1.0 

Out of Plane, 
Total Volume 0.2 1.0 

 
Table 9 shows the probability of impact in the critical 
and total ISS areas through the first 10 days of the 
minefield deployment. Based on these probabilities, the 
ISS has a roughly 19% chance of suffering a critical hit 
within the first 10 days of the deployment of the 
minefield.  Although this chance of a critical impact 
may seem small, the total cross-sectional area of the 
ISS has a roughly 99.0% chance of being struck by a 

mine within the first 10 days of the deployment of the 
minefield.  This means the minefield is almost 
guaranteed to hit the ISS within 10 days. 
 
It is also seen in Table 9 that the out of plane 
probabilities are still extremely low for this attack 
scenario.  This occurs for the same reason explained in 
the previous section (minefield after 1 day). 
 
Minefield Effectiveness Over Time 
Figure 22 below displays the daily probability of a 
critical strike on the ISS over time.  This means that 
each probability in the plot at a given day was 
calculated through that entire day.  Please note that the 
y-axis values are decimal probabilities, not percentages.   
 

 
Figure 22  Daily probability of critical impact over 

time 

 
Figure 22 clearly shows that the minefield used to 
attack the ISS will only present a significant threat until 
approximately 8 days in orbit.  By the 8th day in orbit, 
the minefield’s daily probability of striking the space 
station has decreased dramatically. 
 
Attack Scenario 3: Environmental Impact 

and Countermeasures 
The International Space Station, if it suffered an impact 
at a critical area such as an inhabited module, would 
most likely need to be abandoned until repairs could be 
made.  However, if repeated critical strikes were made 
on the ISS, it may be forced to be abandoned forever.  
The cost may become too great to repair and protect the 
ISS from minefields such as those discussed in this 
paper. 
 
Being 6mm in diameter, the particles deployed from the 
MDD are not able to be tracked from the ground.  This 
prevents the ISS from being maneuvered out of the way 
of the approaching debris field.  This removes one 
option of defense from the ISS. 
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The ISS designers have taken significant steps to 
protect the crew and sensitive components from orbital 
debris impacts.  “For example, the ISS has a shield that 
will protect it from debris smaller than 1cm across by 
exploding them into even tinier particles, which some 
say could actually increase the debris problem…pieces 
between 1 and 10cm will generate a shower, several of 
which could penetrate the hull.”12  The type of shield 
being referred to in the previous quote is a Whipple-
type shield.  The basic design of the shield is shown 
below in Figure 23. 
 

 
Figure 23  Example Whipple shield13 

The Whipple shield works by causing impacting orbital 
debris particles to break apart at the outer, thinner wall 
into much smaller pieces which then impact the thicker, 
inner hull over a larger area, thus spreading out the 
energy of impact. 
 
Although the earlier quote mentions the protection for 
particles up to 1cm across, an AIAA paper describing 
the survivability of the ISS from space debris has a 
different view.  A figure in the paper shows that the 
survivability of the ISS from a direct impact from an 
orbital debris particle traveling at 15 km/s is only for 
particles less than 5.5cm in diameter.14  Therefore, the 
6mm diameter mines in this study would likely be able 
to penetrate the ISS. 
 
In addition, the assumption made for the particles is that 
they are made out of aluminum.  Also, the particles 
most likely to impact the ISS from other debris sources 
are probably irregularly-shaped objects such as paint 
flakes.  The 6mm diameter mines used in this study 
have a density similar to that of aluminum but are in the 
shape of solid spheres of material.  This shape may help 
the particles penetrate the Whipple-type shield more 
easily than an irregularly-shaped debris object. 
 
In addition, NASA has expressed serious concern about 
debris objects like the mines used in this study.  NASA 
has shown in a technical paper about the impact of 
orbital debris on the Space Shuttle that particles 5mm 
and larger could penetrate all critical portions of the 
Shuttle including the crew cabin.15  If objects such as 
the ones used for the minefield in this study can 
penetrate the crew cabin of the Space Shuttle, it may be 
likely they can penetrate the crew cabin of the 
International Space Station.  
 

Other Countermeasures 
The Whipple-type shield could be improved to include 
layers of KevlarTM fabric and/or NextelTM foam 
cladding.  The addition of TeflonTM may also improve 
the effectiveness of the shielding against orbital 
debris.16 
 

Other Environmental Impacts 
A major potential environmental impact of an 
intentional minefield is the creation of a self-
propagating minefield.  For every collision that takes 
place between a mine particle and a target object, 
potentially hundreds or thousands of other orbiting 
debris particles could be created.  These particles, in 
turn, could impact other objects and continue the self-
propagating cycle of orbital debris impacts.  This effect 
was not analyzed in this study, but can only contribute 
to the effectiveness of the minefield. 
 
Another potential major environmental impact of this 
minefield is the potential of the forced abandonment of 
the ISS.  If, for some reason, the ISS is abandoned and 
reenters the Earth uncontrollably, it could cause damage 
on the surface up to and including loss of life.  Just as 
Skylab reentered years ago with large pieces crash-
landing in Australia, a much larger ISS could break 
apart into several large pieces which may cause damage 
somewhere on Earth. 
 

Software Module 
Requirements 
In order to “study the threat of a rogue state ‘mining’ 
low-Earth orbit (LEO),” a software tool was written to 
analyze and quantify the threat posed by several 
different scenarios.  Thus, the following requirements 
were specified for the software: 
 

• Allow the user to input a ‘reference’ minefield 
orbit 

• Allow the user to describe the mines and 
minefield in a useful way 

• Allow the user to specify the nature of the 
‘target’ spacecraft 

• Generate from the input a reasonable model of 
the minefield 

• Use this model to quantify the ‘threat’ to LEO 
spacecraft in some way 

• Visualize the minefield 
 
The Matlab module that was created to address these 
requirements is presented in full in Appendix A, and a 
description of the code follows presently. 
 
Description of Code 
This section represents a description of the code used to 
analyze this problem, complete with required inputs, 
sample outputs, applicable formula, and assumptions.  
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The first part of this description may also be considered 
a users guide for the tool, as the whole program can be 
manipulated by adjusting the initial parameters. 
 
Constants 
Several values were assumed constant and referenced in 
the code where appropriate.  These were the 
gravitational parameter µ, the radius of the Earth, Re, 
and the J2 term for the Earth, J2.  The values used in the 
code are presented in Table 10.  All of these parameters 
can be easily updated in the software as required. 
 

Table 10  Program constants 

Constant Value 

µ (m3/s2) 3.986e14 

Re (m) 6.38e6 

J2 0.00108263 
 
Inputs 
As mentioned in the software requirements, it is 
necessary to allow the user to adjust various parameters 
of the mines, the minefield, and the target spacecraft.  
The following list is a description of the available setup 
parameters with their required units. 
 
v_disperse (ft/s): This is the initial dispersion velocity 
of the minefield particles.  For this model, it is assumed 
that the mines are arranged spherically around an 
explosive mechanism, and that the ∆V is normally 
distributed in each axis with mean zero and standard 
deviation of v_disperse.  Thus, the maximum ∆V per 
axis is 3*v_disperse for 99.73 percent of the particles 
(3-sigma deviation).  This value is input in English 
units so that easy analogy might be made to typical 
terrestrial projectiles, such as bullets.  The initial 
dispersion velocity is converted to metric units before 
use. 
 
alt (km): This is the initial altitude of the minefield 
orbit, when it is assumed to be circular.  If orbital 
elements or exact position and velocity vectors are 
given for the minefield orbit initial condition, then this 
value is overridden.  This value is converted to meters 
before use. 
 
tfinal (days): This is the ending time of the simulation.  
All results are calculated and presented after the 
minefield has been propagated to tfinal.  This value is 
converted to seconds before use. 
 
objects: This is the number of mines to propagate for a 
given run.  The simulator then calculates a random 
initial velocity for each object (see v_disperse above) 
and performs a Monte-Carlo analysis using this many 
trials.  The user should be careful in choosing extremely 

large values of objects, for this directly impacts the run 
time of the simulation.  As an example, 50,000 objects 
can be computed on a typical desktop computer in a 
few minutes. 
 
s_objects: This if the number of mines that can be 
packed into the launch vehicle.  The simulator performs 
a Monte-Carlo analysis on objects number of trials, and 
then extrapolates the results to s_objects.  The 
assumption is that a proportional number of the actual 
mines will re-enter the atmosphere as in the restricted 
case, and that the actual minefield will occupy a similar 
volume of space as the restricted case.  Thus, it is not 
necessary to run the simulation for the full number of 
projectiles in the launch vehicle, only a representative 
number.  This is a reasonable assumption for large 
values of objects.  For example, if the code is run for 
10,000 objects, and then 3-sigma boundaries were 
drawn to enclose the resulting volume, statistically one 
would expect only 135,000 objects to fall outside of 
those bounds for a 50 million projectile run.  While this 
seems like a large number, it only represents a 0.2 
percent error in the resulting spatial density of the 
cloud. 
 
dp (m): This is the diameter of the mines, assumed to be 
spherical. 
 
Cd: This is the coefficient of drag on the mines, 
generally assumed to be 2.2 for a sphere, unless actual 
experimental drag measurement data is available.17 
 
mp (kg): This is the mass of the individual mines. 
 
rho (kg/m2): This is the density of the atmosphere in the 
vicinity of the minefield, referenced from a table (see 
SMAD18, inside back cover).  Since the simulator is not 
capable of adjusting the density as the altitude of the 
particles decreases due to drag, typically a conservative 
value is used.  For example, if the mines are to be 
injected into an 800 km orbit, a value of density for 600 
km might be used, thus assuring the user that all mines 
remaining above 600 km at the end of the run would 
have survived at least that long (but probably much 
longer). 
 
Ac (m2): This is the critical cross-sectional area for 
collision for the target spacecraft.  The value Ac 
represents a conservative estimate of the planar area of 
the target vehicle that is vulnerable to catastrophic 
failure if struck by a piece of debris.  In general, solar 
arrays and other appendages are not considered in this 
area, and even the main planar area is cut by a large 
fraction.  This is to help distinguish critical components 
of the craft such as fuel tanks, attitude control 
components, batteries, and computers, from less critical 
components such as structural members.  Obviously, 
this assumption neglects any secondary consequences 
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of a non-critical strike (which can only be bad), since 
the focus of this paper is on the potential of the 
minefield to disable spacecraft in LEO. 
 
t_mission (days): This is a separate time from the 
simulation time, representing the time period in which 
the user wants to know the probability of strike.  For 
example, if tfinal was set to 30 days, and t_mission was 
set to 10 days, the equivalent question would be: “What 
is the probability of a mine striking the target, if the 
target orbited for 10 days in the minefield that results 
after 30 days of dispersal?”  The problem with this 
setup is immediately obvious: during the t_mission 
time, the minefield dispersion is changing, and the 
orbits are decaying.  However, for small t_mission, or 
high altitude orbits (small decrease in altitude over 
time), this is an acceptable approximation. 
 
a_target (km): This is the altitude of the target satellite.  
The parameter a_target is used to calculate how long 
the target spacecraft is in the debris field when 
calculating the probability of strike for satellites that are 
not in the debris plane.  Before use it is converted to 
meters and added to the radius of the Earth, thus 
representing a true radius to the target satellite. 
 
r_cutoff (km): This is the altitude at which the mines 
are assumed to have re-entered the atmosphere.  Since 
the rate of orbital decay is extremely high below 150 
km, and there are few targets at those low altitudes (if 
any), this value is typically set near 150 to 200 km. 
 
xo (m, m/s): This is a vector of initial conditions for the 
minefield orbit.  It can be generated in several ways, as 
will be presented below.  The first three terms are the 
initial radius vector to the point of detonation, in Earth-
Centered Inertial (ECI) coordinates, and the last three 
terms are the initial velocity vector also in ECI. 
 
Activations 
Several switches have been provided for the user to 
customize the output and performance of the program.  
A description of these functions follows: 
 
make_plots: This switch allows the user to enable or 
disable all of the graphical output of the code.  This 
might be desirable if running multiple cases in a series 
to fill a table of probabilities. 
 
plot_bounds: This switch turns the visualization of the 
worst-case boundaries off and on (see Figures 6 - 8). 
 
use_J2: Turning this switch off makes the simulation 
behave as though the Earth were a uniform sphere. 
 
use_drag: Turning this switch off disables the drag 
calculations in the simulation. 
 

use_keep_list: This option specifies whether the 
simulation should remove particles that have re-entered 
or not.  If this switch is enabled, mines that fall below 
r_cutoff are removed from the plot, and the spatial 
density calculation is scaled appropriately. 
 
disk_volume: This switch tells the software to use a disk 
to approximate the volume of the minefield (see 
description below). 
 
sshell_volume: This switch tells the software to use a 
spherical shell to approximate the volume if the 
minefield (see below).  If both disk_volume and 
sshell_volume are enabled, the spherical shell technique 
overrides. 
 
Operation and Equations 
 
The following section details the operation of the 
software tool and presents the necessary theory.  The 
description is presented in a similar order to the code, 
so the user can compare the implementation if desired.  
The software is well documented and included in 
Appendix A. 
 
The operation of the software analysis tool is comprised 
in bulk by the debris_pert.m file, written in Matlab.  
The code begins by initializing the values above, and 
then converts all non-standard units into fundamental 
units.  The code then creates the initial condition vector 
for the minefield, xo, either from user-defined orbital 
elements or a simple description of radius and position 
(for example, a radius vector of {r, 0, 0} and a velocity 
vector of {0, 0, vc} where vc is the circular speed at 
radius r).  The bulk of the simulation then begins. 
 
The idea of the simulation is to propagate the orbits of 
the individual mines through some time (tfinal), and 
then use the resulting distribution to determine the 
spatial density of the minefield and thus the probability 
of strike.  Each individual mine is given a normally 
distributed random ∆V at time zero, to simulate the 
variation of initial velocities of the particles when 
dispersed by explosion.  Each of these new orbits is 
then simulated in turn. 
 
One relatively easy and computationally cheap way to 
propagate an orbit, when only the endpoint is desired, is 
to use orbital elements.  Many variations on the 
standard orbital elements are common, but one useful 
set is: semi-major axis, eccentricity, inclination, true 
anomaly, longitude of the ascending node, and 
argument of periapse.  These are symbolized as a, e, i, 
ν, Ω, and ω, respectively.  A series of relatively simple 
calculations will yield all six orbital elements from the 
position and velocity vectors of a spacecraft, as follows: 
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Here all quantities not indicated with an over-arrow are 
scalar quantities.  The position and velocity vectors r 
and v are given, the gravitational parameter µ is given, 
x̂ and ẑ are the unit vectors in the x and z direction, h 
is the angular momentum vector, N is the vector 
direction of the orbit node, p is the orbit parameter, and 
a, e, i, ν, Ω, and ω are defined above.  This conversion 
from position and velocity vectors to orbital elements is 
done in the software by the rv2orbel.m function, 
included in Appendix A.  Note also that there are 
several sign checks that must be performed due to the 
inverse cosines, and these checks can be examined in 
the attached code.  The software also makes provisions 
for circular and equatorial orbits, where some of these 
parameters are ill-defined. 
 
Once the orbital elements have been calculated, the 
orbit can be easily propagated.  In the absence of 
disturbing forces, all of the orbital elements remain 
constant except for the true anomaly.  The true anomaly 
can be propagated relatively easily by converting it to 
the eccentric anomaly, E, and then using Kepler’s 
Equation as follows19: 
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Here M is the mean anomaly, n is the mean motion of 
the spacecraft, and t is the time to propagate to (from 
epoch of zero).  Having propagated the mean anomaly 
forward, Kepler’s Equation (13) can be solved again, 
but now for the eccentric anomaly, which can then be 
converted into the true anomaly ν.  Kepler’s Equation is 
one of the most studied equations of all time, yet still 
there is no exact analytic solution for E as a function of 
M.  Fortunately, Matlab can solve it numerically, and 
the function kepler.m was created for precisely that 
purpose.  Then to get the true anomaly: 
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Again a quadrant check must be performed as indicated 
in the software source code.  Once the new true 
anomaly has been calculated, it is a relatively simple 
task to obtain the position and velocity vectors from the 
new orbital elements.  The necessary equations, 
presented by Battin,20 are as follows: 
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These equations are implemented in the function 
orbel2rv.m, included in Appendix A.  The result of this 
formulation, when applied repeatedly to 10,000 
individual particles, is shown in Figure 24.  In this 
example, the initial path is a polar orbit, the explosion 
takes place as the MDD crosses the equator, and the 
particles were propagated forward a year. 
 

 
Figure 24  Result of 10,000 objects after 1 year, no 

drag or J2 

 
It is interesting to note the “hourglass” shape of the 
resulting distribution, where the well-defined crossing 
indicates the point of detonation.  Because in this run 
the Earth was assumed to be spherical, the point of 
detonation is the periapse of every orbit, and it remains 
in the same place over time.  One should also be careful 
to observe the scales on this plot.  The y-axis is 
markedly spread out compared to the x-axis and z-axis, 
giving the illusion of a thick band; in reality, however, 
this figure represents a rather thin ring (on an orbital 
scale). 
 
It is quickly obvious from the compactness of the 
perigee in the plot above that a spherical Earth has been 
assumed.  Using the orbital elements, however, it is 
easy to account for the most significant non-spherical 
Earth term, the J2 effect.  As mentioned above, in the 
absence of outside forces, the only orbital element that 
must change in time is the true anomaly.  If J2 is used, 
however, there are variations with time in the longitude 
of the ascending node and the argument of periapse 
(and also the mean motion, though not an orbital 

element in this code).  These variations can be 
expressed as follows, as presented by Chobotov21: 
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Here the J2 constant is as defined at the top of this 
section, and Ω&  and ω&  are the time rate of change of 
the longitude of the ascending node and the argument 
of periapse, respectively.  The equations above have 
been implemented in the code to augment the basic 
strategy outlined previously.  The following figure is an 
example if this implementation on 10,000 particles 
starting out in an equatorial orbit and propagated for a 
year. 
 

 
Figure 25  Result of 10,000 objects after 1 year, no 

drag 

 
The distinction between this result and the “no J2” 
result is readily apparent.  Due to the precession of the 
argument of periapse and the longitude of the ascending 
node, now there is no hourglass structure or evidence of 
the point of the explosion.  The disk of debris is now 
quite uniform. 
 
This model is more complete than the last; however it is 
still missing a key component.  The spherical particles 
selected have a relatively small ballistic coefficient and 
so it is expected that they will lose a lot of energy to 
drag.  Like J2, drag is also easy to implement using the 
variational orbital element method.  The drag force 
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acting on the mines has an effect on two orbital 
elements: eccentricity and semi-major axis.  Because 
the drag force operates more strongly at perigee than 
apogee for elliptical orbits, it has a tendency to 
circularize elliptical orbits until the eccentricity is zero.  
For orbits that are nearly circular to begin with, the only 
effect is to reduce the semi-major axis with time.   
Chobotov22 presents this rate as follows: 
 

Baa ρµ−=&    (26) 
 
Here r is the density of the atmosphere at the particle’s 
altitude and B is the ballistic coefficient, defined by 
Chobotov as: 
 

MACB D /=    (27) 
 
Here CD is the coefficient of drag on the particle (2.2 
for a sphere), A is the cross-sectional area of the 
particle, and M is the particle’s mass.  Note that the 
units of this “ballistic coefficient” are m2/kg, which is 
contrary to the ballistic coefficient defined by many 
other sources (but is the correct definition for the 
equation above). 
 
Implementing this variational parameter makes the 
model complete; that is, it is reasonably accurate for the 
present purposes.  A future study might include solar 
radiation pressure as an effect on the particle, however 
since the direction of this force changes as the Earth 
moves around the sun, the implementation is 
significantly more complex.  Similarly, a future model 
might use a density model that accounts for the 
changing density over time (as the semi-major axis 
shrinks). 
 
The figures presented the first sections of this paper (for 
example, Figures 3 and 9) all use the full model 
including J2 and drag effects, so the reader may see 
sample results on those earlier pages. 
 
After computing the final location of all of the objects 
required, the debris_pert.m code continues to analyze 
the resulting data.  First, the radius of perigee, rp, for 
each particle is determined, where: 
 

)1( earp −=    (28) 
 
The code then compares the radii of perigee to the 
minimum allowable altitude as defined by the user, and 
flags every failed particle.  The lost particles are not 
plotted and are not counted when calculating the 
density (that is, the density goes down). 
 

If desired, the software will then generate a number of 
plots for the user.  Each plot is useful in its own way.  
The primary plot is the three-dimensional visualization 
of the endpoints as shown in several figures, such as 
Figures 3 and 9.  In addition, histograms can be created 
from the orbital elements, showing trends among the 
mines.  For example, Figures 26 and 27 below show the 
distribution of inclination angle and eccentricity for the 
particles from the “no drag” example above.  Similar 
plots can be generated for all of the orbital elements. 
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Figure 26  Final inclinations of 10,000 objects after 1 

year, no drag 
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Figure 27  Final eccentricities of 10,000 objects after 

1 year, no drag 

 
Probability of Strike 
After creating the desired plots, the code then analyzes 
the data to estimate the spatial density of the minefield, 
in order to calculate the probability of strike.  This is 
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done in several ways, one of which is very 
conservative, and another which is more realistic but 
doesn’t contain every particle. 
 
Looking at the data, it is apparent that the generated 
minefields take on two major shapes: disks and 
spherical shells.  Disks can be generated, for example, 
by initial equatorial orbits or polar orbits with the 
explosion at the pole.  Spherical shells can be generated 
using a polar orbit with the detonation at the equator.  
Thus, knowing the shape that the resulting minefield 
will take, the volume can be estimated by appropriately 
sizing the sphere or disk. 
 
One obvious way to size the sphere and disk is to find 
the pair of radii that enclose every particle in the run.  
That is, for the spherical shell, the outer radius would 
be the largest radius of apogee of any particle, and the 
inner radius would be the smallest radius of perigee of 
any particle.  This would also work for the disk, 
however the thickness of the disk is also required to 
fully define the volume.  To contain every object, the 
thickness of the disk needs to be the maximum out-of-
plane component of any mine, which can be calculated 
as the radius of perigee times the sine of the inclination 
(or, more precisely, the change in inclination from the 
reference orbit).  This method generates a very 
conservative volume that encloses every particle, and 
when the number of surviving particles is divided by 
this result, the answer is an estimate for the spatial 
density of the minefield.   
 
Looking at the red lines on Figure 7 (calculated in this 
manner), it is obvious that this estimate is entirely too 
conservative.  A more realistic result was arrived at by, 
instead of finding the maximum radius of apogee and 
minimum radius of perigee, finding the radii that 
enclosed 99.73 percent of all mines.  That is, finding 
the 3-sigma values of ra and rp to enclose the disk or 
sphere.  The result of that approach is indicated by the 
blue lines on Figure 7, and is clearly a more 
representative volume. 
 
The probability of a spacecraft being struck by a piece 
of debris, in a debris cloud with density ρ, is given by 
Chobotov23 as: 
 

tAv creP ∆−−= ρ1   (29) 
 
Here vr is the relative velocity, Ac is the cross-sectional 
area for collision, and ∆t is the mission time.  In this 
software tool, it is assumed that the debris cloud is 
launched into an orbit that is retrograde with respect to 
the target.  Thus, the relative velocity is roughly twice 
the circular speed of the target, for a target that is in the 
plane of the debris field.  Since it is not possible that all 
target spacecraft will be in the plane of the debris field, 

but that many (if not most) will cross the field only in 
two places per revolution, an out-of-plane probability is 
also calculated.  For a worst case, it is assumed that the 
secondary target has a crossing orbit that is normal to 
the minefield.  Thus, the relative velocity is the orbital 
velocity times the square root of two, and the 
percentage of the target vehicle’s orbit spent in the 
minefield is only twice the thickness of the disk over 
the circumference of the orbit.  The out-of-plane 
probability is thus recalculated in this fashion, giving an 
estimate of the probability of strike for an out-of-plane 
spacecraft.  In this way, the numbers presented in the 
tables above were calculated, and a quantitative 
measure of “the threat of a rogue state ‘mining’ low-
Earth orbit (LEO)” was obtained. 
 
Orbit Survey 
One task that was required for this project was to 
understand what objects were in orbit, and where they 
were.  This information proved very difficult to find; 
there are few current surveys available that give the 
general trend of what is in orbit (altitude, semi-major 
axis, etc).  Much information is available in the form of 
two-line element (TLE) sets, however, so a module was 
written to dissect the TLE data and create useful 
representations from them.  This program is called 
parse_tle.m, and is included in the Appendix. 
 
The simplest way to obtain current TLE sets was found 
to be the Satellite Toolkit (STK).  STK has a feature 
that allows it to update its database of known spacecraft 
from the internet, and then this current data can be 
sorted and saved to a file of TLE sets.  The parse_tle.m 
code reads this file line by line and extracts the desired 
orbital elements for each satellite, namely: semi-major 
axis, eccentricity, and inclination.  Many of these 
parameters are in odd units or have decimal places 
assumed, so the code converts each element 
accordingly.  The longitude of the ascending node can 
also be extracted, however since the epoch of each TLE 
set is different, this data is largely meaningless without 
transformations in a rotating coordinate frame.  After 
parsing the text file to extract a, e, and i, this module 
then plots histograms of the data, indicating trends in 
current spacecraft orbits and allowing the selection of 
potential minefield orbits.  Sample output from this 
code can be seen in Figures 1 and 2. 
 

Conclusion 
The launch and deployment of the MDD system could 
be accomplished by a rogue nation for approximately 
100 million dollars.  This cost includes the launch 
vehicle, mines, explosives, and MDD structure.  Since 
the launch vehicle is by far the most expensive item in 
the list, the cost of the other components is insignificant 
by comparison. 
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It has been shown that significant damage can be done 
by implementing such a system to attack space assets.  
Attack scenario #1 showed a significant long-term 
effect on the safety of some LEO orbits.  However, 
constellations such as Iridium would likely be able to 
continue to function since the constellation has many 
different satellites in different polar orbits.  The 
constellation also has many on-orbit spares. 
 
Attack scenario #2 showed that nearly all LEO orbits 
could be attacked by the minefield as well.  Although 
the probabilities of being impacted were somewhat 
small, these numbers were for all spacecraft in the 
minefield.  This means there is a significant potential of 
a great number of satellites being critically damaged by 
the minefield for this type of attack. 
 
The results from attack scenario #3 show that the ISS 
can be struck from such a minefield.  Although it is 
much more likely that a non-critical system will be 
impacted by a mine, this hazard may require additional 
shielding or possibly the abandonment of the space 
station.  The cost to protect the ISS may end up 
dooming the station.  Already, “the cost of ‘armor-
plating’ the ISS against man-made rubbish has added at 
least $5 billion to”24 the cost of the station.  If 
additional shielding is required once faced with the 
threat of this rogue nation’s minefield, the nations 
constructing the ISS may not want or have the cash to 
pay the bill. 
 
The danger of the minefield proposed in this paper, 
although having the potential of causing some damage 
to US space assets, could not create the sort of damage 
to US space assets that would give a rogue nation a 
significant military advantage.  The main US 
communications satellites, such as Milstar, are located 
in geosynchronous orbits and are out of the scope of 
this proposed minefield.  Therefore, the US government 
need not consider the threat from such a weapon as the 
MDD minefield a serious threat from foreign countries. 
 

Future Work 
One major topic for future work could be the 
investigation of the ability of such a minefield to self-
propagate.  The long-term effects of this self-
propagation could be investigated.  The minefield may 
actually pose more of a danger than realized in this 
paper. 
 
Other types of mines could be investigated as well.  
Different sizes, shapes, and materials could be studied 
for their effectiveness against targets in space. 
 
Improved analysis of the explosion dynamics would 
lead to more accurate initial conditions for the mines 
and a more robust estimate of the mass of the explosive.  
In addition, a more detailed design of the explosion 

would lead to necessary design constraints on the MDD 
container itself. 
 
Improved software models that account for the 
changing density and solar radiation pressure could be 
included in the analysis tools. 
 
Other targets beyond those investigated in this paper 
could be studied as possible targets for the MDD.  
Geosynchronous satellites, much more expensive and 
powerful than satellites in LEO, may be good targets to 
attack with the MDD.  Serious damage to US space 
assets could be done by destroying GEO 
communications satellites. 
 
Finally, the use of multiple MDDs could be 
investigated to see how several MDDs could be used in 
a coordinated fashion to design an effective attack 
strategy against a specific target. 
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Appendix A 
 
debris_pert.m 
clear all 
 
%############################################# 
% Constants 
 
global MU; 
global re; 
colorwheel = 'rgbkmc'; 
MU = 3.986e14;          % [m^3/s^2], this is for the ****Earth**** 
re = 6.38e6;            % [m], ****Earth**** radius 
J2 = 0.00108263;        % J2 term at the ***Earth*** 
 
%################################################################### 
% Here are the setup parameters, note units.  Many are in odd units 
%    for ease of intuitive thinking 
 
v_disperse = 300;         % [ft/s] initial spherical dispersion velocity  (this is 1 sigma!!!) 
alt = 780;                % [km] initial altitude of explosion 
tfinal = 365;              % [days] duration of sim 
objects = 10000;          % [#] number of objects in canister 
s_objects = (50e6);         % number of objects to assume in canister w/ same results as above 
dp = 6e-3;                % diameter of the projectile 
A = (1/4)*pi*(dp^2);      % planar area of projectile in m^2 
Cd = 2.2;                 % coefficient of drag for the projectile 
mp = .2e-3;               % mass of the projectile (kg) 
B = Cd*A/mp;              % [m^2/kg] ballistic coefficient 
rho = 4.89e-13;           % atmospheric density, make sure this matches altitude given above 
                          %   (now using density for 600km at alt of 800km 
                          %   for worst-case)  (800 km: 4.39e-14) 
% rho = 1.66e-11;         % density for [350m] 
% Ac = 1032; 
% Ac = 70;                % [m^2] critical cross section for collision for target spacecraft 
(ISS) 
Ac = 1.29;                % [m^2] critical cross section for collision for target spacecraft 
t_mission = 30;          % [days] duration of the mission (probability of getting struck in this 
time) 
a_target = 780;          % [km] semi-major axis of target satellite 
r_cutoff = 200;           % [km] cutoff altitude (radius of perigee) below which projectiles are 
assumed to have re-entered 
 
%################################################################ 
% Here are some switches for program activations  (1=true) 
 
make_plots = 1;         
plot_bounds = 1; 
use_J2 = 1;         
use_drag = 1; 
use_keep_list = 1; 
disk_volume = 1;            % calculate probabilities using the disk approach for volume 
sshell_volume = 0;          % calculate probabilities using the spherical shell approach for 
volume 
 
%############################################################### 
% Now convert the units to standard SI if required 
 
v_disperse = v_disperse/3.28;       % [m/s]  (3.28 ft/m) 
r = re + alt*1000;                  % [m], this is now radius, not altitude 
r_cutoff = re + r_cutoff*1000;      % [m] now this is truly a radius of cutoff 
a_target = a_target*1000 + re;    % [m] semi-major axis of target satellite 
tfinal = tfinal*24*60*60;           % [s] 
t_mission = t_mission*24*3600;      % [s]  
 
%############################################################################## 
% Calculate initial conditions of bomb and make IC vector 
%   NOTE: this doesn't have to be circular, but is an easy way to get IC's 
 
% [ri, vi] = orbel2rv(380e3+re, .000528, 51.6295*pi/180, 166.9733*pi/180, 288.4644*pi/180, 
230.0767*pi/180, MU);  
% vc = sqrt(MU/(380e3+re)); 
% xo = [ri; vi]; 
vc = sqrt(MU/r); 
xo = [r 0 0 0 vc 0]';     
V_rel = 2*vc;             % assume projectiles are travelling in opposite direction, same plane 
 
%########################################################################## 
% Propogate the trajectories and work on the switches above 
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if use_J2 == 0 
    J2=0; 
end 
 
if use_drag == 0 
    B=0; 
end 
 
 
for j=1:objects 
    v_rand = v_disperse*randn(3,1);            % get the random component of the velocity 
    xo1 = xo + [0; 0; 0; v_rand];              % build the IC vector 
    [a, e, i, nu, node, omega] = rv2orbel(xo1(1:3)', xo1(4:6)',MU);    % get the orbital elements 
from (r,v) 
 
    Ea = acos((e+cos(nu))/(1+e*cos(nu))); 
    Ma = Ea - e*sin(Ea);                    % calculate the mean anomoly 
    p = a*(1 - e^2);                        % calculate the orbit parameter 
     
     
    n = sqrt(MU/a^3)*(1 + (3/2)*((J2*re^2)/(p^2))*(1 - (3/2)*sin(i)^2)*sqrt(1 - e^2));  % J2 
perturbed mean motion 
    dNode = (-3/2)*((J2*re^2)/(p^2))*n*cos(i);    % J2 perturbed longitude of ascending node 
    domega = (3/2)*((J2*re^2)/(p^2))*n*(2 - (5/2)*sin(i)^2);   % J2 perturbed argument of 
periapse 
    da = -n*(a^2)*rho*B;                % drag perturbed semi-major axis (assumes constant drag 
even with changing alt!) 
                                        %  NOTE: drag eq. assumes near circular, otherwise e 
would change also!!! 
     
    Ma = Ma + n*tfinal;                   % advance the mean anomoly to the new time 
    node = node + dNode*tfinal;           % advance node to the new time, only changes if J2 on 
    omega = omega + domega*tfinal;        % advance omega to the new time, only changes if J2 on 
    a = a + da*tfinal;                    % advance a to the new time, only changes if drag is on 
     
     
    global e_in M_in; 
    e_in = e; 
    M_in = Ma; 
     
    Ea=fzero('kepler',Ma);              % solve kepler's equation for the EA at the new time 
     
    nu = acos((cos(Ea)-e)/(1-e*cos(Ea)));   % recalculate the true anomoly 
    if Ea > pi 
        nu = 2*pi - nu;                     % sign check for the arccos 
    end 
     
    [r_new, v_new] = orbel2rv(a, e, i, nu, node, omega, MU);   % get (r,v) back from the orbital 
elements 
         
    data(j,:)=[r_new(1) r_new(2) r_new(3)]; 
    stat_data(j,:)=[a e i mod(nu,2*pi) mod(node,2*pi) mod(omega,2*pi)]; 
    if (mod(j,100)==0) 
        j 
    end 
end 
 
rp = stat_data(:,1).*(1 - stat_data(:,2)); 
if (use_keep_list == 1) 
    keep_list = find(r_cutoff < rp); 
else 
    keep_list = 1:objects; 
end 
lost_count = objects - length(keep_list) 
 
%#################################################################### 
% Do all the plotting if desired 
 
if make_plots == 1 
     
    figure     
    hold on 
    for j=1:length(keep_list) 
        plot3(data(keep_list(j),1)/1000, data(keep_list(j),2)/1000, data(keep_list(j),3)/1000, 
[colorwheel(mod(j,6)+1) '+']); 
    end 
    grid on 
     
 
    % plot the reference orbit, must advance this due to J2 also 
    global MU_in; 
    MU_in=MU; 
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    [a, e, i, nu, node, omega] = rv2orbel(xo(1:3)',xo(4:6)',MU);    % get the orbital elements 
from (r,v) 
    Ea = acos((e+cos(nu))/(1+e*cos(nu))); 
    Ma = Ea - e*sin(Ea);                    % calculate the mean anomoly 
    p = a*(1 - e^2);                        % calculate the orbit parameter 
    n = sqrt(MU/a^3)*(1 + (3/2)*((J2*re^2)/(p^2))*(1 - (3/2)*sin(i)^2)*sqrt(1 - e^2));  % J2 
perturbed mean motion 
    dNode = (-3/2)*((J2*re^2)/(p^2))*n*cos(i);    % J2 perturbed longitude of ascending node 
    domega = (3/2)*((J2*re^2)/(p^2))*n*(2 - (5/2)*sin(i)^2);   % J2 perturbed argument of 
periapse 
    Ma = Ma + n*tfinal;                   % advance the mean anomoly to the new time 
    node = node + dNode*tfinal;           % advance node to the new time, only changes if J2 on 
    omega = omega + domega*tfinal;        % advance omega to the new time, only changes if J2 on 
    e_in = e; 
    M_in = Ma; 
    Ea=fzero('kepler',Ma);              % solve kepler's equation for the EA at the new time     
    nu = acos((cos(Ea)-e)/(1-e*cos(Ea)));   % recalculate the true anomoly 
    if Ea > pi 
        nu = 2*pi - nu;                     % sign check for the arccos 
    end 
    [r_ref, v_ref] = orbel2rv(a, e, i, nu, node, omega, MU);   % get (r,v) back from the orbital 
elements 
 
    [t, y] = ode45('conic_de', [0 2*pi*sqrt(a^3/MU)], [r_ref v_ref]); 
    plot3(y(:,1)/1000, y(:,2)/1000, y(:,3)/1000, 'k','linewidth', 2) 
    xlabel('x (km)') 
    ylabel('y (km)') 
    zlabel('z (km)') 
     
     
    figure 
    hist((stat_data(keep_list,1)-re)/1000,20) 
    xlabel('Final semi-major axis (km)') 
    ylabel('Number of particles') 
    title('Effect of drag on semi-major axis') 
     
    figure 
    hist(stat_data(keep_list,2),20) 
    xlabel('Final eccentricity') 
    ylabel('Number of particles') 
    title('Final eccentricity (due to initial dispersion)') 
     
    figure 
    hist(stat_data(keep_list,3)*180/pi,20) 
    xlabel('Final inclination (deg)') 
    ylabel('Number of particles') 
    title('Final inclination (due to initial dispersion)') 
     
    figure 
    hist(stat_data(keep_list,4)*180/pi,20) 
    xlabel('Final true anomaly (deg)') 
    ylabel('Number of particles') 
    title('Final true anomaly') 
     
    figure 
    hist(stat_data(keep_list,5)*180/pi,20) 
    xlabel('Final Longitude of ascending node (deg)') 
    ylabel('Number of particles') 
    title('Effect of J2 on Longitude of ascending node') 
     
    figure 
    hist(stat_data(keep_list,6)*180/pi,20) 
    xlabel('Final argument of periapse (deg)') 
    ylabel('Number of particles') 
    title('Effect of J2 on argument of periapse') 
     
end 
 
 
%############################################################################### 
% Calculate the worst case radii of perigee and apogee and out of plane (OOP) for the disk 
 
clear ra rp 
 
ra = stat_data(keep_list,1).*(1 + stat_data(keep_list,2)); 
rp = stat_data(keep_list,1).*(1 - stat_data(keep_list,2)); 
 
ra_max = max(ra); 
ra_std = mean(ra) + 3*std(ra);    % 3-sigma max radius of apogee 
rp_min = min(rp); 
rp_std = mean(rp) - 3*std(rp);    % 3-sigma max radius of perigee 
 
if i == pi/2 
    max_oop = max(ra.*sin( (stat_data(keep_list,5)-node) )); 
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    std_oop = 2*(std(ra.*sin( (stat_data(keep_list,5)-node) ))); 
else 
    max_oop = max(ra.*sin( (stat_data(keep_list,3)-i) )); 
    std_oop = 2*(std(ra.*sin( (stat_data(keep_list,3)-i) ))); 
end 
 
 
if (plot_bounds == 1) & (make_plots == 1) & (disk_volume == 1) 
    figure(1) 
    hold on 
    [a, e, i, nu, node, omega] = rv2orbel(r_ref, v_ref, MU); 
    [r_off, v_off]=orbel2rv(rp_min, e, i, nu, node, omega, MU); 
    [t, y] = ode45('conic_de', [0 2*pi*sqrt(rp_min^3/MU)], [r_off v_off]); 
    offset = max_oop*cross(r_ref, v_ref)/norm(cross(r_ref, v_ref)); 
    plot3((y(:,1)+offset(1))/1000, (y(:,2)+offset(2))/1000, (y(:,3)+offset(3))/1000, 
'r','linewidth', 2) 
    plot3((y(:,1)-offset(1))/1000, (y(:,2)-offset(2))/1000, (y(:,3)-offset(3))/1000, 
'r','linewidth', 2) 
     
    [r_off, v_off]=orbel2rv(ra_max, e, i, nu, node, omega, MU); 
    [t, y] = ode45('conic_de', [0 2*pi*sqrt(ra_max^3/MU)], [r_off v_off]); 
    plot3((y(:,1)+offset(1))/1000, (y(:,2)+offset(2))/1000, (y(:,3)+offset(3))/1000, 
'r','linewidth', 2) 
    plot3((y(:,1)-offset(1))/1000, (y(:,2)-offset(2))/1000, (y(:,3)-offset(3))/1000, 
'r','linewidth', 2) 
     
    [r_off, v_off]=orbel2rv(rp_std, e, i, nu, node, omega, MU); 
    offset = std_oop*cross(r_ref, v_ref)/norm(cross(r_ref, v_ref)); 
    [t, y] = ode45('conic_de', [0 2*pi*sqrt(rp_std^3/MU)], [r_off v_off]); 
    plot3((y(:,1)+offset(1))/1000, (y(:,2)+offset(2))/1000, (y(:,3)+offset(3))/1000, 
'b','linewidth', 2) 
    plot3((y(:,1)-offset(1))/1000, (y(:,2)-offset(2))/1000, (y(:,3)-offset(3))/1000, 
'b','linewidth', 2) 
     
    [r_off, v_off]=orbel2rv(ra_std, e, i, nu, node, omega, MU); 
    [t, y] = ode45('conic_de', [0 2*pi*sqrt(ra_std^3/MU)], [r_off v_off]); 
    plot3((y(:,1)+offset(1))/1000, (y(:,2)+offset(2))/1000, (y(:,3)+offset(3))/1000, 
'b','linewidth', 2) 
    plot3((y(:,1)-offset(1))/1000, (y(:,2)-offset(2))/1000, (y(:,3)-offset(3))/1000, 
'b','linewidth', 2) 
end 
 
 
%############################################################################ 
% Calculate the volume and spatial density 
 
if disk_volume == 1 
    V_max = 2*max_oop*pi*(ra_max^2 - rp_min^2); 
    V_std = 2*std_oop*pi*(ra_std^2 - rp_std^2); 
    spatial_d_min = s_objects*(length(keep_list)/objects)/V_max; 
    spatial_d_std = s_objects*(length(keep_list)/objects)/V_std; 
end 
 
if sshell_volume == 1 
    V_max = (4/3)*pi*(ra_max^3 - rp_min^3); 
    V_std = (4/3)*pi*(ra_std^3 - rp_std^3); 
    spatial_d_min = s_objects*(length(keep_list)/objects)/V_max; 
    spatial_d_std = s_objects*(length(keep_list)/objects)/V_std; 
end 
 
 
%############################################################################### 
% Calculate the probability of strike for a particle in the debris field 
 
P_strike_ip_min = 1 - exp(-spatial_d_min*t_mission*Ac*V_rel) 
P_strike_ip_std = 1 - exp(-spatial_d_std*t_mission*Ac*V_rel) 
 
if disk_volume == 1 
    P_strike_oop_min = (1 - exp(-spatial_d_min*t_mission*Ac*sqrt(2)*V_rel/2)) * 
(4*max_oop/(2*pi*a_target)) 
    P_strike_oop_std = (1 - exp(-spatial_d_std*t_mission*Ac*sqrt(2)*V_rel/2)) * 
(4*std_oop/(2*pi*a_target)) 
end 

 
 
 
rv2orbel.m 
function [a, e, i, nu, node, omega]=rv2orbel(r,v,MU) 
 
% function to get these 6 orbital elements from r and v 
%     (a, e, i, nu, Node, omega) 
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h = cross(r,v);         % angular momentum vector 
N = cross([0 0 1],h);   % direction of node 
evect = (1/MU) * ( (norm(v)^2-MU/norm(r))*r - dot(r,v)*v);  % eccentricity vector 
e = norm(evect);        % magnitude of e 
p = (norm(h)^2)/MU;     % the orbit 'parameter' 
a = -1/((norm(v)^2)/MU-2/norm(r));     % semimajor axis 
 
i = acos(dot([0 0 1],h)/norm(h));      % inclination 
 
if i==0 
    node=0;                           % node undefined for equatorial, call it zero 
else 
    node = acos(dot([1 0 0],N)/norm(N));   % calculate node 
    if dot(N,[0 1 0]) < 0 
        node = 2*pi - node;                % quadrant check 
    end 
end 
 
if ((e==0) | (norm(N)==0)) 
    omega = 0;                         % argument of periapse undefined for circular, call it 
zero 
else 
    omega = acos(dot(evect,N)/(e*norm(N)));   % calculate argument of periapse 
    if dot(evect,[0 0 1]) < 0 
        omega = 2*pi - omega;          % quadrant check 
    end 
end 
 
nu = acos(dot(evect,r)/(e*norm(r)));     % calculate true anamoly 
if dot(r,v) < 0 
    nu = 2*pi - nu;                     % quadrant check 
end    

 
 
 
orbel2rv.m 
function [r, v] = orbel2rv(a, e, i, nu, node, omega, MU) 
 
% function to get the r and v vectors back from the orbital elements 
 
p = a * (1 - e^2);              % orbit parameter 
rmag = p/(1 + e*cos(nu));       % magnitude of r at the given 'time' 
h = sqrt(p * MU);               % magnitude of angular momentum vector 
theta = nu + omega;             % argument of latitude = true anamoly + argument of periapse 
 
r = rmag*[cos(node)*cos(theta) - sin(node)*sin(theta)*cos(i); 
            sin(node)*cos(theta) + cos(node)*sin(theta)*cos(i); 
            sin(theta)*sin(i)];     % calculate r 
         
v = -(MU/h)*[cos(node)*(sin(theta)+e*sin(omega)) + sin(node)*(cos(theta) + e*cos(omega))*cos(i); 
             sin(node)*(sin(theta)+e*sin(omega)) - cos(node)*(cos(theta) + e*cos(omega))*cos(i); 
             -(cos(theta) + e*cos(omega))*sin(i)];      % calculate v 

 
 
 
kepler.m 
function out=kepler(E) 
 
global e_in; 
global M_in; 
 
out=E-e_in*sin(E)-M_in; 

 
 
 
conic_de.m 
function xdot = conic_de(t,x); 
 
global MU_in % m^3/s^2 
 
xdot(1:3,1) = x(4:6,1); 
r = x(1:3,1); 
rmag = norm(r); 
rmag3 = rmag*rmag*rmag; 
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xdot(4:6,1)=(-MU_in/rmag3)*r; 

 
 
 
parse_tle.m 
clear all 
 
MU = 3.986e14;          % [m^3/s^2], this is for the ****Earth**** 
re = 6.38e6;            % [m], ****Earth**** radius 
 
fid=fopen('LEO.tle', 'rt') 
% fid=fopen('45degmax.tle', 'rt') 
count=1; 
while 1 
    tmp=fgetl(fid); 
    if ~ischar(tmp), break, end 
    tmp=fgetl(fid); 
    if ~ischar(tmp), break, end 
    i(count)=str2num(tmp(9:16)); 
    e(count)=str2num(tmp(27:33))/1e7; 
    n(count)=2*pi*str2num(tmp(53:63))/24/3600;     % rad/s 
    node(count)=str2num(tmp(18:25)); 
    count=count+1; 
end 
 
fclose(fid); 
 
a=(MU./n.^2).^(1/3); 
alt=(a-re)/1000;                % altitude in [km] 
 
figure 
hist(i,20) 
xlabel('Inclination (deg)') 
ylabel('Number of spacecraft') 
title('Inclination survey') 
 
figure 
hist(e,20) 
xlabel('Eccentricity') 
ylabel('Number of spacecraft') 
title('Eccentricity survey') 
 
figure 
hist(alt,20) 
xlabel('Mean Altitude (km)') 
ylabel('Number of spacecraft') 
title('Altitude survey') 
 
figure 
hist(node,20) 
xlabel('Ascending Node (deg)') 
ylabel('Number of spacecraft') 
title('Ascending Node survey') 
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