
Problem Set 3: Design Module for a Spacecraft Attitude
Control System

Summary
The software module designed for this problem set calculated the disturbance torques on
a satellite in a specified orbit, sized the required reaction wheels to counteract the
disturbance torques, and sized the propulsion system required to dump angular
momentum when the reaction wheels become saturated.

Results
The software module developed was tested with an orbit similar to the fictional FireSat
satellite orbit from SMAD. The results from the software module were similar to those
given in SMAD for the FireSat.

Useful References

Reaction Wheels

E. Ahronovich, M. Balling, Reaction Wheel and Drive Electronics For LeoStar Class
Space Vehicles, 12th Annual USU Conference on Small Satellites, 1998,
www.sdl.usu.edu/conferences/smallsat/proceedings/12/ssc98/1/ssci5.pdf
Dynacon Enterprises Limited, Dynacon MicroWheel 200,
www.dynacon.ca/pdf/files/productpdf_6.pdf
Honeywell Aerospace Electronic Systems, Constellation Series Reaction Wheels,
http://content.honeywell.com/dses/assets/datasheets/constellation_series_reaction_wheels
.pdf.
Honeywell Aerospace Electronic Systems, Miniature Reaction Wheels,
http://content.honeywell.com/dses/assets/datasheets/mini-wheel_reaction_wheel.pdf
Honeywell Aerospace Electronic Systems, Honeywell Model HR 0610 Reaction Wheel,
http://content.honeywell.com/dses/assets/datasheets/hr0610_reaction_wheel.pdf
Teldix Space Product Group, Momentum and Reaction Wheels 14-68 Nms with external
Wheel Drive Electronics, http://www.teldix.de/P22/RDR23-68.pdf
Teldix Space Product Group, Momentum and Reaction Wheels 14-68 Nms with
integrated Wheel Drive Electronics, http://www.teldix.de/P22/RSI25-68.pdf
Teldix Space Product Group, Momentum and Reaction Wheels 2-12 Nms with integrated
Wheel Drive Electronics, http://www.teldix.de/P22/RSI4-12.pdf
Teldix Space Product Group, High motor torque Momentum and Reaction Wheels 14-68
Nms with integrated Wheel Drive Electronics, http://www.teldix.de/P22/RSI18-68.pdf
Teldix Space Product Group, Momentum and Reaction Wheels 0.04-0.12 Nms with
integrated Wheel Drive Electronics, http://www.teldix.de/P22/RSI01.pdf

Teldix Space Product Group, Momentum and Reaction Wheels 0.2-1.6 Nms with
integrated Wheel Drive Electronics, http://www.teldix.de/P22/RSI02.pdf

The references listed above are for reaction wheels from Honeywell and Teldix. These
two companies are some of the only companies that list their reaction wheel product
specifications online. These reaction wheel specifications are useful for students that
need real reaction wheel information to use in projects.

Atmospheric Model

Benson, Tom, http://www.grc.nasa.gov/WWW/K-12/airplane/atmosmet.html, Earth
Atmosphere Model, Metric Units, NASA Glenn Research Center, 2002.

The website listed above is a good reference to an atmospheric model available online.
This NASA developed atmospheric model is somewhat inaccurate, but it is a good
starting point for a rough initial design.

ACS Equations

Wertz, James, and Larson, Wiley, Space Mission Analysis and Design, 2nd Ed.,
Microcosm, Inc., 1997.

SMAD, listed above, contains a great deal of ACS information for a first-order spacecraft
design. The equations for determining disturbance torques as well as sizing reaction
wheels and ACS propulsion systems are contained in SMAD as well.

Design Module for a Spacecraft Attitude Control System
Software Designed to Help Estimate Spacecraft Design Requirements

16.851 Satellite Engineering

Massachusetts Institute of Technology, Cambridge, MA
October 2003

Motivation
Spacecraft often have pointing requirements. Satellite
antennas and optics will generally require that the
spacecraft remain pointed at the desired target within a
certain pointing tolerance. There are many
environmental effects that disturb the spacecraft, and
the attitude control systems (ACS) must be designed to
account for this. The ACS system for this project will
be designed for a three-axis stabilized spacecraft. This
module will be useful for next semester when the x-ray
telescope being designed will require three-axis
stabilization.

Problem Statement
Design a tool that sizes attitude control system actuators
for a three-axis stabilized spacecraft given disturbance
torques created by various environmental effects.
Environmental effects include gravity gradient, solar
radiation, magnetic field, and aerodynamic forces.
ACS actuators being investigated include momentum
wheels and thrusters.

Introduction
MATLAB is used to evaluate the disturbance torques
on the spacecraft and select and size appropriate ACS
actuators to meet the pointing requirements of the
spacecraft.

For spacecraft without large slewing requirements,
momentum wheels are primarily used to counteract
disturbance torques. Momentum wheels and the
propulsion system to dump the excess momentum will
be the primary focus of the software module.

The user will input information about the satellite
including mass properties, physical dimensions, and
orbit information (altitude, inclination, and
eccentricity). The tool then examines the relevant

environmental disturbance torques and finds the worst-
case torque conditions for the specific spacecraft and
orbit. Next, the tool will size the momentum wheels
required to overcome worst-case disturbance torques.
The masses of the momentum wheels are obtained from
a database of available momentum wheel
specifications. In addition, the module calculates the
mass of the propulsion system required to dump
momentum from the momentum wheels when they
become saturated over the lifetime of the spacecraft.

Finally, the tool is executed for a test case in order to
check the validity of the module. In addition, other test
cases are run in order to construct parametric design
figures that show trends of the output involving
disturbance torques and ACS mass as a function of
spacecraft size and orbit parameters.

Software Module

ACS Environmental Disturbance Torque Tool

Description of Code
This MATLAB software tool sizes ACS angular
momentum storage and dumping devices for a specified
vehicle in any orbit. The tool only addresses
disturbance torques from the main environmental
sources: atmospheric drag, solar radiation, magnetic
field, and gravity gradient. The ACS sizing is only
meant to account for disturbance torques and does not
address the design needs for vehicle slewing. The tool
requires input data structures to describe the vehicle,
orbit, and planet (Table 1).

Table 1 Software tool inputs

Parameter Description

veh.dim [m], vehicle dimensions (x,y,z)

veh.CG [m], vehicle CG offset from geometric
center

veh.mass [kg], vehicle mass

veh.mat vehicle surface material code (see
Appendix)

veh.life [years], vehicle design life

OE.a [m], orbit semi-major axis

OE.e orbit eccentricity

OE.i [deg], orbit inclination

OE.Om [deg], argument of periapsis

OE.om [deg], longitude of the ascending node

planet.mu [m3/s2], earth gravity constant

planet.r_pol [m], earth polar radius

planet.r_equ [m], earth equatorial radius

The vehicle is modeled as a rectangular prism and
described by the three edge lengths, mass, center of
gravity, and exterior surface material. Using the
dimensions and mass, the vehicle’s moment of inertia
can be determined using1:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+

+
=

)(00
0)(0
00)(

22
12
1

22
12
1

22
12
1

yxm
zxm

zym
I

 (1)

Using the orbital elements, the orbital period and
inertial position and velocity are calculated2.
Throughout the orbit, worst case environmental
disturbance torques are calculated for the four
environmental sources. Details of the torque
calculations will be addressed in the following sections.

The total disturbance torque is then integrated for one
complete orbit. This provides the worst case angular
momentum imposed on the vehicle for one orbital
period. Integrating the orbital torque instead of
assuming an average from the maximum torque is
advantageous because it incorporates the varying
effects resulting from different orbit types. Two very
different orbits might have the same maximum torque,
but would in reality experience very different
disturbance effects (i.e. circular orbit versus highly
elliptic orbit).

For the angular momentum experienced by the vehicle,
it is assumed that 80% is cyclic in nature and therefore
only requires temporary storage during the orbit. The
remaining 20% is secular and will continue to
accumulate until the momentum dumping system
applies an external torque and eliminates this

momentum. This ratio was chosen because cyclic
momentum loads are known to drive the ACS design
and this ratio matched well with guidance provided in
SMAD.

The cyclical angular momentum drives the momentum
wheel design. The tool selects a momentum wheel
system that can store the calculated cyclical momentum
and then estimates the mass of the wheel.

Next, the tool selects the thruster system to dump the
accumulating secular torque for the duration of the
vehicle life. This determines the thruster system mass
and thrust capability.

Finally, the tool outputs these calculated ACS specs for
the worst case environmental disturbance torques.
Table 2 shows the software tool output.

Table 2 Software tool output

Parameter Units

Cyclical angular momentum (per orbit) [Nms]

Secular angular momentum (per orbit) [Nms]

ACS Momentum wheel mass [kg]

ACS Thruster system mass [kg]

ACS Thruster thrust [N]

Program Execution
The ACS ENV tool is executed using MATLAB. First,
various constant parameters are specified by the user
within the “ACS_env_ini.m” file (see Table 1). Next,
the tool is executed by entering at the Matlab command
prompt:

>> [h_cyc,h_sec,wheel_mass,thr_mass,thr_force]
= ACS_env(OE,veh,planet);

The five program outputs are specified in Table 2.
Copies of the initialization file and all program modules
can be found in the appendix.

Aerodynamic Torque Module

Requirements
This MATLAB module, torque_aero.m, calculates the
torque due to aerodynamic drag on the spacecraft. This
drag is caused by the vehicle flying through the Earth’s
atmosphere during close approaches to the planet. An
atmospheric model is used to approximate the density
of the atmosphere at each position of the spacecraft.
Combined with geometric and aerodynamic
information, the torque caused by drag is determined.

 2

Description of Code
The code uses an atmospheric model for the “upper
atmosphere” from NASA. This model provides an
approximation of the density of Earth’s atmosphere for
use in drag calculations on the spacecraft.3

The code also assumes the spacecraft is shaped as a
rectangular parallelepiped of edge dimensions X, Y,
and Z. The origin of the spacecraft is defined to be the
geometric center of the 3-D shape. The coordinate
system definition for the assumed spacecraft in the
MATLAB module is shown below in Figure 1.

Figure 1 S/C coordinate system definition

In addition, the center of pressure, the location at which
the aerodynamic drag is acting, is assumed to be at the
center of one face of the spacecraft. It is assumed that
the worst case drag the spacecraft experiences is the
case in which the vehicle has one face directly facing
the direction of travel though the atmosphere. In
addition, it is assumed that the face on which the drag is
acting has the largest surface area on the spacecraft.
This results in the worst-case drag possible on the
vehicle.

The worst-case of the aerodynamic drag torque also
results from the worst-case moment arm of the force
acting on the vehicle. This worst-case moment arm is
determined from the absolute value of the maximum
CG offset from the geometric center. The geometric
center is assumed to be the coordinate system origin for
the spacecraft. Since the center of pressure acting on
each face is at the center of the face, the largest moment
arm acting around the center of gravity is the maximum
distance in one axis of the center of gravity from the
geometric center.

Constants
The only constant used in this module was the
coefficient of drag, CD, which is assumed to be 2.2.
This assumption was made due to a lack of
experimental data about the drag and lift characteristics

of this vehicle. Also, Chobotov recommends that a
drag coefficient value of 2.2 be used as a conservative
estimate.4

Inputs
size (m): This input was a vector containing the three
edge lengths of the rectangular parallelepiped-shaped
spacecraft.

V (m/s): This input is the instantaneous velocity of the
spacecraft at any given time when the module is called
by the main program.

h (m): This input is the altitude of the spacecraft at any
time in which the module is called by the main
program.

CG (m): This input is a vector of the center-of-gravity
offset from the geometric center of the spacecraft. This
is used to determine the worst-case moment arm on
which the drag force is acting.

Outputs
Ta (N*m): This output is the disturbance torque on the
spacecraft due to atmospheric drag in the spacecraft.
This is sent back to the main program when this
subroutine is called.

Theory & Equations
In order to estimate the atmospheric density at any
given time during the orbit of the spacecraft, a density
model provided by NASA was used. The model used
was for the “upper atmosphere.” This meant that it was
acceptable for use above 25km altitude. The equations
below were used for this approximation.5

hT 00299.21.131 +−= (2a)
388.11

6.216
1.273488.2

−

⎥⎦
⎤

⎢⎣
⎡ +

=
Tp (2b)

[]1.2732869. +
=

T
pρ (2c)

In the above equations, T is the atmospheric
temperature (degrees Celsius), p is the atmospheric
pressure (KPa), and ρ is the atmospheric density
(kg/m3).

The force acting on the spacecraft due to drag was
determined by the following equation.6

2
2
1 AVCF Dρ= (3)

The A in the above equation is the surface area of the
face of the spacecraft normal to the airflow hitting the
vehicle.

 3

The torque due to aerodynamic drag on the spacecraft is
calculated using the following equation.

zyxiwhereDFT ia ,,)),(max(== (4)

The torque, Ta, is calculated by multiplying the drag
force on the spacecraft, F, by the maximum distance of
the center of gravity from the geometric center out of
the x, y, or z directions, Di. This would allow for the
largest moment arm and therefore would result in the
highest disturbance torque due to aerodynamic drag.

Torque from Solar Radiation
Solar radiation pressure if found from the equation:

() (cgcpsiqA
c
F

T s
s

sp −+= cos1) (5)

where Fs is the solar constant, 1367 W/m2, c is the
speed of light, 3x108 m/s, As is the surface area of the
satellite facing the sun, q is the reflectance factor, i is
the angle of incidence to the sun, cps is the location of
the center of solar pressure, and cg is the center of
gravity of the satellite. The units of solar radiation
pressure are Newton-meters.

The worst case is for an incidence angle of zero
degrees, so i=0 was always used in calculations. Also
in a worst case situation, As would be the surface area
of the largest face of the satellite. The value for q is
based on the material of the satellite, which is specified
on input.

Gravity-gradient Disturbance Torques
The gravity field of the Earth can place unwanted
torques on a satellite. When a satellite is affected by
the Earth’s gravity field, the longitudinal axis becomes
aligned toward the center of the Earth. The strength of
the torque is a function of the distance of the satellite
from the Earth. Also, the torque is symmetric about the
nadir vector of the satellite.

The equation for finding the worst case gravity-gradient
torque is:

)2cos(
2
3

3 θµ
yzg II

R
T −= (6)

where µ is the gravitational constant of the Earth,
3.986*1014 m3/s2, R is the orbit radius, Iz and Iy are the
moments of inertial about the z and y axes of the
satellite, and θ is the maximum deviation of the z-axis

from the local vertical. To calculate the worst case
scenario, θ is assumed to be 45o.

Magnetic Field Disturbance Torques
The magnetic field of the earth can cause torques on a
satellite. The strength of the magnetic field torque on a
satellite is a function of the satellite’s position. The
magnetic field intensity B is found by the equation:

λ2
3 sin1+=

R
BB o (7)

where B0 is the magnetic field at the equator at the
Earth’s surface, 0.3 gauss, R is the radial distance from
the Earth, and λ is the magnetic latitude. The worse
case disturbance torque from the magnetic field on the
satellite can then be found by multiplying B by the
residual dipole of the satellite, D:

 Tm = DB (8)

The vehicle residual magnetic dipole (D) is assumed to
be 1 Am2 for this problem.

Mass in Reaction Wheels
Using the cyclic angular momentum calculated by the
tool, the reaction wheel mass can be estimated. To
determine mass of a reaction wheel, data was collected
on many existing, commercial reaction wheels. A
fourth-order polynomial curve was fit to this data using
MATLAB, to compare momentum storage in reaction
wheels and their weight in kilograms. From the curve,
the approximate mass of a momentum wheel given its
momentum storage can be determined. The figure
below illustrates the data collected (red points) as well
as the polynomial curve fit used (shown as the blue
line).

Figure 2 Mass vs. angular momentum capability for

momentum wheels

 4

Sources used for collecting data on reaction wheels are
included in the references section of this
paper.7,8,9,10,11,12,13,14,15,16,17

ACS Propulsion System Design Module

Requirements
This MATLAB module, called prop_system.m,
calculated the thrust required to dump momentum at
each momentum dump thruster firing as well as the
total ACS propulsion system mass required for
momentum dumping.

Description of Code
This code calculates the worst-case moment arm of an
ACS thruster about a spin axis of the spacecraft and
combines that moment arm with the required thrust for
dumping momentum to size the propulsion subsystem.

The code assumes the spacecraft is shaped as a
rectangular parallelepiped of edge dimensions X, Y,
and Z, with thrusters arranged at locations shown in the
figure below. The thrusters are the red triangles in the
figure below.

Figure 3 Assumed thruster locations on spacecraft

A Hydrazine monopropellant propulsion system is
assumed to be used for momentum dumping for this
spacecraft. Although the specific impulse, Isp, for
Hydrazine can be as high as 245 seconds,18 a
conservative value for the Isp for Hydrazine is assumed
in this module. This conservative Isp value is 200
seconds.

Although the thrusters and propulsion system plumbing
are not directly sized, a conservative value for
propulsion system mass is estimated. It is assumed that

the mass of the propulsion system is 85% propellant.19
This, by sizing the propellant, the total system mass can
be determined by dividing by 0.85.

It should also be noted that it is assumed in this module
that the time for each thruster firing is one second.

Constants
The only constant used in this module is the
acceleration due to gravity at the Earth’s surface, g.
This is assumed to be 9.8 m/s2.

Inputs
size (m): This input was a vector containing the three
edge lengths of the rectangular parallelepiped-shaped
spacecraft.

CG (m): This input is a vector of the center-of-gravity
offset from the geometric center of the spacecraft. This
is used to determine the worst-case moment arm on
which the drag force is acting.

lifetime (years): This input is the lifetime of the
satellite. It is used to determine how many thruster
firings to dump momentum will be needed throughout
the life of the spacecraft.

H (N*m*s): This input is the stored maximum
momentum in any one momentum wheel. It is the
momentum which will need to be dumped by using the
thruster firing of the ACS system.

sat_rate (days/saturation): This input is the time it
takes for the wheels of the spacecraft to become
saturated with angular momentum. It is at this point
that the momentum wheels have no more capacity to
control the attitude of the spacecraft by spinning up any
faster.

Outputs
F (N): This output is the force required for the thruster
to impart on the spacecraft in order to dump the
required momentum.

p_mass (kg): This output is the total mass of the
propulsion system used to dump momentum when the
momentum wheels become saturated throughout the
lifetime of the spacecraft.

Theory & Equations
The force required to dump momentum is obtained by
using the following equation.

Lt
HF = (9)

 5

In the above equations, L is the moment arm of the
thruster to the required spin axis (meters) and t is the
thruster firing time.

The propellant mass, mP, and total propulsion system
mass, p_mass, are then calculated using the following
equations.

ratesat
lifetimepulsestotal

_
25.365**3_ = (10)

gI
tpulsestotalFm

sp
P

)_(
= (11)

85.0
_ Pmmassp = (12)

Total_pulses is the total number of thruster firings
required throughout the lifetime of the spacecraft to
counteract the environmental disturbance torques. The
numerator of the total_pulses equation has a factor of 3
in it because it is assumed that all three wheels will
need to be desaturated at each time momentum is
required to be dumped. The Isp in the equation above is
for Hydrazine. The 0.85 factor is explained in the
“Description of Code” section.

Results
Module test case
In order to verify that the MATLAB code is working
properly, the module was used to determine the
disturbance torques and calculate the required ACS
mass for a test case. The test case used was the main
spacecraft example in Space Mission Analysis and
Design, by Wertz and Larson. This example is the
FireSat satellite. The main parameters used to simulate
the FireSat example to test this module with are shown
below in Table 3.

Table 3 FireSat-like test case parameters

Parameter Value Description

veh.dim [1.7 1 1.7] [m], vehicle dimensions (x,y,z)

veh.CG [0.2 0 0] [m], vehicle CG offset from
geometric center

veh.mass 200 [kg], vehicle mass

veh.mat 9 vehicle surface material code
(corresponds to 0.63 reflectance)

veh.life 4 [years], vehicle design life

OE.a 7,078,000 [m], orbit semi-major axis

OE.e 0.0 orbit eccentricity

OE.i 45 [deg], orbit inclination

OE.Om 0 [deg], argument of periapsis

OE.om 0 [deg], longitude of the ascending
node

planet.mu 3.986e14 [m3/s2], earth gravity constant

planet.r_pol 6,357,000 [m], earth polar radius

planet.r_equ 6,378,000 [m], earth equatorial radius

Based on the input parameters in the above table, the
MATLAB module calculated the cyclical and secular
angular momentum required to counteract disturbance
torques on the spacecraft for one orbit, the required
momentum wheel mass for the ACS system, the thrust
required for each instance angular momentum of the
spacecraft needs to be dumped, and the ACS propulsion
system mass required for dumping angular momentum
for the life of the spacecraft.

A plot of the orbit of the FireSat spacecraft example is
shown below in Figure 4.

Figure 4 FireSat orbit

 6

The disturbance torques imposed on the spacecraft are
shown in the polar plot in following figure. Zero
degrees on the plot corresponds to the orbital ascending
node.

Figure 5 Disturbance Torques for FireSat Test Case

The curves in the plot in Figure 5 show the disturbance
torque due to gravity gradient is the largest contributor
to the overall disturbance torque on the spacecraft. The
torque due to magnetic fields is the second-largest
contributor to the total disturbance torque. Torque due
to solar radiation and aerodynamic drag are the two
minor contributors to overall disturbance torque. Solar
pressure on the spacecraft is a weak force, which results
in the torque from solar radiation being small. The
torque due to drag is low because the spacecraft is in an
700km orbit. The Earth’s atmosphere at an altitude of
700km is almost nonexistent.

A comparison of the results from SMAD and results
from the MATLAB code is shown below in Table 4.

Table 4 FireSat-like test case solution vs. Module

Parameter Value SMAD
Solution

Cyclical angular momentum
(per orbit)

0.3845
[Nms] 0.4 [Nms]

Secular angular momentum
(per orbit)

0.0961
[Nms] N/A

ACS Momentum wheel mass 1.41 [kg] N/A

ACS Thruster system mass 2.46 [kg] 2.43 [kg]

It can be seen in the above table that the values for
cyclical angular momentum and ACS thruster system
mass are nearly identical. The values for secular
angular momentum and ACS momentum wheel mass

are not included in SMAD and therefore can not be
compared to the module solution.

Module output
The following section will display the capabilities of
the MATLAB module by presenting data collected by
running the module for various orbits and spacecraft
sizes.

First, required angular momentum to counteract cyclic
disturbance torques on the spacecraft is calculated for
various orbit eccentricities and altitudes at perigee. The
results are shown below in Figure 6.

Figure 6 Cyclic angular momentum vs. eccentricity

for various radii of perigee

The curves in the figure show several interesting trends
which correspond with reality. First, the highly-
eccentric orbits generally have lower required angular
momentum storage capability. This is due to the fact
that these orbits are far away from the Earth for most of
the orbit. This nearly eliminates disturbance torques
from drag, magnetic fields, and gravity gradient. The
remaining torque, caused from solar radiation, is a
small contributor to disturbance torque.

The reason the angular momentum increases slightly
near the high end of eccentricity is most likely due to
the fact that the satellite in those orbits will be passing
by Earth at extremely high speeds compared to the
smaller-eccentricity orbits. This high speed near Earth
may contribute to much larger torque due to drag for
that portion of the orbit.

Another interesting observation from the figure above
is that the disturbance torque for satellites around 400
or 500km altitude is much greater than that of satellites
in slightly higher low-Earth orbits of 600km. This
shows a potential significant cost savings for an ACS
system if a LEO satellite were placed in a 600km orbit
as opposed to a 400km orbit, for example.

 7

Figure 7 below graphs ACS mass versus orbit
eccentricity for various radii of perigee.

Figure 7 ACS mass vs. eccentricity for various radii

of perigee

Figure 7 is interesting because it shows that the ACS
mass for highly-eccentric orbits does not follow the
exact same trend as that shown in the previous figure.
The reason the ACS mass is reduced for the highly-
eccentric orbits and does not continue with the same
trend as the angular momentum is due to the fact that
the highly-eccentric orbits have large orbit periods.
Since the lifetime of the spacecraft is kept constant for
these trend studies, a longer orbit period would result in
fewer ACS angular momentum dumping situations
during the lifetime of the satellite. It would take more
time for a longer orbit for the attitude control system to
become saturated with angular momentum and then
require thrust to dump the momentum. This reduces the
mass of the ACS propulsion system and produces the
trends seen in the above figure.

The figure below plots angular momentum versus
altitude for various inclinations for circular orbits.

Figure 8 Angular momentum vs. altitude for

various inclinations of circular orbits

Figure 8 shows a clear trend that for all circular orbit
inclinations, there is an altitude at which the required
angular momentum storage of the ACS system has
reduced significantly and levels-off. This altitude is
around 525km. This means there could be a significant
benefit to putting LEO spacecraft in circular orbits
above 525km in altitude in order to minimize the
angular momentum capacity required for the ACS
system.

In addition, there is a difference in angular momentum
between various inclinations. It is especially noticeable
at lower altitudes. For example, at 400km altitude, the
angular momentum required for the 0 degree inclination
(equatorial) orbit is approximately 20 N*m*s greater
than that of the 90 degree inclination (polar) orbit. This
trend also reverses itself after the 525km altitude mark
and the polar orbit becomes the maximum angular
momentum case.

The figure below shows the ACS mass versus orbit
altitude for circular orbits of various inclinations.

 8

Figure 9 ACS mass vs. altitude for various

inclinations of circular orbits

Figure 9 clearly exhibits the same trend of that shown
in Figure 8. This shows that the ACS mass is directly
related to the required angular momentum storage of
the spacecraft for circular orbits.

The figure below shows the angular momentum storage
required versus vehicle size for three different types of
orbits. The vehicle density was held constant while
volume and the corresponding mass were varied. The
three investigated orbits are the Molniya orbit, a
circular LEO orbit of 400km, and a GEO orbit.

Figure 10 Angular momentum vs. vehicle volume

for three orbit types

Although the vertical axis in the above figure is in a
logarithmic scale, it can be seen that the angular
momentum required for a 400km LEO orbit is much
greater than that for a Molniya or a GEO orbit. The
main reason for this is the fact that satellites in Molniya
or GEO orbits spend all or most of an orbit period far
from Earth. This means the spacecraft in those orbits
will not experience much aerodynamic drag, will
experience a reduced torque due to gravity gradient,

and may experience less torque due to the Earth’s
magnetic fields.

Figure 10 also clearly shows that as the spacecraft
grows in size, the angular momentum requirement
increases as well. This is due to increased aerodynamic
drag.

Figure 11 below shows the ACS mass versus vehicle
volume for the same orbits as in the previous figure.

Figure 11 ACS mass vs. vehicle volume for three

orbit types

Figure 11 above shows the trend that the ACS mass
increases roughly at the same rate as the angular
momentum requirement for orbits of the same type as
vehicle volume is increased.

Conclusion
A MATLAB module was created which took inputs of
orbital parameters, spacecraft dimensions, and the
spacecraft environment and output cyclical angular
momentum, secular angular momentum, ACS
momentum wheel mass, and ACS thruster system mass.
The module was checked by running the FireSat
example. In addition, other cases were checked with
the module and realistic data was output from the
module.

The values of angular momentum and ACS mass are of
use for preliminary design of an attitude control system.
The designer can input preliminary information about a
spacecraft design and get rough numbers for
preliminary sizing of the ACS system and its impact on
the spacecraft mass budget.

Future Work
The module can be expanded to include reaction
wheels, control-moment gyros, and magnetic torquers.

 9

In addition, the database of momentum wheels can be
expanded to include more wheels and include other
ACS actuator specifications as well.

Another area for future work is to validate the module
by running a real life example of a satellite and
comparing the results to experimental data.

 10

 11

Appendix A

FireSat-like Test Case Input

%###############################
%## ACS Env
%##
%## Initialization file
%##

 %# Vehicle Properties #%
 veh.dim = [1.7 1 1.7]; %[m], Length of edges on rectangular-prism shaped vehicle (length,
width, depth)
 veh.CG = [0.2 0 0]; %[m], center of gravity offset from geometric center
 veh.mass = 200; %[kg] (minus ACS system)
 veh.mat = 9; %Surface material code
 veh.life = 4; %[yrs], Vehicle lifespan

 %# Orbital Elements #%
 OE.a = 7078000; %[m], semi-major axis
 OE.e = 0.0; % eccentricity
 OE.i = 45 *pi/180; %[rad], inclination
 OE.Om = 0 *pi/180; %[rad], argument of periapsis (angle from ascending node to periapsis)
 OE.om = 0; % [rad],longitude of the ascending node (angle between x and asc. node)

 %# Planet Properties #%
 planet.mu = 3.986e14; %[m^3/s^2], Earth gravity constant
 planet.r_pol = 6357000; %[m], Polar radius

planet.r_equ = 6378000; %[m], Equitorial radius

 12

ACS Env Main Program

% ## ACS sizing for Environmental Disturbance torques ##
%
% Input:
% OE - Orbital elements for vehicle orbit
% veh - vehicle parameters
% planet - planet parameters
%
% Output:
% ang_mom_cyc - cyclical ang momentum storage requirement [Nms]
% ang_mom_sec - secular ang momentum received per orbit [Nms]
% w_mass - spec for momentum wheel mass [kg]
% t_mass - spec for thruster mass [kg]
% thrust - spec for thruster thrust [N]
%

function [ang_mom_cyc, ang_mom_sec, w_mass, t_mass, thrust] = ACS_env(OE,veh,planet);

%## Calculate vehicle moment of inertia ##%

 Ixx = veh.mass*(veh.dim(1)^2 + veh.dim(2)^2)/12; %[kg*m^2]
 Iyy = veh.mass*(veh.dim(1)^2 + veh.dim(3)^2)/12; %[kg*m^2]
 Izz = veh.mass*(veh.dim(2)^2 + veh.dim(3)^2)/12; %[kg*m^2]
 I = diag([Ixx Iyy Izz])

%# Calculate time for one orbit
 t = 2*pi*sqrt(OE.a^3/planet.mu); %[sec]

%# Calculate Solar radiation torques
 Ts = torque_solar(veh.dim, veh.CG, 0, veh.mat);

ang_step = pi/50; %[rad]
ang_range = [0:ang_step:2*pi];
ii = 1;

%## Calculate max disturbance torque around one complete orbit ##%
for ang = ang_range

 %# Calculate orbital postion and velocity
 [r,v] = oe2rv([OE.a OE.e OE.i OE.Om OE.om ang], planet.mu);
 v_mag = norm(v); %[m/s], Calculate velocity magnitude
 R(ii,:) = r; %[m]
 V(ii,:) = v; %[m/s]
 V_MAG(ii,:) = v_mag;

 E = acos((OE.e + cos(ang))/(1+OE.e*cos(ang))); %Eccentric anomoly
 time(ii,:) = sqrt(OE.a^3/planet.mu)*(E-OE.e*sin(E)); %time to 'ang'

 %# Post-process orbit elevation (latitude)
 aa = sqrt(r(1)^2 + r(2)^2);
 lat = atan2(r(3), aa); %[rad]
 LAT(ii,:) = lat;

 %# Post-process altitude
 r_planet = (planet.r_pol*planet.r_equ)/...
 sqrt(planet.r_pol^2*cos(lat)^2 + planet.r_equ^2*sin(lat)^2); %[m],

Calculate planet radius
 assuming
oblate
sphereoid

 alt = norm(r)-r_planet; %[m], Subtract planet radius from vehicle position vector

magnitude
 ALT(ii,:) = alt;

 %# Calculate Aerodynamic torques

 13

 Ta = torque_aero(veh.dim, v_mag, alt, veh.CG);
 TA(ii,:) = Ta;

 %# Calculate Magnetic torques
 Tm = torque_magnetic(lat, norm(r), r_planet);
 TM(ii,:) = Tm;

 %# Calculate Gravity torques
 Tg = torque_gravity(norm(r), planet.mu, I);
 TG(ii,:) = Tg;

 TS(ii,:) = Ts;

 %# Sum all disturbance torques
 T(ii,:) = Ts + Ta + Tm + Tg; %[Nm]

 ii=ii+1; %Increment counter

end

%## post-process time values ##%
 max_t = ceil(length(time)/2);
 for jj = [max_t+1: length(time)];
 time(jj) = 2*time(max_t)-time(jj);
 end

%## Integrate max torques around orbit to find total ang mom ##%
 ang_mom = trapz(time,T); %[Nms], total angular momentum around one complete orbit

 ang_mom_cyc = 0.8 * ang_mom; %[Nms], cyclical angular momentum per orbit
 ang_mom_sec = ang_mom - ang_mom_cyc; %[Nms], Secular angular momentum per orbit

%## Size ACS actuators for cyclical momentum storage##%
 wheel_data = get_wheel_data; %Loads Reaction wheel data (mass vs Nms)
 w_mass = polyval(wheel_data, ang_mom_cyc);

%## Size ACS thrusters for secular momentum dumping ##%
 orb_sat = 1; %[orbits/saturation]
 day_sat = orb_sat*t/86400; %[day/saturation]
 [thrust, t_mass] = prop_system(veh.dim, veh.CG, veh.life, ang_mom_sec, day_sat);

%## Plot results ##%
 plot_planet_3D(R,planet);

 figure(23);
 polar(ang_range', T, 'k')
 hold on
 polar(ang_range', TS, 'b');
 polar(ang_range', TA, 'm');
 polar(ang_range', TM, 'r');
 polar(ang_range', TG, 'g');
 hold off
 legend('total', 'solar', 'aero', 'magnetic', 'gravity');
 xlabel('[deg]')

 14

torque_aero.m

% Bill Nadir
% 16.851 Satellite Engineering
% 10/11/2003

% Module for calculating external spacecraft torque caused by Aerodynamic forces

function Ta = torque_aero(size,V,h,CG)

% Here the force on the S/C, F, is calculated

% INPUTS
% size = edge lengths of the S/C: vector (x,y,z) side lengths (meters)
% V = S/C velocity (m/s)
% h = S/C altitude (m)
% CG = location of the center of gravity (x,y,z) for the S/C (assumed offset from the
% geometric center of (0,0,0)) (m)

% OUTPUT
% Ta = Torque on S/C due to aerodynamic drag (Nm)

% rho is the atmospheric density at the location of the S/C
% An atmospheric model for the upper atmosphere (h>25000m) is used to
% approximate the density of the upper atmosphere
% T is the atmospheric temperature, p is atmospheric pressure

T = -131.21 + .00299*h; % in deg C
p = 2.488*(((T + 273.1)/216.6)^-11.388); % pressure in KPa
rho = p / (.2869*(T + 273.1)); % in kg/m^3

% C_D is the drag coefficient of the cube-shaped S/C (assumed = 2.2)

C_D = 2.2;

% Cpa = location of the center of aerodynamic pressure (x,y,z)
% (assumed at the center of the face of one side of the cube which is
% facing directly into the atmosphere = max drag)

% Here the surface areas of the sides of the S/C are determined
% This is used to assume the worst-case drag on the vehicle
% [x*z y*z x*y] => find max

area = [size(1)*size(3) size(2)*size(3) size(1)*size(2)];
max_area = max(area);
F = 0.5*rho*C_D*(max_area^2)*(V^2);

% here the external aerodynamic torque on the S/C is calculated
Ta = F*max(abs(CG));

 15

torque_gravity.m

% Disturbance torque from gravity gradient
%
% Input:
% r = vehicle radius [m]
% mu = planet gravity constant [m^3/s^2]
% I = vehicle moment of inertia [kg*m^2]
%
% Output:
% T_grav = gravity gradient torque [Nm]
%

function T_grav = torque_gravity(r, mu, I)

 %# Max moment
 Imax = max(diag(I)); %[kg*m^2]

 %# Min moment
 Imin = min(diag(I)); %[kg*m^2]

 %# Angle deviation from vertical
 theta = 45*pi/180; %[rad], worst case angle chosen

 %# Calc gravity gradient torque
 T_grav = 3*mu*sin(2*theta)*(Imax - Imin)/(2*r^3); %[N*m]

torque_magnetic.m

% Disturbance torque from magnetic field
%
% Input:
% lat = vehicle latitude [rad]
% r = vehicle position vector magnitude [m]
% re = earth radius [m]
%
% Output:
% T_mag = magnetic field torque [Nm]
%

function T_mag = torque_magnetic(lat,r,re)

 %# Earth magnetic field (approx as dipole)
 B = (1 + sin(lat)^2)^(0.5) * 0.3/((r/re)^3); %[gauss]

 B_t = B*1e-4; %[tesla], [N/(A*m)]

 %# Vehicle residual dipole
 D = 1; %[A*m^2]

 %# Mag torque
 T_mag = B_t*D; %[Nm]

 16

torque_solar.m

function T_solar = torque_solar(A, CG, i, mat)

% function to computer solar radiation pressure

% INPUTS
% A: vector describing size of object
% CG: distance from center of solar pressure to center of mass (m)
% i: angle of incidence of the Sun (radians)
% mat: ID of material on outside of craft

% OUTPUT
% T_solar: solar radiation pressure, in N*m

% some constants:
% speed of light, m/s
c = 3*10^8;

% solar constant, W/m^2
F_s = 1367;

% get reflectance, q, from file based on material used
tmp = xlsread('material_prop.xls','abs');
q = tmp(mat,3);

% find surface area of largest face of orbit
A_s = A(1)*A(2);
if(A(1)*A(3) > A_s)
 A_s = A(1)*A(2);
end

if(A(2)*A(3) > A_s)
 A_s = A(2)*A(3);
end

F = (F_s/c)*A_s*(1 + q)*cos(i);

T_solar = F*(max(abs(CG)));

 17

get_wheel_data.m

function p = get_wheel_data

wheel(1) = struct('name', 'Teldix RSI 01-5/15', 'ang_moment', 0.04, 'mass', 0.6);
wheel(2) = struct('name', 'Teldix RSI 01-5/28', 'ang_moment', 0.12, 'mass', 0.7);
wheel(3) = struct('name', 'LeoStar', 'ang_moment', 4.7, 'mass', 3.628);
wheel(4) = struct('name', 'Dyncon MicroWheel 200', 'ang_moment', 0.18, 'mass', 0.93);
wheel(5) = struct('name', 'Honeywell HR12', 'ang_moment', 50, 'mass', 9.5);
wheel(6) = struct('name', 'Honeywell HR14', 'ang_moment', 75, 'mass', 10.6);
wheel(7) = struct('name', 'Honeywell HR16', 'ang_moment', 100, 'mass', 12);
wheel(8) = struct('name', 'Honeywell Miniature Reaction Wheel', 'ang_moment', 1.0, 'mass',

1.3);
wheel(9) = struct('name', 'Honeywell HR0610', 'ang_moment', 12, 'mass', 5.0);
wheel(10) = struct('name', 'Teldix DR23-0', 'ang_moment', 23, 'mass', 6.9);
wheel(11) = struct('name', 'Teldix RDR68-6', 'ang_moment', 68, 'mass', 9.1);
wheel(12) = struct('name', 'Teldix RSI 25-75/60', 'ang_moment', 25, 'mass', 6.3);
wheel(13) = struct('name', 'Teldix RSI 68-75/60x', 'ang_moment', 68, 'mass', 8.5);
wheel(14) = struct('name', 'Teldix RSI 4-75/60', 'ang_moment', 4, 'mass', 3.7);
wheel(15) = struct('name', 'Teldix RSI 12-75/60x', 'ang_moment', 12, 'mass', 4.85);
wheel(16) = struct('name', 'Teldix RSI 18-220/45', 'ang_moment', 18, 'mass', 6.3);
wheel(17) = struct('name', 'Teldix RSI 30-280/30', 'ang_moment', 30, 'mass', 8.5);
wheel(18) = struct('name', 'Teldix RSI 68-170/60', 'ang_moment', 68, 'mass', 8.9);
wheel(19) = struct('name', 'Teldix RSI 02-25/30', 'ang_moment', 0.2, 'mass', 1.7);
wheel(20) = struct('name', 'Teldix RSI 04-25/60', 'ang_moment', 0.4, 'mass', 1.7);
wheel(21) = struct('name', 'Teldix RSI 1.6-25/60', 'ang_moment', 1.6, 'mass', 2.4);

for(i=1:length(wheel))
 %plot(wheel(i).ang_moment, wheel(i).mass, 'r*');
 %hold on;
 ang(i) = wheel(i).ang_moment;
 mass(i) = wheel(i).mass;
end

[p,s] = polyfit(ang, mass, 4);
%f = polyval(p, ang);
%plot(ang, f, 'g*');

 18

oe2rv.m

% CREDIT: Christopher D. Hall
% http://www.aoe.vt.edu/~cdhall/
%
% oe2rv.m Orbital Elements to r,v
%
% [r,v] = oe2rv(oe,mu)
% oe = [a e i Om om nu]
% r,v expressed in IJK frame
%
% a = semi-major axis
% e = eccentricity
% i = inclination
% Om = argument of periapsis
% om = right ascension of the ascending node (longitude of ascending node)
% nu = true anomaly (at epoch). ***(location on orbit)***

function [ri,vi] = oe2rv(oe,mu)
 a=oe(1); e=oe(2); i=oe(3); Om=oe(4); om=oe(5); nu=oe(6);
 p = a*(1-e*e);
 r = p/(1+e*cos(nu));
 rv = [r*cos(nu); r*sin(nu); 0]; % in PQW frame
 vv = sqrt(mu/p)*[-sin(nu); e+cos(nu); 0];
%
% now rotate
%
 cO = cos(Om); sO = sin(Om);
 co = cos(om); so = sin(om);
 ci = cos(i); si = sin(i);
 R = [cO*co-sO*so*ci -cO*so-sO*co*ci sO*si;
 sO*co+cO*so*ci -sO*so+cO*co*ci -cO*si;
 so*si co*si ci];
 ri = (R*rv)';
 vi = (R*vv)';

 19

prop_system.m

% Bill Nadir
% 16.851 Satellite Engineering
% 10/11/2003

% Module for calculating spacecraft propulsion system mass for required
% momentum dumping

function [F, p_mass] = prop_system(size,CG,lifetime,H,sat_rate)

% INPUTS
% size = edge lengths of the S/C: vector (x,y,z) side lengths (meters)
% CG = (x,y,z) coordinates of the location of the CG (offset from the
% geoometric center of the S/C)
% lifetime = required lifetime of the spacecraft [yrs]
% H = maximum stored momentum in any one momentum wheel (saturation
% point of a momentum wheel) [N*m*s]
% sat_rate = The rate of saturation of a momentum wheel (used to determine
% how often momentum needs to be dumped) [days/saturation]
% OUTPUTS
% p_mass = total mass of the propulsion subsystem which will provide
% momentum dumping capability for the spacecraft [kg]
% F = Thrust required to dump momentum

% Hydrazine (monopropellant) is chosen as the fuel for this propulsion
% system and a conservative specific impulse, Isp, is 200 seconds
Isp = 200;

% Here the earth's gravity constant is initialized (9.8 m/s^2)
g = 9.8;

% Here the impulse time, t, of the thruster firing is set
% It is assumed that the thruster required for momentum dumping will fire
% for 1 second
t = 1;

% Here the locations of the six required thrusters are initialized [x y z]
% Each row is for a different thruster
thruster = [0 size(2)/2 size(3)/2; 0 size(2)/2 -size(3)/2; size(1)/2 0 size(3)/2; -size(1)/2

0 size(3)/2; size(1)/2 -size(2)/2 0; -size(1)/2 -size(2)/2 0];

% Here the moment arms for the six thrusters from the CG are determined

% For X-thrusters (spin about X-axis), moment arm is in Y-direction (cols 1,2)
% For Y-thrusters (spin about Y-axis), moment arm is in Z-direction (cols 3,4)
% For Z-thrusters (spin about Z-axis), moment arm is in X-direction (cols 5,6)
moment_arms = [abs(CG(2) - thruster(1,2)) abs(CG(2)- thruster(2,2)) abs(CG(3) -

thruster(3,3)) abs(CG(3) - thruster(4,3)) abs(CG(1) - thruster(5,1)) abs(CG(1) - thruster(6,1))];

% Here we will assume the worst-case distance from the thruster to the CG
% (shortest) which will require the largest thrust to impart the required
% torque on the S/C for momentum dumping
worst_moment_arm = min(moment_arms);

% Here the thrust required to dump the momentum is calculated (per pulse)
F = H / (worst_moment_arm * t);

% Here the required propellant mass for this propulsion system is estimated
total_pulses = (lifetime * 365.25) / sat_rate; % total thruster pulses required over lifetime
m_prop = (F * total_pulses * t)/(Isp * g); % mass in kg

% Here the total propulsion system mass is determined by assuming that 85%
% of the propulsion system mass is propellant (SMAD, p. 660) - conservative
p_mass = m_prop / 0.85; % mass in kg

material_prop.xls20

NAME Info MaterialNumber Absorptivity Reflectance
OpticalSolarReflector SSE 1 0.07 0.93
QuartzOverSilver SMAD 2 0.077 0.923
SilvercoatedFEP SSE 3 0.08 0.92
SilveredTeflon SMAD 4 0.08 0.92
AluminizedTeflon SMAD 5 0.163 0.837
WhiteEpoxy Al.Substrate 6 0.248 0.752
WhiteEnamel Al.Substrate 7 0.252 0.748
AluminizedFEP SSE 8 0.16 0.84
SilverPaint SSE 9 0.37 0.63
SolarCellFusedSilica SMAD 10 0.805 0.195
BlackPaint Al.Substrate 11 0.975 0.025
Titanium6AL4V AsReceived 12 0.766 0.234
SteelAm350 AsReceived 13 0.567 0.433
Titanium6AL4V Polished 14 0.448 0.552
AluminiumTape SSE 15 0.21 0.79
Aluminum606T6 Polished 16 0.2 0.8
Gold AsRolled 17 0.299 0.701
Aluminum606T6 AsReceived 18 0.379 0.621
GoldizedKapton SSE 19 0.25 0.75
PolishedBeryllium SSE 20 0.44 0.56

 20

References

1 Meriam, J.L., and Kraige, L.G., Engineering Mechanic: Dynamic, 4th Ed, John Wiley, Inc. 1997.
2 Hall, Christopher D., oe2rv.m software tool, http://www.aoe.vt.edu/~cdhall/
3 Benson, Tom, http://www.grc.nasa.gov/WWW/K-12/airplane/atmosmet.html, Earth Atmosphere Model, Metric
Units, NASA Glenn Research Center, 2002.
4 Chobotov, Vladimir A. (Editor), Orbital Mechanics, 2nd Ed., AIAA, 1996, p. 227
5 Benson, Tom, http://www.grc.nasa.gov/WWW/K-12/airplane/atmosmet.html, Earth Atmosphere Model, Metric
Units, NASA Glenn Research Center, 2002.
6 Wertz, James, and Larson, Wiley, Space Mission Analysis and Design, 2nd Ed., Microcosm, Inc., 1997, p. 353.
7 E. Ahronovich, M. Balling, Reaction Wheel and Drive Electronics For LeoStar Class Space Vehicles, 12th Annual
USU Conference on Small Satellites, 1998, www.sdl.usu.edu/conferences/smallsat/proceedings/12/ssc98/1/ssci5.pdf
8 Dynacon Enterprises Limited, Dynacon MicroWheel 200, www.dynacon.ca/pdf/files/productpdf_6.pdf
9 Honeywell Aerospace Electronic Systems, Constellation Series Reaction Wheels,
http://content.honeywell.com/dses/assets/datasheets/constellation_series_reaction_wheels.pdf.
10 Honeywell Aerospace Electronic Systems, Miniature Reaction Wheels,
http://content.honeywell.com/dses/assets/datasheets/mini-wheel_reaction_wheel.pdf
11 Honeywell Aerospace Electronic Systems, Honeywell Model HR 0610 Reaction Wheel,
http://content.honeywell.com/dses/assets/datasheets/hr0610_reaction_wheel.pdf
12 Teldix Space Product Group, Momentum and Reaction Wheels 14-68 Nms with external Wheel Drive Electronics,
http://www.teldix.de/P22/RDR23-68.pdf
13 Teldix Space Product Group, Momentum and Reaction Wheels 14-68 Nms with integrated Wheel Drive
Electronics, http://www.teldix.de/P22/RSI25-68.pdf
14 Teldix Space Product Group, Momentum and Reaction Wheels 2-12 Nms with integrated Wheel Drive
Electronics, http://www.teldix.de/P22/RSI4-12.pdf
15 Teldix Space Product Group, High motor torque Momentum and Reaction Wheels 14-68 Nms with integrated
Wheel Drive Electronics, http://www.teldix.de/P22/RSI18-68.pdf
16 Teldix Space Product Group, Momentum and Reaction Wheels 0.04-0.12 Nms with integrated Wheel Drive
Electronics, http://www.teldix.de/P22/RSI01.pdf
17 Teldix Space Product Group, Momentum and Reaction Wheels 0.2-1.6 Nms with integrated
Wheel Drive Electronics, http://www.teldix.de/P22/RSI02.pdf
18 Sellers, Jerry Jon, Understanding Space: An Introduction to Astronautics, 2nd Ed., McGraw Hill, 2000, p. 570.
19 Wertz, James, and Larson, Wiley, Space Mission Analysis and Design, 2nd Ed., Microcosm, Inc., 1997, p. 660.
20 Fortescue, Peter, Stark, John, and Swinerd, Graham, Spacecraft Systems Engineering. John Wiley and Sons Ltd.,
Third Edition.

 21

http://www.grc.nasa.gov/WWW/K-12/airplane/atmosmet.html
http://www.grc.nasa.gov/WWW/K-12/airplane/atmosmet.html
http://www.dynacon.ca/pdf/files/productpdf_6.pdf
http://content.honeywell.com/dses/assets/datasheets/constellation_series_reaction_wheels.pdf
http://content.honeywell.com/dses/assets/datasheets/mini-wheel_reaction_wheel.pdf
http://content.honeywell.com/dses/assets/datasheets/hr0610_reaction_wheel.pdf

Problem Set 4: Efficient Orbit Transfer: Use of Electric
Propulsion for Orbit Raising

Summary
A software module was developed to size the power and electric propulsion systems for a
spacecraft based on spacecraft mass, initial and final orbit radii, and a desired transfer
time, assuming constant tangential thrust. Several types of electric propulsion systems
were investigated for use in orbit raising of satellites, such as Xenon ion propulsion,
Xenon-Hall effect propulsion, and pulsed plasma thrusters (PPT).

Results
A test case was run for raising the orbit of a communications satellite from a LEO
parking orbit into geosynchronous orbit. During the investigation of the various types of
electric propulsion systems, it was learned that certain types of electric propulsion
systems, such as pulsed plasma thrusters, do not have the capability for reasonable
transfer times for such an orbit transfer. Therefore, only the Xenon ion and Xenon Hall
thrusters were considered for this test case.

It took approximately 600 “orbits” in the spiral orbit transfer maneuver to raise the orbit
of the satellite from a parking orbit to geosynchronous orbit. It was also noticed that this
sort of orbit raising maneuver was just within the lifetime capabilities of the two types of
electronic propulsion systems considered. This means that this type of electric
propulsion could be a viable option for orbit raising to geosynchronous orbits for
satellites that do not have to be urgently rushed into service in GEO.

Useful References

Electric Propulsion
Martinez-Sanchez, Manuel, Spacecraft Electric Propulsion – An Overview, Journal of
Propulsion and Power, Vol. 14, No. 5, 9/98-10/98, p. 690.
Tajmar, Martin, Advanced Space Propulsion Systems, Springer Wien, New York, 2003,
p. 76.

The references above contain detailed information about all available electric propulsion
systems. They contain performance, mass, and additional information about each
propulsion system.

Spiral Orbit Raising
Course notes, AA420, University of Washington Dept. of Aeronautical and Astronautical
Engineering, 1999.

The course notes from this University of Washington engineering course contain a useful
derivation for a simplified spiral maneuver using electric propulsion with constant thrust.
More detailed calculations exist for optimal maneuvers using electric propulsion, but the
derivation from this course is best for the scope of this problem set.

Problem Set 4 Solution
MEMORANDUM

16.851 Satellite Engineering

 To: Professor David W. Miller
 Col. John E. Keesee

 From: 16.851 Students

 Date: 29 October 2003

 Subj: Use of Electric Propulsion for Orbit Raising: Orbits, Propulsion, and Power

 cc: Marilyn Good

MOTIVATION
Electric propulsion systems offer the capability for mass-efficient orbit transfers. The
specific impulse for electric propulsion is much higher than for chemical propulsion, ranging
from 1,500 to 20,000 seconds;1 however, electric propulsion provides much lower thrust than
chemical propulsion. This results in much longer spacecraft maneuver times for a given
change in velocity. If short maneuver times are not critical, electric propulsion may lend
itself to be used as the propulsion system for orbit transfer maneuvers.

PROBLEM STATEMENT
Create a software module that sizes the power and electric propulsion systems for a
spacecraft, given the spacecraft mass, initial and final circular orbit radii, and a specified
transfer time, assuming constant tangential thrust. Use this module to characterize the
dependence of propulsion and power system mass on orbit transfer requirements. Investigate
this dependency for several different types of electric propulsion, such as pulsed plasma
thrusters (PPT), Xenon ion propulsion, and Xenon Hall-effect propulsion.

SOLUTION
See attached.

1 http://web.mit.edu/dept/aeroastro/www/labs/SPL/electric.htm, MIT Space Propulsion Lab Website, 2002.

 2

Efficient Orbit Transfer: Use of Electric Propulsion for Orbit Raising
Software Designed to Provide Preliminary Sizing of Power and Propulsion Systems

16.851 Satellite Engineering

Massachusetts Institute of Technology, Cambridge, MA

October 2003

Motivation
Electric propulsion systems offer the capability for
mass-efficient orbit transfers. The specific impulse for
electric propulsion is much higher than for chemical
propulsion, ranging from 1,500 to 20,000 seconds;1
however, electric propulsion provides much lower
thrust than chemical propulsion. This results in much
longer spacecraft maneuver times for a given change in
velocity. If short maneuver times are not critical,
electric propulsion may lend itself to be used as the
propulsion system for orbit transfer maneuvers.

Problem Statement
Create a software module that sizes the power and
electric propulsion systems for a spacecraft, given the
spacecraft mass, initial and final circular orbit radii, and
a specified transfer time, assuming constant tangential
thrust. Use this module to characterize the dependence
of propulsion and power system mass on orbit transfer
requirements. Investigate this dependency for several
different types of electric propulsion, such as pulsed
plasma thrusters (PPT), Xenon ion propulsion, and
Xenon Hall-effect propulsion.

Introduction
Inputs to the software module include the initial and
final orbit radii and the orbit transfer time. The module
determines the constant propulsive force required to
move the spacecraft from the initial orbit to the final
orbit in the specified time. Using this constant force,
and given the type of propulsion system, the propulsion
system is sized by determining the total propulsion
system mass required for the orbit transfer. For this
propulsion system, the batteries and solar arrays
required to support the maneuver are sized. The
performance results are compared for several types of
electric propulsion systems.

Software Module

Test Case Script
Requirements
The MATLAB script electric_propulsion.m is used to
simplify the use of the primary software modules, and
to run pre-configured test cases to produce the results
presented in this report.

Description of the code
The script initializes the orbit transfer and spacecraft
properties, calls each of the primary software modules
in turn, and plots the results. In summary, the script
performs the following functions:

• Set inputs: spacecraft mass, propulsion type,
transfer time, initial radius, final radius.

• Get propulsion system properties from
propulsion_properties.m.

• Determine the thrust and the orbit
characteristics for the transfer maneuver using
ep_orbit.m.

• Size the power and propulsion systems to
provide the needed thrust and ∆v, using
propulsion_power.m.

• Plot the results.

Typing electric_propulsion at the MATLAB prompt
runs the test case and produces the output shown in this
report.

Propulsion Properties Module
Requirements
The MATLAB module propulsion_properties.m sets
the propulsion system-specific values based on the type
of propulsion system selected.

Description of the code
The desired type of propulsion system is passed to the
module as a character string (e.g. ‘ion’). Propulsion
system constants such as specific impulse and

 3

efficiency for the specified type of electric propulsion
system are returned in a data structure. This structure is
a required input for the electric_propulsion.m and
propulsion_properties.m modules.

Inputs
p_system: a string specifying which propulsion
system is to be used. Valid values are ‘ion’ (Xenon
Ion), ‘hall’ (Xenon Hall), and ‘ppt’ (Pulsed Plasma
Thrusters).

Outputs
properties: a data structure containing descriptions
of properties inherent to the propulsion system type,
such as Isp, efficiency, and lifetime.

Orbital Transfer Module
Requirements
The MATLAB module ep_orbit.m determines the
constant tangential thrust required to expand an orbit
using an electric propulsion system, and characterizes
the expansion path, determining quantities such as the
eclipse entry and exit times and the ∆v applied during
each orbit.

In order to maintain reasonable scope in the project,
several assumptions were made with respect to the
initial and final orbits and transfer path. First, all orbits
are assumed to be circular and equatorial. This
simplification applies to the initial and final orbits, as
well as to all intermediate steps in the transfer path.
The assumption of circularity during the transfer is
reasonable both because the ∆v imparted by the
propulsion system during the maneuver is far smaller in
magnitude than the orbital velocity, and because this ∆v
is applied continuously throughout the orbit, rather than
at discrete points.

Description of the code
The code first verifies that all input quantities lie within
valid ranges. The constant thrust is then calculated
using Equation 14. The algorithm then steps through
the transfer path one orbit at a time, calculating variable
quantities such as mass, eclipse time, orbital radius, and
∆v, and recording how these quantities change through
the transfer maneuver.

Inputs
mass (kg): the initial mass of the spacecraft.

prop: a data structure containing propulsion system
properties, as output by propulsion_properties.m.

time (s): the required orbital transfer time.

r0 (m): initial circular orbit radius.

r1 (m): final circular orbit radius.

Outputs
thrust [N]: constant thrust magnitude required to
complete the specified maneuver.

radii [m]: history of orbit radii.

period [s]: history of orbital period.

eclipse [s]: history of eclipse entry and exit times.

deltav [m/s]: history of applied ∆v.

Derivation of the spiral orbit �v equation2
For thrust T<<mg, the specific mechanical energy ε of
the spacecraft in its orbit changes as:

m

vT

tm

E

t
��

⋅=

=
d

d

d

dε

 (1)

For thrust applied in the velocity direction, this can be
expressed using the magnitudes of T and v. The
acceleration of the spacecraft is related to the specific
mechanical energy as:

av
m

Tv

t
=

=
d

dε
 (2)

In a circular orbit, the specific mechanical energy and
its derivative can also be expressed as:

r2

µε −= (3)

t

r

rt d

d

2d

d
2

µε =
(4)

Equating these two relations for the time derivative of
the specific mechanical energy:

av
t

r

rt
==

d

d

2d

d
2

µε
 (5)

Substituting in the velocity in a circular orbit

r
v

µ= (6)

leads to:

 4

t
a

r

r

ar

t

r

r
a

t

r

r

d
2d

2

d

d

d

d

2

23

21

23

2

µ

µ

µµ

=

=

=

 (7)

This relationship can be integrated to give the change in
r as a function of the change in time:

()

01

01

23

11

12

d
d

2

1

0

1

0

1

0

rr

r
tt

a

r

r
t

a

r

r

r

r

t

t

−=

−=−

= ∫∫

µ

µ

 (8)

Rearranging this relationship reveals the ∆v:

()

v

vv

rr
tta

∆=
−=

−=−

01

01
012

µµ

(9)

Note that this result, although simple and apparently
intuitive, is not generally true for orbital transfers using
chemical propulsion. The ∆v required to expand an
orbit using impulsive burns is actually less than this
amount, since the burns can be made at discreet optimal
points during the orbit.

Derivation of thrust equations
The thrust T is related to the propellant mass flow rate
and exit velocity c as

cmT �= (10)

This relationship can be integrated for constant mass
flow rate (i.e. constant thrust and exit velocity) over a
time period t to obtain the propellant mass for constant
T and c:

c

Tt

tmm
t

tp

=

= ∫ d
1

0

�

 (11)

The rocket equation provides a relationship between the
initial spacecraft mass, propellant mass, ∆v, and exit
velocity:

c
Vp e

m

m ∆−
−= 1

0

 (12)

Combining these results gives:

⎟⎠
⎞⎜⎝

⎛ −=
∆−

c
V

e
t

c
mT 10 (13)

Using the ∆v equation previously derived, this equation
can be solved for the velocity v as a function of time t.

()

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

−
c

rr

e
t

c
mT

0

10

µµ

 (14)

()

cm

tT
e c

rr

0

0

1 +=
− µµ

 (15)

⎥
⎦

⎤
⎢
⎣

⎡
−−⎥

⎦

⎤
⎢
⎣

⎡
−=

cm

tT

rrc 00

1ln
1

0
µµ

 (16)

⎟⎟⎠

⎞
⎜⎜⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡
−=

00

1ln
rcm

tT
c

r

µµ
 (17)

This equation can then be solved for the radius r as a
function of time:

2

00

1ln

−

⎟⎟⎠

⎞
⎜⎜⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡
−=

rcm

tT
cr

µµ (18)

This equation can be used to calculate the radius at any
time t during the transfer maneuver.

Propulsion and Power Sizing Module
Requirements
The MATLAB module propulsion_power.m calculates
the mass of the electric propulsion system, the required
solar array area, the required battery mass, and the mass
of the solar arrays based on a given spiral-shaped orbit
transfer. The module requires inputs of constant thrust
during the orbit transfer, transfer time, time information
which specifies when the spacecraft is in eclipse or
sunlight during the orbit transfer, and the selection
about which type of electric propulsion system is being
investigated for the orbit transfer.

 5

Description of the code
The code assumes that the starting point of the spiraling
orbit transfer is at the moment when the satellite enters
the earth’s eclipse in the initial orbit. Each “orbit” of
the spiral orbit transfer is considered to be the time
from when the satellite enters the earth’s eclipse until
the next time it enters the eclipse. These orbits of the
spiral orbit transfer are used to size the power system of
the spacecraft. This is discussed in the Theory &
Equations section for this module.

The code first checks to make sure that the input values
from the user of initial orbit, final orbit, transfer time,
and propulsion system type, are valid. For example, the
transfer time must be less than the lifetime of the
selected propulsion system.

Constants
The first constant used in this module is the
gravitational acceleration constant, g. It is input into
the module as being equal to 9.81 m/s2.

The next sets of constants are specific for each
propulsion system. Table 1 lists the basic constants
used to describe the performance of each propulsion
system, and Table 2 lists additional properties and
constants.

Table 1. Propulsion system constants3

Propulsion
System

Isp
(s)

Efficiency
(%)

Lifetime

Xe Ion 2800 65 10000 hr

Xe Hall 1600 50 >7000 hr

PPT 1000 7 4000 N*s

Table 2. Additional propulsion system constants4

Propulsion
System

Thrust
Range5

(N)

Thruster
Mass

(kg/kW)

PPU
Mass

(kg/kW)

Misc.
Mass

(kg/kW)

Xe Ion
.01 -
.20

4.5 8 10

Xe Hall
.08 -
.20

2.5 8 10

PPT
.001 -

.10
120 110 small

Two additional constants used are used in the
calculations for sizing the power system. These
constants, Xe and Xd, are the efficiencies of the
electrical paths from the solar arrays through the
batteries to the loads and the path directly from the

arrays to the loads, respectively.6 Since it is assumed
that a direct energy transfer power system is being used,
the values for Xe and Xd are 0.65 and 0.85,
respectively.

The final constant used in this module is the solar
illumination intensity. This is assumed to be
1358 W/m2.

Inputs
thrust (N): This input is the constant thrust required
for the spacecraft to achieve its desired final orbit
within the specified transfer time.

orbit (s): This input is an array of times during the
orbit. The numbers specify the time during the orbit
transfer when the spacecraft enters and exits the
earth’s eclipse.

Properties (s): the propulsion system properties, as
output by propulsion_properties.m.

t_transfer (s): This input is the total transfer time
specified for the spiral-shaped orbit raising
maneuver.

Outputs
power.A_cells_req (m2): This output is the total solar
array area required to provide the necessary power
for the propulsion system being used in the orbit
transfer maneuver.

power.m_cells_req (kg): This output is the total mass
of the solar arrays required to power the propulsion
system as well as charge the batteries when in
sunlight.

power.m_batt_req (kg): This output is the total mass
of the batteries needed to provide power to the
propulsion system during the worst case eclipse
(longest duration).

propulsion.m_thruster (kg): This output is the mass
of the thrusters in the chosen propulsion system.

propulsion.m_ppu (kg): This output is the mass of the
power processing unit in the chosen propulsion
system.

propulsion.m_misc (kg): This output is the mass of
miscellaneous components in the chosen propulsion
system.

propulsion.m_propellant (kg): This output is the
mass of the propellant in the chosen propulsion
system.

Theory & Equations
Based on the inputs to the module, the first desired
quantity to be calculated is the required power for the
propulsion system. In order to calculate the required
power, the mass flow rate of the propellant must be first
determined. This is done using Equation 19 below.7

 6

gI

F
m

sp

=� (19)

In the above equation, F is the propulsion system
constant thrust, Isp is the specific impulse of the
propulsion system, and g is the gravitational
acceleration constant.

Next, the required power for the propulsion system is
determined in Equation 20.8

ηm

F
P

�2

2

= (20)

In the above equation, is the efficiency of the
propulsion system, as reported in Table 1.

The next required quantity to be determined is the
power required to be generated by the solar arrays for
each orbit. This would include the power provided to
the propulsion system as well as the power provided to
the batteries for charging. The following equation is
used to determine this required power for each “orbit”
portion of the orbit transfer.

,...2,1where =
⎟⎟⎠

⎞
⎜⎜⎝

⎛
+

= i
T

X

T

X

T
P

P
i

ii

i

d

d

d

e

e

sa
(21)

In Equation 21, Te and Td are the durations of the
eclipse and daylight times for each orbit portion of the
spiral orbit transfer. Each orbit is determined by the
time at which the satellite enters the earth’s eclipse until
the time it next enters the eclipse. These orbits are
denoted in the equation with the subscript i. It can be
seen that only the eclipse and daylight times change
with each successive orbit.

Normally, the numerator of Equation 21 has different
power values for daytime and eclipse, but in this case,
since the power required by the propulsion system does
not vary from daylight to eclipse, this quantity is held
constant at the value P, determined earlier.

Next, the power generated per area by the solar arrays
is determined. This calculation is shown in
Equation 22. It should be noted here that Gallium
Arsenide solar cells are being used for the purposes of
this software module. In addition, it should be noted
here that it is assumed that beyond the inherent
inefficiencies in the solar cells, no additional
degradation is assumed for the solar cells during the
orbit transfer. This assumption is made because the
orbit transfer is relatively short compared to the life of
the satellite and the arrays will likely not degrade
significantly during this orbit raising maneuver.
Therefore, the power determined in the following

equation is assumed to be an end-of-life (EOL) power
for the solar arrays as far as the orbit raising maneuver
is concerned.

dm
W

cellsEOL Ip)1358()(20 η= (22)

��� ���� ��	
�� �����	��� cells is the efficiency of the
GaAs cells, which is approximately 18%. In addition,
the quantity Id is the inherent degradation of the solar
cells. This is assumed to be 0.77.9

It should also be mentioned here that the solar arrays
are assumed to track the sun and therefore it is assumed
that the radiation from the sun is perfectly incident at all
times on the solar arrays. This means that any reduced
performance to any incidence angle to the solar
radiation is ignored.

Next, the required solar array area for each orbit during
the transfer maneuver is determined. This is shown in
the equations below.

EOL

sa
cells p

P
A i

i)(0

= (23)

)max(__
icellsAreqcellsA = (24)

Equation 24 show how module determines the required
solar array area to be the maximum of all the areas
calculated for all orbit portions of the spiral orbit
raising maneuver.

Next, the required solar array mass can be determined.
This is done using the following equation from
SMAD.10

)max(04.0__
isaPreqcellsm ∗= (25)

Next, the battery capacity is determined to allow for
sizing of the batteries for the spacecraft. It is assumed
that NiH2 batteries are being used with a specific
energy density of approximately 50 W*hr/kg.11 It is
also assumed that only a single battery is being used.
Equation 26 below is used to determine the battery
capacity required for each orbit eclipse during the orbit
transfer.

nDOD

PT
C i

i

e
r)(

= (26)

In the above equation, DOD is the depth-of-discharge
of the nickel-hydrogen batteries. This assumed to be
75% since the number of cycles the batteries will need
to be cycled for throughout the orbit transfer will not
degrade the depth-of-discharge capability of the
batteries to any significant amount.12

 7

The quantity n is the power transfer efficiency to the
batteries. This is assumed to be 0.9.13

Next, the required battery mass is determined. This is
shown in the following two equations.

kg
hrW

r
i

i
C

battm
*50

_ = (27)

)_max(__ ibattmreqbattm = (28)

Finally, the propulsion system mass is determined using
information from Table 2. The required figures from
the table are multiplied by the propulsion system power
to determine the masses of all the components of the
propulsion system. In addition, the mass of the
propellant is determined from the following equation.

transfertmmpropellant _*�= (29)

Once the propellant mass is determined, the total
propulsion system mass is calculated as the sum of the
thruster, power processing unit, miscellaneous, and
propellant masses.

Results
The software module was run for a specific test case of
raising a satellite from a circular parking orbit at an
altitude of 10,000 km to a geosynchronous orbit. In
addition, the transfer time was varied by the user within
the ranges allowed for Xenon ion and Xenon Hall
propulsion systems.

It should be noted that the orbit number being used in
many of the following charts is how the spiral orbit
transfer is broken up into individual parts. Each orbit in
the transfer is determined from the time the satellite
enters the earth’s eclipse until it reenters the eclipse.

In Figure 1, it can be seen how the orbital period
changes with the orbit number, as the radius of the orbit
increases.

0 100 200 300 400 500 600
4

6

8

10

12

14

16

18

20

22

24

Orbit number

O
rb

ita
l p

er
io

d
[h

ou
rs

]

Figure 1. Orbit period vs. orbit number

The data in Figure 1 agree with what is expected for a
spiraling orbit transfer, where the radius is constantly
increasing. Figure 2 shows how the orbit radius varies
with the orbit number for the test case.

0 100 200 300 400 500 600
1.5

2

2.5

3

3.5

4

4.5
x 10

4

Orbit number

R
ad

iu
s

[k
m

]

Figure 2. Orbit radius expansion with orbit number

It can be seen in Figure 2 that the orbit radius increases
from the initial parking orbit until it reaches the orbit
radius for geosynchronous orbit.

Figure 3 shows the time spent in eclipse during each
orbit of the spiral transfer, and Figure 4 shows the
fraction of each orbit during which the satellite is in
eclipse.

 8

0 100 200 300 400 500 600
2600

2800

3000

3200

3400

3600

3800

4000

4200

Orbit number

T
im

e
in

 e
cl

ip
se

 [
s]

Figure 3. Eclipse time vs. orbit number

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

Normalized radius (r/RE)

E
cl

ip
se

 f
ra

ct
io

n

Figure 4. Eclipse fraction vs. normalized radius

As seen in Figure 3, as the radius increases, the time
spent in eclipse should increase; however, as seen in
Figure 4, the ratio of time spent in eclipse to the orbital
period should decrease as the orbit radius increases. It
should also be noted from Figure 4 that the orbit
transfer ends when the orbit radius is 6.5 times the
radius of the Earth, in geosynchronous orbit.

Figure 5 displays how the ∆v per orbit provided by the
propulsion system varies for each successive orbit
during the transfer.

0 100 200 300 400 500 600
2

4

6

8

10

12

14

16

Orbit number

S
in

gl
e-

or
bi

t
∆V

 [
m

/s
]

Figure 5. Single-orbit deltaV vs. orbit number

As expected, the ∆v per orbit imparted by the electric
propulsion system is continuously increasing as time
elapses during the transfer orbit. This occurs because
the orbital radius is constantly increasing throughout
the orbit transfer due to the constant thrust provided by
the electric propulsion system.

Figure 6 shows a perspective view of the complete path
traversed during the spiral orbit transfer, from the initial
orbit to the final orbit. The color of the spiral orbit
transfer path varies from red at the 10,000 km altitude
parking orbit to blue at the final, geosynchronous orbit.

-5

0

5

-6

-4

-2
0

2

4
6

-1

0

1

Figure 6. Orbit transfer path

Approximately 600 orbits are required to reach the final
desired orbit, resulting in the densely-packed path
shown above. Figure 7 shows a blown-up view of a
portion of the spiral orbit track, in which individual
spiral tracks are visible.

 9

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2

x 10
4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

x 10
4

Distance [km]

D
is

ta
nc

e
[k

m
]

Figure 7. Blown-up view of spiral orbit path

It can be seen from Figure 7 that the change in orbital
radius in each successive orbit is very small as
compared to the orbital radius. This behavior is
expected for low-thrust, long term maneuvers.

Figure 8 shows the required thrust from the propulsion
system as a function of the user-specified transfer time.

Figure 8. Dependency of thrust on transfer time

As expected, the thrust required to complete the transfer
in the specified time decreases as the transfer time
increases, for both the Xenon Ion and Hall propulsion
systems. This makes sense because the required
acceleration (and therefore thrust) should decrease as
the transfer time increases.

It can also be seen in Figure 8 that the required thrust
for each transfer time differs for the ion and Hall
propulsion systems. This is due to the differences in
mass flow rate of propellant out of the thrusters. The
Xenon Hall thrusters have a lower Isp than the Ion
thrusters, which corresponds to a higher mass flow rate
to produce a given thrust magnitude. The mass of the
spacecraft decreases more rapidly with higher
propellant mass flow rates, leading to more rapidly
decreasing spacecraft mass, with the result that lower
average thrust is requirement to achieve a given

acceleration. This effect is likely due in part to the
assumption that the initial spacecraft mass is
independent of the type of propulsion system used.

Figure 9 shows how the total mass of the propulsion
and power systems varies as a function of the specified
orbit transfer time.

3500 4000 4500 5000 5500 6000 6500 7000
460

480

500

520

540

560

580

600

Transfer time [hr]

P
ro

pu
ls

io
n

an
d

po
w

er
 m

as
s

[k
g]

Ion
Hall

Figure 9. Total propulsion and power system mass

as a function of transfer time

It can be seen in Figure 9 that no designs exist for
transfer times less than approximately 5000 hours. This
is due to the fact that neither the Xenon Ion nor the Hall
propulsion systems are capable of producing high
enough thrust to complete the orbit transfer maneuver
in less time than 5000 hours. The maximum thrust
capability of the two propulsion systems is shown
explicitly in Figure 8 with a red horizontal line.

It should also be mentioned that the preceding figures
do not show any data for the pulsed plasma propulsion
system. It was determined during the testing of this
software module that the PPT propulsion system does
not have the capability to provide the ∆V necessary to
perform the orbit transfer maneuver test case. Although
PPT results are not shown, the software module is
designed to handle such types of propulsion systems,
and will return performance results given input
requirements appropriate to the types of propulsion
systems being considered.

Table 3 summarizes the final results for the sizing of
the power and propulsion systems for the orbital
transfer test case, using the Xenon Ion propulsion
system. Table 4 summarizes the results for sizing the
system using the Xenon Hall effect propulsion system.

 10

Table 3. Sizing results using Xenon Ion propulsion

Solar cell area
Solar cell mass
Battery mass
Thruster mass
PPU mass
Misc. mass
Propellant mass
Total mass

19.0 m2
142.7 kg

81.5 kg
6.4 kg

20.4 kg
25.5 kg

223.3 kg
499.8 kg

Table 4. Sizing results using Xenon Hall propulsion

Solar cell area
Solar cell mass
Battery mass
Thruster mass
PPU mass
Misc. mass
Propellant mass
Total mass

26.2 m2
197.0 kg
112.6 kg

15.8 kg
28.1 kg
35.2 kg

130.9 kg
519.5 kg

Based on these results, the Ion and Hall propulsion
systems appear to have similar performance for the test
case transfer scenario. The Ion system is slightly less
massive than the Hall-effect system, even though it
requires 70% more propellant to accomplish the
transfer. The mass savings is due to the lesser power
requirement for the ion engine, which translates directly
into smaller, less massive solar arrays and batteries.

Conclusion
A software module was created to size the propulsion
and power systems for a spacecraft that uses electric
propulsion for simple orbital transfers. The module
requires the spacecraft mass, the initial and final
circular orbit radii, a transfer time, and a propulsion
system type. The software then determines the constant
tangential thrust required to complete the orbit transfer
in the specified time, the path of the satellite during the
transfer maneuver, and the masses of the power and
propulsion systems.

This tool is useful for preliminary sizing of propulsion
and power requirements for a satellite when electric
propulsion is used for orbital transfer. Although the
tangential thrust approach to orbital transfer is sub-
optimal, it is useful for rapid comparison of the relative
performance of different types of propulsion system.

This tool can be easily extended to compare an arbitrary
number of different types of electric propulsion system
types. If the transfer scenario investigated is not within
the capability of a propulsion system, results for that
system are not displayed.

Future Work
One major task that could be undertaken in the future to
improve and expand the capability of this software
module would be to allow for plane changes during the
orbit transfer. Another task would be to implement the
equations for optimal thrust. Either one of these tasks
would involve a significant amount of work
(appropriate for Master’s thesis-level research14), but
would result in an extremely useful tool which could be
used to provide detailed results for a greater number of
orbit transfer scenarios.

 11

Appendix A: MATLAB source code
The MATLAB files containing the implementations of the equations and relations described in this document are
listed below. To run the test case, simply type electric_propulsion at the MATLAB prompt.

electric_propulsion.m

% constants
R_earth = 6378.1363; % [km] Earth average radius
geo = 42164.169637; % [km] geostationary, from STK.
fignum = 0;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% begin user-configurable inputs %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% initial spacecraft mass
m0 = 2000;

% propulsion system type (’ion’, ’hall’, ’ppt’)
prop_type = ’ion’;

% orbital transfer time
ttime = 3600*24*250;

% initial orbital radius
r0 = R_earth + 10000;

% final orbital radius
r1 = geo;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% end user-configurable inputs %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% get the propulsion system properties
prop = propulsion_properties(prop_type);

% get the orbital transfer properties
[thrust, radii, period, eclipse, deltav] = ep_orbit(m0, prop, ttime, r0*1000,
r1*1000);

% size the propulsion and power systems
[propulsion, power] = propulsion_power(thrust,eclipse,prop,ttime);

%%%%%%%%%%%%%%%%%%%
% display results %
%%%%%%%%%%%%%%%%%%%

radii = radii/1000; % change from [m] to [km]
orbits = 1:length(radii); % orbit numbers
etime = eclipse(2,:)-eclipse(1,:); % time spent in eclipse

fignum=fignum+1;
figure(fignum)
plot(orbits, period/3600);
xlabel(’Orbit number’)
ylabel(’Orbital period [hours]’);

fignum=fignum+1;
figure(fignum)
plot(orbits, radii);
xlabel(’Orbit number’);

 12

ylabel(’Radius [km]’);

fignum=fignum+1;
figure(fignum)
plot(orbits, etime);
xlabel(’Orbit number’);
ylabel(’Time in eclipse [s]’);

fignum=fignum+1;
figure(fignum)
plot(orbits, deltav);
xlabel(’Orbit number’);
ylabel(’Single-orbit {\Delta}V [m/s]’);

fignum=fignum+1;
figure(fignum)
plot(radii/R_earth, etime./period);
xlabel(’Normalized radius (r/R_E)’);
ylabel(’Eclipse fraction’);

% plot all the orbit tracks around the Earth
fignum=fignum+1;
figure(fignum)
t = 0:pi/40:2*pi;
x = cos(t);
y = sin(t);
z = zeros(size(x));
[sx,sy,sz] = sphere(20);
colormap(’white’);
h1 = surf(sx,sy,sz);
set(h1,’EdgeColor’,[.5 1.0 .5]);
set(h1,’FaceColor’,[.8 1.0 .8]);
hold on
c = ’bgrcmyk’;
scale = radii/R_earth;
for i=orbits
 h2 = plot3(scale(i)*x,scale(i)*y,scale(i)*z);
 r = 1.0 - i/orbits(end)/2;
 b = 0.5 + i/orbits(end)/2;
 set(h2, ’Color’, [r 0.3 b]);
end
hold off
axis equal;

% zoom in to see some of the tracks closer up
fignum=fignum+1;
figure(fignum)
for i=orbits
 h3 = plot(radii(i)*x,radii(i)*y);
 r = 1.0 - i/orbits(end)/2;
 b = 0.5 + i/orbits(end)/2;
 set(h3, ’Color’, [r 0.3 b]);
 hold on
end
hold off
axis equal;
maxrad = max(radii);
axis([maxrad/sqrt(3) 1.1*maxrad/sqrt(2) maxrad/sqrt(3) 1.1*maxrad/sqrt(2)]);
xlabel(’Distance [km]’)
ylabel(’Distance [km]’)

%%
% trade over prop type and transfer time %
%%

% propulsion system type (’ion’, ’hall’, ppt’)

 13

prop_types = {’ion’, ’hall’};

% orbital transfer time
ttimes = 3600*24*[150:20:290];

data = [];
for i=1:length(prop_types)
 prop_type = prop_types{i};

 for j=1:length(ttimes)
 ttime = ttimes(j);

 % get the propulsion system properties
 prop = propulsion_properties(prop_type);

 % get the orbital transfer properties
 [thrust, radii, period, eclipse, deltav] = ...
 ep_orbit(m0, prop, ttime, r0*1000, r1*1000);

 % size the propulsion and power systems
 [propulsion, power] = propulsion_power(thrust,eclipse,prop,ttime);

 % save the interesting data
 data(i,j).thrust = thrust;
 data(i,j).time = ttime;
 if ~isempty(propulsion) & ~isempty(power)
 data(i,j).mass = propulsion.m_thruster + propulsion.m_ppu + ...
 propulsion.m_misc + propulsion.m_propellant + ...
 power.m_cells_req + power.m_batt_req;
 else
 % no design was feasible for this case
 data(i,j).mass = NaN;
 end
 end
end

times = [];
thrusts = [];
masses = [];

% sort the data into standard vectors
for i=1:length(prop_types)
 times = [times cat(2,data(i,:).time)’];
 thrusts = [thrusts cat(2,data(i,:).thrust)’];
 masses = [masses cat(2,data(i,:).mass)’];
end

fignum=fignum+1;
figure(fignum)
plot(times/3600,thrusts);
xlabel(’Transfer time [hr]’);
ylabel(’Required thrust [N]’);
legend(’Ion’,’Hall’);

fignum=fignum+1;
figure(fignum)
plot(times/3600,masses);
xlabel(’Transfer time [hr]’);
ylabel(’Propulsion and power mass [kg]’);
legend(’Ion’,’Hall’);

 14

propulsion_properties.m

function [properties] = propulsion_properties(p_system)
%PROPULSION_PROPERTIES sets propulsion system properties
%
% [PROPERTIES] = PROPULSION_PROPERTIES(P_SYSTEM);
% Returns a structure containing properties for the selected
% type of propulsion system. This structure is used as an
% input to EP_ORBIT and PROPULSION_POWER.
%
% Inputs
% P_SYSTEM A string describing the type of propulsion system
% to use. Valid strings are ’ION’, ’HALL’, or ’PPT’.
%
% Outputs
% PROPERTIES A structure containing propulsion system
% characteristics in the following fields:
%
% type - descriptive string
% Isp - specific impulse (s)
% eta - efficiency
% lifetime - lifetime (hours)
% th_mass - thruster mass (kg/kW)
% ppu_mass - power processor unit mass (kg/kW)
% misc_mass - misc. prop. system mass (kg/kW)
% max_thrust - Maximum thrust allowed (N)
% min_thrust - Minimum thrust allowed (N)
%
% An empty set is returned if P_SYSTEM is not a
% valid string.

% William Nadir
% 16.851: Satellite Engineering
% 10/26/2003

properties = [];
switch lower(p_system)

 case ’ion’ % Xenon Ion propulsion system
 type = ’ion’;
 Isp = 2800; % specific impulse (s)
 eta = 0.65; % efficiency
 lifetime = 10000; % lifetime (hours)
 th_mass = 4.5; % thruster mass (kg/kW)
 ppu_mass = 8; % power processor unit mass (kg/kW)
 misc_mass = 10; % miscellaneous prop system mass (kg/kW)
 max_thrust = .2; % Maximum thrust allowed (N)
 min_thrust = .01; % Minimum thrust allowed (N)

 case ’hall’ % Xenon Hall propulsion system
 type = ’hall’;
 Isp = 1600; % specific impulse (s)
 eta = 0.50; % efficiency
 lifetime = 7000; % lifetime (hours)
 th_mass = 2.5; % thruster mass (kg/kW)
 ppu_mass = 8; % power processor unit mass (kg/kW)
 misc_mass = 10; % miscellaneous prop system mass (kg/kW)
 max_thrust = .2; % Maximum thrust allowed (N)
 min_thrust = .08; % Minimum thrust allowed (N)

 case ’ppt’ % Pulsed plasma (Teflon) propulsion system
 type = ’ppt’;
 Isp = 1000; % specific impulse (s)
 eta = 0.07; % efficiency
 lifetime = 4000; % lifetime (N*s)

 15

 th_mass = 120; % thruster mass (kg/kW)
 ppu_mass = 110; % power processor unit mass (kg/kW)
 misc_mass = 0; % miscellaneous prop system mass (kg/kW)
 max_thrust = .1; % Maximum thrust allowed (N)
 min_thrust = .001; % Minimum thrust allowed (N)

 otherwise
 disp(’Invalid input for p_system’);
 return
end

properties.type = type;
properties.Isp = Isp;
properties.eta = eta;
properties.lifetime = lifetime;
properties.th_mass = th_mass;
properties.ppu_mass = ppu_mass;
properties.misc_mass = misc_mass;
properties.max_thrust= max_thrust;
properties.min_thrust= min_thrust;

ep_orbit.m

function [thrust, radii, per, eclipse, deltav] = ep_orbit(m0, prop, ttime, r0, r1)
%EP_ORBIT Calculates circular orbit data for electric propulsion maneuvers
%
% [THRUST, RADII, PERIOD, ECLIPSE, DELTAV] = EP_ORBIT(MASS, PROP, TIME, R0, R1)
%
% Determines the constant tangential thrust needed to expand a circular orbit
% of radius R0 to radius R1 in the specified time TTIME. Calculates the start
% and end times of each eclipse period, assuming an orbit in the plane of the
% ecliptic. Solves for the constant direction (tangential), constant thrust
% case, rather than the optimal case, which is beyond the scope of this project.
%
% Inputs
% MASS [kg] Initial spacecraft mass
% PROP [-] Propulsion data structure (output of PROPULSION_PROPERTIES)
% TIME [s] Required orbital transfer time
% R0 [m] Initial circular orbit radius
% R1 [m] Final circular orbit radius
%
% Outputs
% THRUST [N] Constant thrust required to complete the maneuver
% RADII [m] History of orbit radii
% PERIOD [s] History of orbit period
% ECLIPSE [s] Eclipse enter and exit times for each orbit
% DELTAV [m/s] Delta V applied through each orbit

% constants
mu = 3.986004415e14; % [m^3/s^2]
R = 6378136.3; % [m] Earth radius
g = 9.80665; % [m/s^2] gravitational acceleration at Earth radius

% propellant specific impulse and exit velocity
Isp = prop.Isp;
c = Isp*g;

% check for invalid inputs
if (m0 <= 0)
 error(’Initial mass must be positive’);
end
if (Isp <= 0)
 error(’Isp must be positive’);

 16

end
if (ttime <= 0)
 error(’Transfer time must be positive’);
end
if (r0 <= R)
 error([’Initial radius must be greater than Earth radius (’ num2str(R) ’ m)’]);
end
if (r1 < r0)
 error(’Final radius must be greater than or equal to initial radius’);
end

% constant thrust required to perform this maneuver in the specified time
thrust = (m0*c/ttime)*(1-exp((sqrt(mu/r1)-sqrt(mu/r0))/c));

% initial values
timein = 0;
timesun = 0;
orbit = 0;
cdeltav = 0;
eclipse = [];
deltav = [];
r = r0;
m = m0;

% iterate through the orbits, saving data
while (r<r1)
 orbit = orbit+1;

 % assume slow variation, so radius and mass are constant through each orbit
 radii(orbit) = r;
 mass(orbit) = m;

 % time required to complete one orbit
 period = 2*pi*sqrt(r^3/mu);
 per(orbit) = period;

 % the delta V applied through this orbital period
 deltav(orbit) = 2*period*thrust/m;

 % angle off eclipsed sun line at which eclipse begins
 theta = asin(R/r);

 % time at which s/c crosses the eclipsed sun line
 if (orbit == 1)
 timesun = period*theta/(2*pi);
 timein = 0;
 else
 timesun = timesun + period;
 timein = timesun - period*theta/(2*pi);
 end

 % time at which s/c leaves eclipse
 timeout = timesun + period*theta/(2*pi);

 % save eclipse data
 eclipse(1,orbit) = timein; % enter eclipse
 eclipse(2,orbit) = timeout; % leave eclips

 % determine starting radius and mass for next iteration
 r = mu*(c*log(1-period*thrust/(m*c))+sqrt(mu/r))^-2;
 m = m-thrust*period/c;
end

 17

propulsion_power.m

function [propulsion, power] = propulsion_power(thrust,orbit,properties,t_transfer)
% Here the basic information for the propulsion systems is input
%
% This module is used for sizing the electric propulsion system along with
% the required solar arrays and batteries for a circular orbit transfer
%
% Inputs
%%
% THRUST = Constant thrust required to put complete the orbit
% transfer within the specific transfer time (N)
% ORBIT = Data specifying times at which the satellite is in sun
% and eclipse during sprialing orbit transfer (times of
% entering and exiting eclipse)
% PROPERTIES = a structure containing propulsion system properties,
% as created by the function PROPULSION_PROPERTIES.
% T_TRANSFER = transfer time specified by user (seconds)
%%
%
% Outputs
%%
% PROPULSION = structure containing fields with propulsion system data
% m_thruster
% m_ppu
% m_misc
% m_propellant
%
% POWER = structure containing fields with power system data
% A_cells_req = total required solar cell area (m^2)
% m_cells_req = total estimated solar array mass (kg)
% m_batt_req = total battery mass required (kg)
%%

% William Nadir
% 16.851: Satellite Engineering
% 10/26/2003

propulsion = [];
power = [];

type = properties.type;
Isp = properties.Isp;
eta = properties.eta;
lifetime = properties.lifetime;
th_mass = properties.th_mass;
ppu_mass = properties.ppu_mass;
misc_mass = properties.misc_mass;
max_thrust = properties.max_thrust;
min_thrust = properties.min_thrust;

% Here a check is performed to determine whether the input values of thrust
% and transfer time are acceptable for use with the chosen propulsion system
validity = 1;
switch type
 case {’ion’, ’hall’}
 if t_transfer > lifetime*3600
 disp([’ERROR: transfer time (’ num2str(t_transfer/3600) ...
 ’ hr) exceeds life of propulsion system (’ num2str(lifetime) ’ hr).’]);
 validity = 0;
 end

 case {’ppt’}
 if t_transfer > lifetime/thrust
 disp([’ERROR: transfer time (’ num2str(t_transfer/3600)...

 18

 ’ hr) exceeds life of propulsion system (’
num2str(lifetime/thrust/3600)...
 ’ hr) at ’ num2str(thrust) ’ N thrust.’]);
 validity = 0;
 end
end

% is thrust within the allowed range?
if thrust > max_thrust
 disp(’ERROR: thrust is over the capability range of propulsion system’)
 validity = 0;
end
if thrust < min_thrust
 disp(’ERROR: thrust is under the capability range of propulsion system’)
 validity = 0;
end

% this lets all error messages display before returning
if (~validity)
 return
end

g = 9.81; % gravitational acceleration constant (m/s^2)

% This is the constant power required for the electric propulsion system to
% get the satellite from orbit A to orbit B
mass_flow_rate = thrust / (Isp * g); % (kg/s)

prop_power_continuous = (thrust^2) / (2 * mass_flow_rate * eta); % (Watts)

% Constants for direct energy power control system
Xe = 0.65;
Xd = 0.85;

eta_cells = 0.18; % cell efficiency for GaAs cells (conservative = 18%)

I_degradation = 0.77; % inherent degradation of solar cells

p_sun = 1358; % solar input power density (W/m^2)

% Here we calculate the energy collection effectiveness of GaAs solar cells
% assuming no degradation over the time of orbit transfer (short time span)
power_per_area = eta_cells * p_sun * I_degradation; % (W/m^2)

% Initialize parameters for for loop to utilize ’orbit’ vector data
[A, B] = size(orbit);

% The number of columns in the ’orbit’ array is the number of orbits + 1
N_orbit = B - 1;

% Here the ’orbit’ array is analyzed to determine the total eclipse and day
% times for each ’orbit’ in the spiral orbit transfer
for I = 1:N_orbit

 eclipse_times(I) = orbit(2,I) - orbit(1,I); % (seconds)
 day_times(I) = orbit(1,I+1) - orbit(2,I); % (seconds)

end

% Here the depth-of-discharge (DOD) for the battery is defined (NiH2
% battery)
DOD = .80;

% Here the battery charging efficiency is defined (90%)
charge_efficiency = 0.9;

 19

% Here the battery specific energy density is defined for NiH2 batteries
sp_energy_density = 50; % (W*hr/kg)

% this for loop determines the power required for each portion of the
% spiral orbit transfer as well as the solar array area and battery mass
% required for each portion of the orbit transfer
for M = 1:N_orbit

 % P_sa is the required power for the propulsion system for one entire
 % orbit (Watts)
 P_sa(M) = (((prop_power_continuous * eclipse_times(M)) / Xe) + ...
 ((prop_power_continuous * day_times(M)) / Xd)) / day_times(M);

 A_cells(M) = P_sa(M) / power_per_area; % required area of solar arrays (m^2)

 m_cells(M) = 0.04 * P_sa(M); % estimated mass of solar arrays (kg)

 % Here the required battery capacity is calculated for one battery with
 % an efficiency of 0.9 for each eclipse during the spiral orbit
 % transfer (W*hr)
 Cr(M) = (prop_power_continuous * (eclipse_times(M)/3600)) / ...
 (DOD * charge_efficiency);

 % Here the required battery mass is determined
 m_batt(M) = Cr(M) / sp_energy_density; % (kg)

end

% required solar cell area to provide power for the orbit transfer (m^2)
A_cells_req = max(A_cells);

% required solar array mass (kg)
m_cells_req = max(m_cells);

% required battery mass to provide power for the orbit transfer (kg)
m_batt_req = max(m_batt);

m_thruster = th_mass * prop_power_continuous / 1000; % (kg)
m_ppu = ppu_mass * prop_power_continuous / 1000; % (kg)
m_misc = misc_mass * prop_power_continuous / 1000; % (kg)
m_propellant = mass_flow_rate * t_transfer; % (kg)

% power output structure
power.A_cells_req = A_cells_req;
power.m_cells_req = m_cells_req;
power.m_batt_req = m_batt_req;

% propulsion output structure
propulsion.m_thruster = m_thruster;
propulsion.m_ppu = m_ppu;
propulsion.m_misc = m_misc;
propulsion.m_propellant = m_propellant;

 20

References

1 http://web.mit.edu/dept/aeroastro/www/labs/SPL/electric.htm, MIT Space Propulsion Lab Website, 2002.
2 Course notes, AA420, University of Washington Dept. of Aeronautical and Astronautical Engineering, 1999.
3 Martinez-Sanchez, Manuel, Spacecraft Electric Propulsion – An Overview, Journal of Propulsion and Power,
Vol. 14, No. 5, 9/98-10/98, p. 690.
4 ibid.
5 Tajmar, Martin, Advanced Space Propulsion Systems, Springer Wien, New York, 2003, p. 76.
6 Wertz, James, and Larson, Wiley, Space Mission Analysis and Design, 2nd Ed., Microcosm, Inc., 1997, p. 396.
7 Sellers, Jerry Jon, Understanding Space: An Introduction to Astronautics, 2nd Ed., McGraw-Hill, 2000, p. 537.
8 Tajmar, Martin, Advanced Space Propulsion Systems, Springer Wien, New York, 2003, p. 74.
9 Wertz, James, and Larson, Wiley, Space Mission Analysis and Design, 2nd Ed., Microcosm, Inc., 1997, p. 397.
10 ibid, p. 317.
11 ibid, p. 403.
12 ibid p. 404.
13 ibid, p. 405.
14 Kimbrel, Scott, Optimization of Electric Propulsion Orbit Raising, SM thesis, Massachusetts Institute of
Technology, 2002.

Problem Set 5: Space Hotel Design: Preliminary
Structural Design and Cost Estimation

Summary
A space hotel was designed based on a modular concept, the capability of modern launch
vehicles, and various human factors. Finally, a cost model is used to estimate the cost of
manufacturing, assembling, launching, and operating the space hotel. The software
module created is used to investigate how the duration of each guest’s stay at the hotel
and the maximum occupancy of the hotel affect the total cost of the hotel.

Results
Based on the design constraints of the hotel design, the only variation in the structural
design was the number of habitation modules around the outer ring of the hotel. This had
a major cost impact on the hotel.

Another major cost impact on the hotel was the duration of the stay of each guest. The
longer a guest stayed, the less frequently a vehicle would need to dock with the hotel to
bring and take home guests. Launching people to the hotel is a significant cost.

Based on these constraints, it was found that the most economical space hotel design is
one in which there are few guests and they stay for long durations of time. This is the
lowest cost design for a space hotel.

Useful References

Human Factors
Conners, M.M., et al., Living Aloft, NASA, 1985.
Wieland, Paul., Designing For Human Presence in Space, NASA Marshall Space Flight
Center , 1999, § 2.1.
Stafford, K.W., et al., Advanced Life Support Systems Integration, Modeling, and
Reference Missions Document, NASA-Lyndon B. Johnson Space Center, 2001.
Sloan, James H., Commercial Space Station Requirements, AIAA-2000-5228, 2000.
Woodcock, Gordon, Space Stations and Platforms, Orbit Book Company, 1986.

The references listed above contain a great amount of useful information about what is
required to support human life in space. Beyond these references, there are many AIAA
papers that discuss manned space missions and what is required beyond unmanned space
missions once humans are involved. Information such as shielding, food, water, and
atmosphere is presented in these references. This information is key in estimating
spacecraft volume and mass sizes.

Cost Modeling
Reynerson, Dr. Charles M., A Space Tourism Platform Model for Engineering and
Economic Feasibility, 2000.

The reference listed above contains a useful cost model for estimating cost for space
tourism missions. The main input to the cost model is mass, so if a realistic mass
estimate can be made, it may be possible to calculate a reasonable first-order cost
estimate based on the cost model presented in the reference.

Space Hotel Design: Preliminary Structural Design and Cost Estimation
Software Designed to Determine Preliminary Cost Estimate Based on Human Factors and Structural

Design

16.851 Satellite Engineering

Massachusetts Institute of Technology, Cambridge, MA
November 2003

Motivation
Throughout history, people have been fascinated with
exploring outer space. Until recently, only astronauts
have had the privilege of being able to experience life
in outer space. However, in 2001, the first space
tourist, Dennis Tito, traveled to the International Space
Station onboard a Russian Soyuz rocket.

The travels of Dennis Tito are just the beginning for
space tourism. A new space tourism industry would be
an entirely new commercial use of space and a huge
potential new market. Space tourism may encourage
other private investment in the use of space, which may
in turn support significant future space exploration.

Problem Statement
Design a concept for a Space Hotel orbiting Earth.
Create a CAD model of the hotel to �rough-out� the
structural design as well as visualize the concept. The
Space Hotel should provide all the amenities required
by a tourist. These amenities should include gravity,
power, food, water, and waste removal.

Design a MATLAB module to size the hotel structure
as well as estimate the requirements for supporting
human life. The user will set the number of hotel
guests and the duration of the stay of each guest on the
Space Hotel. These inputs will be the driving factors
for the concept design. Based on the design concept for
the hotel, estimate the costs involved in launching,
assembling, and operating the hotel. The module will
investigate cost with respect to the number of guests
and the duration the stay of each guest.

Introduction
First, a conceptual design is created of the Space Hotel.
A CAD model of the hotel is created with enough detail
to present the rough conceptual design of the Space
Hotel.

The spin rate of the hotel in order to produce artificial
gravity is determined. Also, determine the other needs
of the human guests of the hotel are determined. These
needs will include electricity, food, water, waste
removal, and crew.

Cost models are developed to estimate the cost for
launch, assembly, and operation of the hotel. Using
these cost models, the cost with respect to the number
of guests and the duration of the stay of each guest is
determined. In addition, trends are shown which
illustrate how a Space Hotel can be operated in a cost-
efficient manner.

Space Hotel Structural Design

Components
The Space Hotel consists of four main components:
habitation modules, nodes, a center module, and
connecting modules between the habitation modules
and the center module. Figure 1 shows the
configuration of the Space Hotel.

Figure 1 Isometric view of Space Hotel

 2

All four components are visible in Figure 1, above. The
large cylindrical components in the shape of a ring are
the habitation modules. The spherical-shaped objects in
between the habitation modules are the nodes. The
long, thin, cylindrical components connecting the nodes
to the center component can be seen as well. The large
cylindrical component in the middle is the �center
module.�

Habitation Modules
The habitation modules are broken up into several
compartments for hotel guests to live in. In addition,
there is a large volume inside the module reserved for
equipment to maintain the station as well as other
storage space.

Figure 2 Habitation module internal compartments

The habitation modules are design in order to fit inside
a realistic launch vehicle fairing. For the purposes of
this project, an Atlas V, 5-meter fairing was chosen.
The Atlas V is a likely launch vehicle to be used to
launch components for a Space Hotel into orbit. The
figure below shows one of the habitation modules
fitting inside the launch vehicle fairing envelope.

Figure 3 Habitation module inside Atlas V fairing

In addition, the size and shape of the habitation module
is limited by the payload mass capability of the Atlas V
launch vehicle. The estimated mass of one of the
habitation modules, which is explained later in this
paper, is roughly 10,000 kg. This mass is less than the
payload capability of the Atlas V launch vehicle to
many LEO orbits. For example, the Atlas V has the
capability of launching 20,050 kg into a 185 km
altitude, 28.5 degree inclination orbit.i

Nodes
The spherical shaped components between the
habitation modules are simply interconnecting nodes
which allow guests to transfer from one habitation
module to another as well as to the center module. The
spheres in the picture are simply placeholders for the
components in a more detailed design.

Connecting Cylindrical Components
The long, thin, cylindrical components connecting the
nodes to the center component are simply tubes which
allow hotel guests to pass from the habitation module
section of the hotel to the center module.

Center Module
The center module of the hotel is designed to roughly
the same dimensions as the habitation modules in order
for it to fit inside the same launch vehicle fairing. The
purpose of the center module is to allow the hotel
guests the experience of floating in a zero-gravity
environment. Leisure activities can be held in this
section of the hotel.

Life Support System

Our Space Hotel is situated in orbit around the earth,
where the environment system for the passengers of the
hotel is isolated except for the periodical supply by
space transportation systems.

To support the life of passengers in the space
environment, specific needs need to be met. The basic
needs are the appropriate air composition, temperature,
and humidity which should be maintained continuously.
The consumables such as food and water should be
supplied on passengers� demands. Wastes should be
separately stored or removed periodically to maintain
the optimal mass of the hotel and to keep the
cleanliness.

In addition to those metabolic needs and effluents of
humans, other supplies such as food preparation device,
face/hand washing water, urinal flushing and etc should
be also included. For a facility which stays in the

 3

space environment for a long period, such as our Space
Hotel, or International Space Station, functions such as
O2 recovery and recycling of waste water and solid
waste become important to keep the re-supply and
storage expenses from becoming too high.

ECLSS
The current state-of-the-art system for long duration life
support is embodied in the International Space Station
(ISS) environmental control and life support system
(ECLSS). ECLSS includes the function of providing a
habitable environment, including clean air and water,
plus solid waste processing, food processing, biomass
production and thermal control, and supporting
interfaces with other subsystems.

Considering the similar nature of the ISS and our Space
Hotel, such as a durable structure for a long stay in the
space environment, the choice was made to use ECLSS
for our Space Hotel. In the following section, the
details of each requirement and corresponding ECLSS
device which satisfy the need will be presented.

Supporting System to meet Human Requirements

Interior Space

The ISS model is again utilized to estimate the personal
volume necessary to experience a comfortable stay at
our Space Hotel. In the limited space inside the
structure, the astronauts rest, sleep (in a separate
section), eat, shower, and also exercise on treadmills on
the ISS. The volume of personal space on the ISS was
calculated by dividing the volume of the habitat module
by the number of the crewmembers, and was computed
to be 645.6 (ft^3/person). This number was feasible
considering that the minimum volume requirement
calculated by Breeze (1961)ii was:

50ft^3/person (1-2 days)
260 ft^3/person (more than 1 or 2 months)
600 ft^3/person (for more than 2 months)

The mission length of the space station is between 3-6
months.

However, there are three concerns that we have to think
about:

- The nature difference between ISS and Space
Hotel. More space required for comfort
- Weightless state which allows passengers to
utilize the space well is unavailable inside our
Space Hotel. With the artificial gravity, more
space is needed.
- Less space per person is needed as crew size
increases

2. Thermal system

Although people can endure a relatively wide range of
temperature and humidity conditions, the proper range
in the habitat is important to maintain high work
efficiency. For our hotel, it is crucial to provide
comfort as a service. The ideal temperatures range from
18 to 27 C (65 to 80 F) and "ideal" humidity ranges
from dew points of 4 to 16 C (40 to 60 F). Thermal
management is divided into two systems, the internal
and external thermal control systems. The former
includes the avionic air assemblies which provide air-
cooling for equipment, the common cabin air
assemblies which control cabin air, condensate storage,
and the water flow loops for hear transport. The
external control system is included in the assessed
cooling-mass penalty.

Food subsystem

Food will be provided in individual entrees from Earth.
A mix of fresh, dehydrated, and full-water preserved,
shelf-stable or frozen food will be used. This system
required the significant amount of packaging.
Supporting technology includes freezers and some food
preparation equipment.

Air

In order to generate air conditions as close as the
atmospheric configuration, oxygen, carbon dioxide,
nitrogen, water vapor, trace contaminants, dust, and
smoke particles are used as the components in the space
habitats. Four separate systems, CO2 removal, CO2
reduction, O2 generation, and trace gas contaminants
control systems, works to revitalize the air and maintain
the quality of the air. Regenerative CO2 removal
equipment based on molecular sieve technology, which
does not require periodical replacement or storage
space, is installed in the ISS ECLSS. CO2 Reduction is
necessary to extract O required to generate O2. For a
structure designed for the longer stay in the apace, the
loss of the mass of CO2 leads to increased storage or
re-supply requirements. O2 generation maintains
sufficiently high oxygen partial pressure (21.4 kPa at
near sea-level). Trace gas contaminants control
systems is important in a closed structure like the Space
Hotel because the volume is limited relative to
containment sources. In addition, Atmosphere Control
and Supply system is required to maintain proper
composition and pressure of the air during the flight.
The following chart shows the flow of air component in
a recycle loop. This flowchart was extracted from a
design report written by NASA.iii

 4

Figure 4 Atmosphere control and supply

Water

Ensuring a clean supply of potable water and water for
bathing is essential. Water management consists of
three parts, water storage and distribution, water
recovery, and water quality monitoring.

For water recovery, urine is processed by vapor
compression distillation, which claims 88 percent water
recovery. The brine is either returned to Earth or
dumped. The water processor deals with all
unconfirmed water such as hygiene water, effluent from
the vapor compression distillation, and condensation
from dehumidification.

When recycled waste water is used, the potential for
contamination is higher than when using stored water.
Thus, process control water quality monitor provides
water quality assurance. The following chart shows the
flow of water management systems, extracted again
from the report by NASA.iv

Figure 5 Water recovery and management

6. Waste Subsystems

The wastes generated on a space habitat can be
classified into four general types: metabolic wastes
consisting of moist solids including feces and vomit,
other solid wastes, liquid wastes including urine and
waste hygiene water, and gaseous wastes. For long
duration missions this mass lost when the waste is
dumped becomes prohibitive and methods are needed
to recover to useable products as much mass as
possible. On ISS, urine is recycled as explained in the

Water section. Solid waste is stored and returned on
the transfer vehicle or burned upon re-entry in an
expendable re-supply vehicle. The toilet is also
included under the subsystems.

Other Considerations

Although omitted in our design of the Space Hotel, we
could aim to provide an even higher grade comfortable
environment. For example, additional devices to
decrease the level of odor and noise, or some decorative
interior lighting could be installed. Other possibilities
are to expand recreational facilities such as a plant
growth facility, and improve safety devices such as fire
detection and suppression systems.

Mass Estimation

Mass estimation for each component of human
requirement was calculated using the actual data from
the ISS. The optimization of ECLSS design in terms of
the lowest launch cost was computed applying of
Equivalent System Mass as related to the mass volume,
power cooling and crew time needs.v Considering that
masses of most of the components are proportional to
the number of crews and the duration, the values shown
in the following table is calculated by simple division
with the number of crews and the duration time of ISS.
These values are part of inputs for software module
described in the following section.

Table 1 Mass estimation of human requirements

Consumables [kg/CM-d]
Supply Air 0.84
 (+ 0.29) tank mass
 Food 1.37
 (+ 0.24) deposable packaging
 Thermal 0.003515
 Water 7 drink,

food preparation,
hand/face washing,
and urinal flushing

 Clothing 1.6 including EVA
clothe

Waste Waste 0.15

Infrastructure [kg/CM]
ISS ECLSS
technology

 20366 including air tank,
food freezers, CO2
removal device,
EVA support

 5

Software Module

Structural Sizing Module

Requirements
The MATLAB module structure.m determines the mass
of the Space Hotel and the required spin rate of the
hotel to maintain 1g of artificial gravity in the
habitation modules of the spacecraft.

Description of Code
The code uses the inputs of the number of guests and
the duration of the stay of each guest to calculate the
numbers and sizes of the various components in the
Space Hotel. The code calculates the masses of each
component in the hotel and outputs the total structural
mass of the hotel.

Constants
The first constant used in this module is the
gravitational acceleration constant, g. It is input into
the module as being equal to 9.81 m/s2.

The remaining constants are the �free volumes� of the
habitation and center modules in the Space Hotel.
These volumes are determined from the fairing size of
the Atlas V 5-meter fairing as well as the payload lift
capability of the launch vehicle. Taking these
constraints into consideration, the habitation modules
were determined to have a �free volume,� Vhab, of
approximately 4500 ft3.

The center module was determined to have a �free
volume� of approximately 4500 ft3.

Figure 6 Dimensions of habitation and center

modules (inches)

Inputs
N_guests: This input is the total number of people
living onboard the Space Hotel at any given time.

duration (days): This input is the time each person
living on the Space Hotel will spend onboard before
they head back to earth.

Outputs
str_mass (kg): This output is the total structural mass
of the entire Space Hotel. This is a sum of all of the
habitation modules, the interconnecting cylindrical
modules, as well as the center structural module.

spin_rate (m/s): This output is the spin rate of the
Space Hotel which is required to create artificial gravity
of 1g in the habitation modules of the hotel.

Theory & Equations
The first step in determining the structural mass of the
hotel is to determine how much volume each guest of
the hotel will need during his/her stay. In 1961, Breeze
noted that a person on a space station should need
approximately 50, 260, and 600 cubic feet of volume
for durations on the space station of 2, 30, and 60 days,
respectively. This is discussed in the �Supporting
System to Meet Human Requirements� section earlier
in this paper.

Since this is a Space Hotel and should be somewhat
luxurious and relaxing for the hotel guests, the numbers
provided from Breeze are multiplied by a factor of 3 to
result in volumes of 150, 780, and 1800 cubic feet for
durations of 2, 30, and 60 days, respectively. In
addition, since it has been estimated that the minimum
volume for a space station is 700 cubic feet per personvi
and it is unlikely that any person would stay on the
hotel for a short time (i.e. less than one week), the
volume per person estimated here is reasonable.

In order to determine guest required volumes for
durations between the data points given, linear
interpolation was done. This can be seen below in
Figure 7.

 6

Figure 7 Linear interpolation of volume vs. duration

Next, the total required volume for the guests is
calculated by multiplying the number of guests by the
volume required per guest.

guesttotal VguestsNV *_= (1)

The number of habitation modules is then determined
from the following equation and then rounding up to
the next highest integer.

hab

total
hab V

V
N = (2)

Based on the sizing requirements given from the launch
vehicle fairing constraints, the overall size of the
habitation modules is then given. Next, the mass of the
habitation modules is calculated. This is shown in the
equation below.

()22)(trrLm habhabhabhab −−= πρ (3)

In the above equation, the density of the habitation
module is given to be 0.103 lb/in^3 for a material of
Aluminum 2219. The wall thickness, t, of the module
is given to be 0.4 inches.vii

The calculated mass of each habitation module is
augmented with additional mass for welds, weld lands,
and thickness tolerances. This adds an additional 1% to
the mass of the habitation module.viii

Next, an additional 10% is added to the mass to take
into account the internal, non-load-bearing structure of
the habitation module. This is an extremely rough
estimate.

In addition, the mass of the required shielding to protect
the hotel from space debris is added to the weight
calculation. A Whipple Shieldix is used for this

purpose. This requires an additional thin Aluminum
covering around the outside of the habitation module.
This additional Aluminum piece is 0.080 inches thick.
The design of the Whipple Shield can be seen in the
figure below.

Figure 8 Example Whipple shield

Finally a factor of 1.5 is multiplied by the mass
estimate due to the lack of design maturity and heritage.

The same procedure of calculating mass is done for the
thin, cylindrical interconnecting structural members
connecting the habitation modules to the center module.
It is also done for the center module as well.

Finally, the spin rate of the hotel required to produce
artificial gravity in the habitation modules is
determined. The equation for centripetal acceleration is
used. This is shown below.

R
Va

2

= (4)

In order to keep a simulated gravity of 1g in the
habitation modules, the value of a is set to g, which is
9.81 m/s2, and the value of R is the radius of the Space
Hotel to the ends of each habitation module. See the
figure below to illustrate this.

Figure 9 Radius of habitation module ring

 7

In order to approximate the value of R for all sizes of
the Space Hotel, the circumference of the ring of
habitation modules is assumed to be equal to the
lengths of the habitation modules plus the lengths of the
nodes connecting the modules together. If this
assumption is made, the radius can be determined form
the equations 5a and 5b.

)(nodehab DLNDC +== π (5a)

ππ 2
)(

22
nodehab DLNCDR

+
=== (5b)

Rearranging equation 4 from above, the following
equation produces the required spin rate, V, for the
Space Hotel.

aRV = (6)

Cost Model Module

Requirements
The MATLAB module cost_model.m estimates the cost
of the Space Hotel including the construction costs,
logistics, and operation costs.

Description of Code
The code uses the inputs of the number of guests, the
duration of the stay of each guest, the number of years
in operation, and the weight of the Space Hotel to
calculate total cost. The code calculates the individual
costs such as the space structure, the ground support
costs and logistics. These are summed together for total
cost.

Inputs
Years(yrs): This input is number of years the Space
Hotel expects to be in operation.

n_crew: This input is number of people staying onboard
the Space Hotel at any time

duration (days): This input is the time each person
living on the Space Hotel will spend onboard before
they head back to earth.

w_f (kg): This input is the weight of Space Hotel
structure.

Outputs
total_cos ($): This output is the total cost of
constructing and operating a Space Hotel for a
particular number of years, a maximum capacity of
crew, and for a specified duration.

Theory & Equations
Various cost factors that result from space facility
designs and an estimation of rough order of magnitude
cost are included in this cost model. The required
investment areas addressed include the space segment,
launch vehicles, operations, and logistics.x

Space Segment Cost:

The space segment cost is calculated using:

Sc = Scf * Pcf * Rcf * Wf (7)

Sc: space segment cost ($)
Scf: the price per kg of facility on orbit, for manned
space programs the mean is 104 $K/kg
Pcf: the program cost normalized over the number of
manned vehicles produced (non-dimensional)
Rcf: research, test, development, and engineering cost
factor is used to compensate for new development cost.
The Rcf should be 3 for new development programs,
and 1 for a program based on existing hardware. We
will use 2. (non_dimensional)
Wf: weight of facility (kg)

Launch Vehicle Cost:

The launch vehicle cost is calculated using:

Lc = Lcf * Icf * Wf (8)

Lc: launch vehicle cost ($)
Lcf: launch cost factor estimated using historical data
and planned cost goals for future development, a mean
of 15.2 $K/kg ($/kg)
Icf: insurance cost factor, 1/3 of the launch vehicle cost,
will use then 1.333. (non-dimensional)

Ground Operation and Support:

A good estimate for the purposes of this model is $80M
per year for yearly operations and support costs.

Logistics:

The logistic cost was calculated using:

Wcl = 365 * ((δcs + δcrew + δcg) * (Nc/Ec) + ε) (9)

Wcl: yearly crew logistics weight (kg)
δcs: equipment weight needed for crew support during
the trip to and from orbit, assumed to be 2000
kg/person (kg/person)
δcrew: weight/person (kg/person)
δcg: weight of gear/person (kg/person)

 8

ε: consumption rate for the entire facility (kg/person-
day)

Wmm = Wf * Mmf (10)

Wmm: materials yearly delivery weight Wmm (kg)
Mmf: maintenance materials weight fraction, assumed to
be 0.01 for this model (non-dimensional)

Wl = Wcl + Wmm (11)
Lgc = Lcf * Icf * Wl (12)

Lgc: yearly logistics cost ($)

Osc = Ny * (Yosc + Lgc) (13)

Osc: total life cycle operations and support ($)
Ny: life cycle of station (yrs.)
Yosc: ground operations and support cost, as above
$80M/year ($)

Total Investment = Sc + Lc + Osc (14)

Results
Please refer to the figure below for the graph of results.

20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7
x 10

11

C
os

t
($

)

Number of Hotel Guests
Figure 10 Cost vs. number of Space Hotel guests

In Figure 10, the different colors represent different
durations of stay in increments of 20 days starting from
the minimum of 30 days up to 170 days. The colors
closer to the bottom of the graph represent long
durations of stay. Here a trade was conducted in which
the weight of the Space Hotel is calculated for the
number of guests and duration and then cost is
estimated based the above factors plus the weight of
Space Hotel.

It can be seen in Figure 10 that the cost estimation is
linear. This prevents any sort of minimization of the
cost of building, launching, assembling, and running a
Space Hotel. However, it can be seen that a Space

Hotel business model which is designed around fewer
guests staying for longer durations is a way to keep
costs low.

Conclusion
A conceptual design for a Space Hotel was created and
software was written to estimate the cost required to
build, launch, assemble, and run the hotel. These costs
were estimated based upon mass estimates for structure
and environmental control systems required to support
human life onboard the Space Hotel.

If we examine Figure 10, we notice that as duration of
stay increases, costs decrease. This can be seen
because the colored sections on the plot at the bottom
are the longer guest stay durations. This makes sense
because this lowers the logistical cost of shuttling
people to and from the Space Hotel. Launches become
prohibitively expensive if there are large numbers of
guests and that are staying for short durations. As the
number of guests increases, the smaller duration have a
large effect on the cost. However, if the duration of
stay is large, then duration has a smaller effect on costs
because construction and ground support costs
dominate. With long durations, it is possible to keep a
large number of guests in space with a relatively small
change in costs.

If one were looking to profit from this type of venture,
it would be beneficial to require stays of up to 6 months
and have 100 guests. The costs would be lower by a
long duration and large revenues could possibly be seen
due to the large number of guests staying at the hotel.

Future Work
A major area for future work would be to create a more
detailed cost model for the Space Hotel. This enhanced
cost model may result in a nonlinear distribution of
costs, unlike the results shown in Figure 10. This may
yield a minimum cost design for the Space Hotel.

In addition, a more detailed structural design of the
Space Hotel could be created which would yield a more
accurate mass estimate of the structure.

 9

Appendix A: MATLAB source code

structure.m
% William Nadir
% 16.851 Satellite Engineering
% Problem Set 5
%
% Space Hotel Structural Design Software Module
%
%%
%%%%%%%%%%%%%%%%%%%
% INPUTS
%
% N_guests = Number of people staying on board the Space Hotel at any time
% duration = Duration of stay for guests of the Space Hotel (days)
%
%%
%%%%%%%%%%%%%%%%%%%
% OUTPUTS
%
% str_mass = Mass estimate of structure of Space Hotel (kg)
% spin_rate = Spin rate of hotel to produce artificial gravity in
% habitation modules (m/s)
%
%%
%%%%%%%%%%%%%%%%%%%

function [str_mass,spin_rate] = structure(N_guests, duration)

% Here the volume required per passenger onboard the hotel is determined
time = [2 30 60]; % duration of stay (days)
req_volume = [150 780 1800]; % required "free volume" per passenger (ft^3)

if duration <= time(1)
 vol = req_volume(1);
elseif duration > time(1) && duration < time(2)
 vol = interp1(time,req_volume,duration,'linear');
elseif duration == time(2)
 vol = req_volume(2);
elseif duration > time(2) && duration < time(3)
 vol = interp1(time,req_volume,duration,'linear');
elseif duration == time(3)
 vol = req_volume(3);
end

% Input habitation module volume here
hab_free_volume = 4500; % (ft^3)

% Calculate how much free volume is required for the hotel guests
total_free_vol = N_guests * vol; % (ft^3)

% Determine how many habitation modules are required to house all the
% guests (rounding up)
N_habs = ceil(total_free_vol / hab_free_volume);

 10

% Here we determine the mass of each hotel component
bulkhead_thickness = .4; % (in)
rho = .103; % Al 2219 (lb/in^3)

% Habitation modules
hab_dia = 170; % (in)
hab_length = 500; % (in)
node_dia = 96; % Nodes at the ends of each habitation module (in)

hab_mass = rho * hab_length * pi * (((hab_dia/2)^2) - ...
 (((hab_dia - 2*bulkhead_thickness)/2)^2));

% Here the mass for welds (1%) and internal structure (10%) are added
hab_mass = hab_mass + (hab_mass * .01) + (hab_mass * .1);

% Here the Whipple Shield mass is determined (radius is 4.2" larger than
% module)
whipple_density = .0975; % Al 6061 (lb/in^3)
whipple_thk = .08; % (in)
whipple_mass_hab = whipple_density * hab_length * pi * ...
 ((((hab_dia/2) + 4.2)^2) - ...
 ((((hab_dia - 2*whipple_thk)/2) + 4.2)^2));

% Final habitation module mass plus 1.5 factor since calculations are very
% rough
hab_mass = (hab_mass + whipple_mass_hab)* 1.5; % (lb)

% Determine dimensions of overall hotel structure
% Assume that the circumference of the habitation module ring is roughly
% equivalent to the sum of the lengths of the habitation modules
hotel_dia = (N_habs * (hab_length + node_dia)) / pi; % (in)

% Interconnecting cylidrical structural elements
ic_dia = 48; % (in)

% Assume the lengths of the interconnecting tubes is roughly equivalent to
% the radius of the hotel ring
ic_length = hotel_dia / 2; % (in)

ic_mass = rho * ic_length * pi * (((ic_dia/2)^2) - ...
 (((ic_dia - 2*bulkhead_thickness)/2)^2));

% Here the mass for welds (1%) and internal structure (10%) are added
ic_mass = (ic_mass * .01) + (ic_mass * .1);

% Here we determine the Whipple Shield mass for the IC modules
whipple_mass_ic = whipple_density * ic_length * pi * ...
 ((((ic_dia/2) + 4.2)^2) - ...
 ((((ic_dia - 2*whipple_thk)/2) + 4.2)^2));

% Final habitation module mass plus 1.5 factor since calculations are very
% rough
ic_mass = (ic_mass + whipple_mass_ic)* 1.5;

% Here we assume the center cylinder mass is equivalent to that of a habitation
% module
center_module_mass = hab_mass; % (lb)

 11

% Here the total structural mass is calculated (lb)
str_mass = (hab_mass * N_habs) + (ic_mass * N_habs) + center_module_mass;

% Convert to kilograms from pounds
str_mass = str_mass * .454; % (kg)

% Determine spin rate required to produce artificial gravity in habitation
% modules
g = 32.2; % (ft/s^2)
spin_rate = sqrt(g * (hotel_dia/2)); % (ft/s)

% Convert to meters/sec
spin_rate = spin_rate * .3048; % (m/s)

cost_model.m
% Christopher Hynes
% 16.851 Satellite Engineering
% Problem Set 5
%
% Space Hotel Cost Software Module
%
%%
%%%%%%%%%%%%%%%%%%%
% INPUTS
%
% years = number of years in operation
% n_crew = Number of people staying on board the Space Hotel at any time
% duration = Duration of stay for guests of the Space Hotel (days)
% w_f = weight of structure (kgs)
%
%%
%%%%%%%%%%%%%%%%%%%
% OUTPUTS
%
% total_cost = amount (dollars) of total investment required for
% construction, logistics, and operation
%%
%%%%%%%%%%%%%%%%%%%
function total_cost = cost_model(years, n_crew, duration, w_f)

%Please see paper for explanations
s_cf = 104e3; %space segment cost factor [$/kg]
p_cf = 1.0; %
r_cf = 2.0; % research and development cost factor

s_c = s_cf*p_cf*r_cf; %space cost

l_cf = 15.2e3; %launch cost factor
i_cf = 1.33; %insurance cost factor

l_c = l_cf*i_cf*w_f; %launch cost

y_osc = 80e6; %yearly operation cost

delta_cs = 2000; %crew support specific weight [kg/person]

 12

delta_crew = 170; %crew specific weight [kg/person]
delta_gear = 72; %crew specific gear weight [kg/person]

consumption_rate = 9.453515; %rate of consumption [kg/person]

w_cl = 365*((delta_cs + delta_crew + delta_gear)*(n_crew/duration) + consumption_rate*n_crew); %yearly crew
logistics weight

m_mf = 0.01; %maintenance materials weight fraction

w_mm = w_f*m_mf; %materials yearly delivery weight

w_l = w_cl + w_mm; %logistics weight
l_gc = l_cf*i_cf*w_l; %logistics cost (per year)

o_sc = years*(y_osc + l_gc); % operational cost

total_cost = s_c + l_c + o_sc;

cost_modeltest.m
% Christopher Hynes
% 16.851 Satellite Engineering
% Problem Set 5
%
% Space Hotel Cost Software Module
%
%%
%%%%%%%%%%%%%%%%%%%
% INPUTS
%
% years = number of years in operation
% n_crew = Number of people staying on board the Space Hotel at any time
% duration = Duration of stay for guests of the Space Hotel (days)
% w_f = weight of structure (kgs)
%
%%
%%%%%%%%%%%%%%%%%%%
% OUTPUTS
%
% total_cost = amount (dollars) of total investment required for
% construction, logistics, and operation
%%
%%%%%%%%%%%%%%%%%%%
% function total_cost = cost_model(years, n_crew, duration, w_f)

N_guests_min = 20;
N_guests_max = 100;
duration_min = 30;
duration_max = 180;

cost_matrix = zeros(N_guests_max - N_guests_min + 1, duration_max - duration_min + 1);

for N_guests = N_guests_min:N_guests_max
 for duration = duration_min:duration_max

 [str_mass,spin_rate] = structure(N_guests, duration);
 total_cost = cost_model(10, N_guests, duration, str_mass);

 13

 cost_matrix(N_guests - N_guests_min + 1,duration - duration_min + 1) = total_cost;
 end
end

figure(1)
for i = 1:duration - duration_min + 1
 hold on
 duration = duration_min + i;
 if duration < 30
 plot([N_guests_min:N_guests_max],cost_matrix(:,i),'k*');
 elseif duration >= 30 && duration < 50
 plot([N_guests_min:N_guests_max],cost_matrix(:,i),'b*');
 elseif duration >=50 && duration < 70
 plot([N_guests_min:N_guests_max],cost_matrix(:,i),'r*');
 elseif duration >=70 && duration < 90
 plot([N_guests_min:N_guests_max],cost_matrix(:,i),'m*');
 elseif duration >= 90 && duration < 110
 plot([N_guests_min:N_guests_max],cost_matrix(:,i),'g*');
 elseif duration >= 110 && duration < 130
 plot([N_guests_min:N_guests_max],cost_matrix(:,i),'c*');
 elseif duration >= 130 && duration <= 150
 plot([N_guests_min:N_guests_max],cost_matrix(:,i),'y*');
 elseif duration >= 150 && duration <= 170
 plot([N_guests_min:N_guests_max],cost_matrix(:,i),'b*');
 end
end
ylabel('Cost ($)')
xlabel('Number of Hotel Guests')

 14

References

i Isakowitz, Steven J., International Reference Guide to Space Launch Systems, AIAA, 1999, p. 55.
ii Conners, M.M., et al., Living Aloft, NASA, 1985, p60.
iii Wieland, Paul., Designing For Human Presence in Space, NASA Marshall Space Flight Center , 1999, § 2.1.
iv ibid, § 2.4.
v Stafford, K.W., et al., Advanced Life Support Systems Integration, Modeling, and Reference Missions Document,
NASA-Lyndon B. Johnson Space Center, 2001.
vi Sloan, James H., Commercial Space Station Requirements, AIAA-2000-5228, 2000, p. 5.
vii Woodcock, Gordon, Space Stations and Platforms, Orbit Book Company, 1986, p. 145.
viii ibid, p. 145.
ix Graves, R., Space Station Meteoroid and Orbital Debris Survivability, AIAA-2002-1607, 2002, p. 8.
x Reynerson, Dr. Charles M., A Space Tourism Platform Model for Engineering and Economic Feasibility, 2000.

Problem Set 6: Design of an Artificial Gravity Mars
Mission

Summary
The purpose of this problem set was to investigate four possible vehicle designs to allow
for a crew traveling to Mars to experience artificial gravity for the duration of the transit
to and from Earth. The four designs investigated were a toroidal-shaped monolith
structure, a two-module EMFF design, a multi-module, tethered spacecraft, and a two-
module tethered spacecraft. The main focus of the project was on structures, human
factors, and cost. Areas such as power systems and propulsion were investigated in a
rough manner in order to have realistic numbers for those parts of the spacecraft.

A manned mission to Mars onboard a spacecraft which provides artificial gravity during
the transit to Mars would allow the crew to be immediately productive as soon as they
arrive at Mars. Without artificial gravity, the musculoskeletal deterioration of the crew
during the transit to Mars would render the crew incapable of most tasks on Mars due to
the .38g of gravity.

The cost model to determine the total program cost for each vehicle was made possible
by a cost model that has been developed for just this purpose. In addition, the technology
readiness levels (TRLs) of each spacecraft were estimated in order to scale the program
costs to realistic values.

Results
It was found that the ideal crew size was approximately 9 people for a mission to Mars.
This requirement drove the internal volumes of the vehicles which in turn sized the
structure and determined the program cost. In addition, human factors such as gravity
gradient and cross-coupled acceleration effects drove the sizing of the spacecraft.

Based on all of these issues, several MATLAB modules were written to size the
spacecraft and estimate the program costs for each. The results showed that the toroidal-
shaped monolith was the cheapest vehicle while the multi-module tethered spacecraft was
the most expensive. This is most likely due to the relatively high TRL of the monolith
vehicle. It was also found that the multiple-tethered spacecraft had the highest mass of
the four designs. In fact, the other three designs had fairly similar masses but the
multiple-tethered spacecraft had more than double the total mass.

Crew size was also varied to see its effect on the total program cost of each vehicle
design. The cost for the multiple-tethered spacecraft increased at a significantly higher
rate than that of the other three designs. Also, at a crew size of five and greater, the
toroidal spacecraft is the cheapest of the four designs.

Finally, the cost of each design increased as the artificial gravity requirement was raised.

Useful References
Larson, Wiley, Human Spaceflight: Mission Analysis and Design, McGraw-Hill, 1999.

For this project, I found many useful human factors references dealing with humans in
space for long duration missions. The most useful of all the references was HSMAD.
This book contains information about all types of human spaceflight, including long
duration manned missions to Mars.

In addition to using HSMAD, several useful AIAA papers were found which dealt with
long duration human spaceflight. The most useful of these papers dealt with the
implications of crew size on long duration missions in extreme environments. This paper
investigated the interactions of the crew on many space missions as well as long duration
expeditions to places such as the Antarctic. The paper found that more heterogeneous
and larger crews ended up working better together than smaller, more homogeneous
crews. This reference is shown below.

Dudley-Rowley, Marilyn, et. al., Crew Size, Composition, and Time: Implications for
Exploration Design, AIAA 2002-6111, AIAA, 2002.

Design of an Artificial Gravity Mars Mission
Mission Design Considering Human Factors, Structures, and Cost

16.851 Satellite Engineering

Massachusetts Institute of Technology, Cambridge, MA
December 2003

Motivation
Mars exploration is one of the main directions of
NASA. One overarching goal is to someday have a
manned mission to Mars. This is the next major step
for space exploration beyond the moon and out into the
solar system.

A manned mission to Mars poses several significant
technological challenges for engineers. One such
challenge is to minimize the physiological impact on
the astronauts during prolonged spaceflight. A possible
solution to this is using artificial gravity. Once the
crew arrives on Mars, they will almost immediately be
able to begin useful scientific research, rather than
spending significant time rehabilitating due to problems
like bone decalcification. Using current or planned
technology, artificial gravity almost certainly requires
some sort of spinning spacecraft.

The extended mission to Mars also poses psychological
challenges for the crew. The psychological well-being
of the crew may depend on the number of astronauts,
the gender makeup of the crew, the ages of the crew
members, and the “free volume” available per
astronaut. Many of these human factors will contribute
to the design of the spacecraft used to transport humans
to Mars.

Problem Statement
Create a tool to evaluate the feasibility of an artificial
gravity Mars mission. The tool should output the cost
for four designs: a large monolithic station, a tethered
multi-spacecraft station, a tethered two-spacecraft
system, and an EMFF system (see Figure 1). In
addition, the tool will determine how Mars mission
inputs such as number of crew members affect the
design of each system. A systems engineer using the
tool will be able to vary these parameters to fit a launch
or cost constraint.

Figure 1 Four designs: (a) monolithic station

(Toroid), (b) multi-spacecraft tethered, (c) two-
spacecraft tethered, and (d) EMFF.

Introduction
This study analyzes human, structural, and cost aspects
of the various spacecraft types in order to determine
their feasibility. In addition, the power and propulsion
systems of these spacecraft are modeled. The number
of crew members is treated as a variable in order to
analyze the effects of this parameter on the designs.

Some of the human factors that are considered, in
addition to the area issues, are requirements for
reducing motion sickness (since the spacecraft will be
spinning) and support systems and maintenance (such
as food, waste management, thermal and power needs
etc.).

The structural aspects are dictated by the design
configuration and human factors. For instance, in order
to prevent motion sickness, a minimum distance to the
spin axis is required. Similarly, the space/area needs for
the crew are imposed requirements on the habitable
volume of the spacecraft. In addition, volume must be
allocated for the Mars science payload, equipment, and
spacecraft subsystems. This tool assumes an Earth

(b)

(c)
(d)

(a)

return vehicle already exists on Mars for the astronauts
to use. The design of each particular system has unique
structural requirements.

Total cost of each type of spacecraft is evaluated based
on the structural and mass requirements of the design.
Factors such as launch and operations are included.

Figure 2 summarizes the map of how the various
subsystems relate to each other.

Figure 2. Relationships between the various
subsystems of the tool.

Crew Size and Composition
A long journey such as the one to and from Mars would
put any crew under extreme stress. The size and
composition of the crew for a manned Mars mission are
factors that can be controlled in such a way as to
minimize the stress during such a mission.

The human-human interface is the most important with
respect to the psychological and sociological aspects of
the extreme environment of a manned Mars mission.
The success of the mission depends on the ability of the
crew to effectively work together to accomplish their
mission objectives.

Based on an ongoing study of this human-human
interface in extreme environments, several important
observations have been documented. First, larger crews
tend to have lower rates of deviance and conflict.
Second, deviance and conflict tend to decline with
increasing length of mission. Third, heterogeneous
crews have lower rates of deviance and conflict.1

Although it was found that a larger crew had fewer
incidents of deviance and conflict, a maximum value
for crew size needs to be set. In the study previously
mentioned, it was found that the least dysfunction of
any crew studied was a crew of nine people.2 This
favorable crew size of 9 and the fact that a manned
mission to Mars could take as long as nine months, a

crew size of nine was set for a mission length of nine
months.

The other end of the spectrum, a shorter mission, needs
to have a limit for crew size as well. As the duration of
the mission gets shorter, the “extremeness” of the
environment decreases. This is because the crew
knows that they will not be as far from home as they
might be on a longer mission and they are closer to
reality than a nine-month expedition to Mars. This
lessening of the “extremeness” of the trip makes it
plausible for a crew of two members to run a mission
for duration of approximately one month. Several
manned missions to Mars even suggest using a crew of
two.3 Therefore, it is reasonable to assume a crew of
two could handle a month-long space mission.

Based on these two limits, linear interpolation is used to
estimate the crew sizes for mission durations between
one and nine months. However, since a worst-case
scenario is assumed in which the crew must stay in the
vehicle and return to Earth without landing on Mars, the
mission durations are doubled for the same estimated
crew size. This effectively places a cap of 9 as the crew
size for a mission to Mars using a Hohmann transfer
(roughly 9 months transit time each way). These crew
size estimates are shown below in Figure 3.

Crew Size vs . M iss ion Duration

0
1
2
3
4
5
6
7
8
9

10

Days 60 120 180 240 300 360 420 480

M iss ion Duration (Days)

C
re

w
 S

iz
e

Figure 3 Crew size vs. mission duration

In addition to the crew size, the gender, ethnic, and
cultural makeup of the crew plays a large role in the
performance of the crew during the mission. It was
found that more heterogeneous crews begin a mission
with some deviance, conflict, and dysfunction, but these
problems seem to decline as the mission progresses.
On the other hand, a more homogeneous crew tends to
begin a mission without much, if any, deviance,
conflict, or dysfunction, but these problems tend to
increase throughout the duration of the mission.4
Therefore, a heterogeneous crew, most likely half men

 2

and half women, with a mix of various ethnicities and
cultures, would tend to produce a more effective crew
for an extreme mission such as a manned mission to
Mars.

Human Factors
Interior “Free” Space for Crew
The long duration of a mission to Mars requires that
extra comfort be given to the crew than that given to
astronauts on a one or two week mission to low Earth
orbit. Significant comfort can be given to the crew in
the form of increased interior volume to use for work
and leisure activities. This would result in improved
mental health of the crew at the time of their arrival at
Mars.

Breeze (1961) estimated that a crew on a space mission
would require a minimum volume of 600 ft3 per crew
member for space missions longer than two months.5
Sloan,6 on the other hand, estimates the minimum
volume per crew member for life on a space station to
be approximately 700 ft3. Being conservative, a value
of 700 ft3 is assumed for the free volume required per
crew member for a manned Mars exploration mission.

Life Support System Equipment
Volume and Mass

Crew Systems
The crew systems onboard the spacecraft for a manned
mission to Mars contain equipment such as galley and
food system, waste collection system, personal hygiene,
clothing, recreational equipment, housekeeping,
operational supplies, maintenance, sleep provisions, and
health care. HSMAD contains a detailed breakdown on
the mass and volume requirements of crew systems
specifically designed for a manned Mars mission.7 By
dividing the numbers provided in HSMAD by the
estimated mission duration and specified crew size, a
normalized crew systems mass and volume per crew
member per day can be determined. These values are
shown below in Table 1.

Table 1 Crew systems normalized volume and mass.

Crew Systems
Mass (kg/CM-d) 7.55

Crew Systems
Vol. (ft^3/CM-d) 1.51

ECLSS Atmosphere Management
The Environmental Control Life Support System
(ECLSS) manages the air, water, waste, and other
systems onboard the spacecraft which support human
life in space. The portion of the ECLSS which
manages the atmosphere onboard the spacecraft utilizes
physio-chemical (P/C) technology in order to remove
carbon dioxide from the air, control trace contaminants,
and provide oxygen to the crew. An atmosphere
management system suggested by HSMAD is used for
the purposes of this study. This suggestion is a triple-
redundant system of three different types of P/C
atmospheric management systems.

The three types of P/C systems used in this manned
Mars mission spacecraft are 4BMS (4-bed molecular
sieve), TCCS, and Sabatier P/C atmosphere
management systems.8 A basic flow chart of the
method used to manage the atmosphere on board the
spacecraft is shown in the figure below.

Figure 4 Atmosphere control and supply9

Based on the mass and volume requirements provided
in HSMAD, the mass per crew member of these
environmental support systems could be estimated. The
three types of atmospheric management systems were
summed and multiplied by a factor of three for
redundancy. These values are shown below in Table 2.

Table 2 ECLSS atmosphere management mass and
volume per crew member10

ECLSS Atm.
Mass (kg/CM) 255

ECLSS Atm.
Vol. (ft3/CM) 35.3

ECLSS Water Management
Based on the manned Mars mission design example in
HSMAD, the ECLSS water management system design
for this project was estimated. HSMAD assumes a P/C
water management system of vapor compression
distillation (VCD) for use on the spacecraft. A basic
flow chart detailing the process of water recovery and
management is shown in the figure below.

 3

Figure 5 Water recovery and management11

This technology requires a mass of approximately 25 kg
per crew member and a volume of 3.53 ft3 per crew
member.12 A redundancy of two water management
systems is assumed,13 which brings the total mass per
crew member to 50 kg and total volume per crew
member to 7.1 ft3.

Artificial Gravity
A manned mission to Mars requires that the crew be
subjected to the space environment for a significant
period of time. A travel time of nearly one year would
result in significant musculoskeletal deterioration of the
crew members if the transit period were completely
zero-g.14 This would result in the crew members being
physically incapable of performing much work, if any,
when they arrive at Mars.

The downtime as a result of the crew’s required
physical rehabilitation would dramatically reduce the
available time on Mars for the crew to perform valuable
research activities.

In order for the crew to be productive when they reach
Mars, an artificial gravity of 0.38g, the magnitude of
gravity on Mars, is created on board the spacecraft
during the transit to Mars. The artificial gravity is set to
Mars gravity because it is unnecessary to provide
artificial gravity of 1g if the crew will need to adjust to
Mars gravity of 0.38g when they arrive. Also, a smaller
artificial gravity requirement reduces the propellant
required to spin-up and spin-down the spacecraft, as
well as the structural requirements on the spinning
spacecraft (and tethers).

Gravity Gradient, Coriolis, and Cross-
coupled Acceleration Effects
Due to the fact that the centrifugal acceleration
resulting from the spin of the spacecraft varies with
radial distance from the spin center, a different level of
gravity will exist between various levels of the structure
as well as throughout the human body. If this gravity
gradient is too large, it could become uncomfortable for
the crew members.15

In addition, crew members will experience pseudo
weight changes depending on their direction of motion
due to radial and tangential Coriolis effects. When
walking parallel to the spacecraft spin axis, crew
members will feel heavier when walking in the
direction of the spin and lighter when walking in the
opposite direction. Tangential Coriolis effects will be
felt by crew members walking moving radially about
the spacecraft (possible in the Toroid spacecraft). They
will feel a push in the direction of the spacecraft spin
when climbing towards or away from the spacecraft’s
center of motion.

Another potential uncomfortable result of the spinning
spacecraft, cross-coupled angular acceleration effects,
can be felt by crew members. This occurs when a crew
member moves his/her head in directions transverse to
the axis of rotation and the direction of flight of the
spacecraft. Interior design of the spacecraft may help to
alleviate this problem. In addition, researchers at Slow
Rotating Room in Pensacola, Florida, found that human
test subjects in a room rotating at speeds up to 10 rpm
could be trained to adapt to the rotating environment.

These potential impacts to the human crew for the
manned Mars mission result in design requirements in
order to minimize the impacts of these potential
problems and create a safer, healthier, and more
enjoyable environment for the crew during their long
journey to Mars. The two requirements imposed on the
spacecraft design are a maximum spin rate and a
minimum spin radius.

Stone (1970) and Thompson (1965) recommend a
rotation radius greater than 14.6 meters and spin rate
less than 6 rpm, while Shipov (1997) thinks a minimum
radius of 20 meters is appropriate. In order to be
conservative, a minimum spin radius of 30 meters and a
rotation rate of 6 rpm were used for the purposes of this
project.

Radiation Design Considerations
During the journey from Earth to Mars, the crew will
not enjoy the protection of the Earth’s atmosphere from
high energy particles from the Sun. Solar particle
events (SPEs) cause large numbers of these high energy
particles to emanate from the Sun. These particles may
impact the spacecraft and could result in harmful health
effects for the crew.

Background radiation in space, such as galactic cosmic
rays, may also affect the crew during transit to Mars.

In order to design a spacecraft to provide reasonable
protection for the crew from radiation, the thickness of
the aluminum hull of the spacecraft must be designed
with a minimum thickness. This thickness is

 4

determined from the maximum allowable radiation dose
for crews. This is given to be 1 Gy.16

This allowable radiation exposure for crews is
compared to the dose the crew would receive based on
the aluminum hull thickness to obtain the minimum
thickness. The data table used to make this decision is
shown below.

Table 3 Radiation dose from an unusually large
solar particle event

Shielding Depth (cm Al) Dose
(Gy)

0.5 4.68
1.0 1.95
1.5 1.02
2.0 0.59
2.5 0.37

Since an acceptable dose for the crew is 1 Gy, a
minimum hull thickness of 1.5cm of aluminum is
chosen for this spacecraft.

Spacecraft Power
In order to obtain an estimate for the power system for
the Earth-Mars cruise spacecraft, a rough
approximation of spacecraft power per crew member
was required. Several opinions exist as to exactly how
much power per crew member is required for the Earth-
Mars cruise phase of a manned Mars mission.

HSMAD assumes 20kW for a six-crew member
mission to mars. This normalizes to 3.33kW per crew
member.17 In addition, Sloan notes that 2kW per crew
member is required purely for life support.18

It is realistic to assume that more power will be
required than the minimum for life support. Research
and other activities will require additional power
beyond life support. Therefore, it is assumed for the
purposes of this project that 3.3kW is required per crew
member for the Earth-Mars cruise phase of a manned
Mars mission.

Structures
Cylinder
A cylindrical pressure vessel is used as the structure for
the tethered multiple spacecraft, two tethered spacecraft
and EMFF spacecraft designs. A cylindrical habitat
module was chosen because they have a high TRL and
can fit easily into a launch vehicle. The diameter of the
launch vehicle was used as the diameter of the cylinder.

Given the required volume and the number of
spacecraft in the array, the length of the cylinder was
then determined. The volume is equally distributed
among the spacecraft. The material selected for the
cylinder was Aluminum 606a-T6, based on the design
for a habitat module in HSMAD (Chapter 21). The
thickness of the cylinder can be determined by the
Hoop stress (since the hoop stress is greater than the
longitudinal stress)

tuh F
t
prf ≤= (0.1)

where fh is the Hoop stress, p is the pressure, r is the
radius of the cylinder, t is the thickness of the cylinder,
and Ftu is the allowable tensile ultimate stress for
aluminum. The thickness is set as 0.015 cm if it is
found to be less than that because of radiation shielding
requirements. The maximum internal pressure of
0.1096 times a safety factor of 2 is used as the pressure
inside the cylinder (based on HSMAD). Finally the
mass of the cylinder including the two ends is found by

ALAL rlttrmass ρρπ 22 2 +⋅= (0.2)

The dry mass of each spacecraft includes the structural
mass plus the solar array mass (see Power Module
section) and the life support equipment mass.

Toroid
The toroid for the monolithic system is found in a
similar fashion as the cylindrical case. The inner radius
of the toroid, rt, is found by the following

RrV t
222π= (0.3)

where V is the required volume and R is the radius of
rotation. The minimum radius is set as 3 feet (0.9144
m) if the radius, rt, is found to be less than that. The
thickness is found using the hoop stress requirement.
The mass of the toroid is found by the following

()() ALttoroid tRrmass ρππ 22= (0.4)

The dry mass for the monolithic system includes
spacecraft includes the toroid mass plus the solar array
mass (see Power Module section) and the life support
equipment mass.

EMFF Coil Mass
The superconducting EMFF coils are used to rotate the
two habitat modules for the EMFF design by creating
torque at a distance17. The EMFF system assumes that
spin-up of the array has occurred and the reaction
wheels will not saturate during the steady state spin by
rephrasing the array to dump momentum.19

 5

To determine the mass of the coils, the force generated
by the coils must equal the centripetal force from steady
state rotation as seen in Equation (0.5) where R is the
coil radius, It is the total current, S is the array baseline,
ω is the rotation rate, and mtot is the total mass of a
habitat module.

2

2 4
4 4

3 1 1
2 2

2

t

tot
o

m SF I R
SS

ωµ π

⎛ ⎞
⎜ ⎟
⎜ ⎟= + =
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(0.5)

For further clarification, Equation (0.5) uses a three
identical satellite system, where the two outer
spacecraft are the habitat modules, and the center
spacecraft contains only the EMFF coil as shown in
Figure 6. The reason for this design is to increase the
amount of electromagnetic force in the system. The
center spacecraft increases the electromagnetic force by
17 times the force produced by the outer spacecraft.
The result is that the three spacecraft design contains
EMFF coils that are 17-0.5 times lighter than those in a
two spacecraft design.

Figure 6 EMFF System Layout

To find the mass of the EMFF coils, the left hand side
of Equation (0.5) can be rearranged to include the mass
of the coil, Mc, and the wire current density over the
wire density, Ic/pc

5

7

1
3 17 10

tot
c

c

c

m SM IR
p

ω
−=

⋅ ⋅
 (0.6)

For a high temperature superconducting coil, the Ic/pc
from the EMFF lecture is 16250 A m/kg.

Tether Sizing
Tethers are required for two of the system designs, so
their mass is calculated based on the requirements of
each design. For the single tether setup, the radius from
the habitation module to the center of rotation is
calculated according to the following equation.

 2
maxω
des

des
gr = (0.7)

Here rdes is the radius that is ‘desired’ by the system
given the desired force, gdes, and the maximum
allowable rotation rate, ωmax (ωmax is determined by
human factors). If the calculated radius is larger than
the minimum radius allowed by human factors, then rdes
can be used to calculate the tether length. If not, the
minimum radius is used and the rotation rate must be
slowed accordingly. Assuming that the two payloads
are equal mass, the tether length for this system is then
twice the desired radius. The tension in the tether may
be calculated as:

 (0.8) 2ωdesmrT =

Here T is the tension in the tether, m is the mass of one
payload, and rdes and ω are as above. This is simply an
expression of Newton’s Second Law, where the radial
acceleration is calculated as the radius times the square
of the angular velocity. The axial stress equation can
then be used to calculate the required cross-sectional
area to support the tension T, given the ultimate tensile
strength of the chosen material.

uts

TA
σ

= (0.9)

For this analysis, two materials were considered, as
shown in Table 4.20

Table 4 Tether material properties

Material σuts (GPa) Ρ (kg/m3)
Kevlar 3.6 1440
Spectra 2.6 970

Since the area, length, and density of the tether are now
known, the mass can be easily calculated as follows.

 ρlAm = (0.10)

The multiple tether design requires a different
calculation of tether length, but similar techniques are
used to compute the final mass. From Figure 1 it is
clear that the multiple tether system is overconstrained.

 6

For a system of tethers in tension this is not necessarily
a bad thing, it simply makes analysis more tedious. For
example, the multiple tether system would maintain its
shape (while spinning) if it consisted of either the
spokes or the rim tethers alone. However, if only the
spoke tethers were used, there would be a small risk of
collision between the pods during spin up, etc, so it
might be wise to include the rim tethers. The solution
to this problem is to analyze these systems separately
and add the results.

Allowing the angle between two spokes to be α, and the
angle between any spoke and its adjacent rim tether to
be β, it is clear that:

)(2

1

2

απβ
α π

−=

= n (0.11)

Here n is the number of spokes. The pods are each at
distance rdes (or rmin, whichever is larger), as calculated
above, so the total length of the spokes, ls, is n times r.
The total length of the rim tether, lr, can be calculated
as:

)sin(2 2
αnrlr = (0.12)

The tension in the spokes is calculated without the rim
tethers in place as:

 (0.13) 2ωmrTs =

The tension in the rim tethers is calculated without the
spokes as:

 βcos
2

s
r

TT = (0.14)

The area and mass of the rim and spoke tethers can then
be calculated as before for each type of tether, and the
results added for total tether mass. The following table
gives examples of total tether mass for various systems.
Systems labeled ‘tether’ are single tether systems, while
systems labeled ‘mult-n’ are multiple tether systems
with n pods. The subscript r represents the rim tethers,
and the subscript s represents the spoke tethers. To get
the total tether mass for a mult-n system, add the spoke
mass to the rim mass. For single tether systems, the
mass of both pods is 70,000 kg, and for mult-n systems
the individual pod mass is taken as 40,000 kg.

Table 5 Example tether properties

System Material Force
kN

Area
(mm2)

Length
(m)

Mass
(kg)

Tether Kevlar 261 72.5 75.5 39.4
Tether Spectra 261 100.4 75.5 36.8
Mult-5r Kevlar 127 35.2 222 56.3
Mult-5s Kevlar 149 41.4 189 56.3
Mult-5r Spectra 127 48.8 222 52.5
Mult-5s Spectra 149 57.4 189 52.5

In general, it is not wise to base a design on the ultimate
tensile strength of a material, so a factor of safety of
five is included in the implementation of these
equations. It was found that the tether is a small portion
of the total system mass, so this factor does not have a
large impact. In addition, it helps to account for other
tether properties that have been ignored, such as
coatings against atomic oxygen, connecting hardware,
etc.

Spacecraft Propulsion
A major contributor to total system mass is the
propulsion system. While propulsion is not the main
focus of this analysis, it is recognized that the fuel
required by these spacecraft will be a significant portion
of total system mass. Several parts of the required
propulsion are treated in some detail, and others are left
for a future study. The current analysis is of a high-
risk, one-shot Mars approach. Enough fuel is provided
to initiate the Mars transfer and the spin required for
artificial gravity. It is assumed that the mission will
succeed spectacularly. That is, the landing craft will
reach Mars interface with hyperbolic velocity, and
perform an aerocapture-assisted entry and descent
phase. The astronauts will return on a vehicle that is
already in place at their landing site. There is no
provision for deceleration on Mars approach, for Earth-
entry in case of an aborted mission, or other margin of
any kind. This is obviously no way to design a manned
mission to Mars, but since the primary thrusts of this
analysis are cost, structures, and human factors, this
greatly simplified propulsion model has been used.

Mars Transfer
In terms of fuel, the cheapest trip to Mars on high-
impulse chemical thrusters is a Hohmann transfer. The
Hohmann transfer assumes that the transfer orbit is
tangent to both the initial and final circular orbits, so it
is very efficient and easy to analyze.21 Knowing the
radii of the initial and final orbits, r1 and r2 respective,
the semi-major axis, a, of the transfer orbit can be
calculated as follows.

2
21 rra += (0.15)

 7

The velocity of the spacecraft in the transfer orbit, but
at the point of making the impulsive injection
maneuver, can then be calculated from the energy
integral as:

)(12
1 arv −= µ (0.16)

Here v is the required velocity of the spacecraft in the
transfer orbit, µ is the gravitational parameter for the
central body (the Sun), and r1 and a are as above. The
required change in velocity can then be calculated as:

cvvV −=∆ (0.17)

Where ∆V is the required change in velocity, v is the
required spacecraft velocity above, and vc is the circular
velocity that the spacecraft already has due to the
orbital motion of the Earth, given by:

1rcv µ= (0.18)

The required ∆V in the solar frame is only half of the
calculation, however, for it takes extra fuel to escape
from the Earth’s sphere of influence. The ∆V required
in the solar frame can be considered the “hyperbolic
excess velocity” that is required in the Earth-centered
frame, or the speed that the spacecraft has with respect
to Earth as it leaves the sphere of influence. The
change in velocity required from a low Earth parking
orbit can be found by first calculating:

cri vv µ2+= ∞ (0.19)

Here vi is the insertion velocity that is required from
LEO, v∞ is the hyperbolic excess speed that is required
in the heliocentric frame (the ∆V solved for above), and
rc is the radius of the parking orbit where the spacecraft
is holding until departure. For this study, rc was taken
to be 200km. The required ∆V is then calculated as
above, where vc is recalculated for the parking orbit in
the Earth frame.

For the Hohmann transfer from Earth to Mars studied
here, the required change in velocity in the solar frame
(v∞) is calculated as 2.942 km/s. Using a circular
parking orbit at 200 km, the burn required for the
spacecraft is calculated to be 3.61 km/s.

The required ∆V can be used to calculate the fuel
required to get the spacecraft to Mars. Using the classic
rocket equation, the fuel mass is seen to be a function of
required change in velocity, spacecraft dry mass, and
the efficiency of the thruster (or specific impulse, Isp) .

 [])/(1 gIV

op
spemm ∆−−= (0.20)

Here mp is the mass of the propellant, mo is the dry
mass of the vehicle, Isp is the specific impulse of the
chosen thruster, and g is the acceleration due to gravity
at the Earth’s surface (where Isp is defined). For this
study, a value of 350 seconds is assumed for the
specific impulse, a typical value for a bipropellant
chemical thruster [see Ref 23, pg 692]. Thus, for a
given spacecraft dry mass, the required fuel mass can
be determined for each structural design. Note that the
required fuel masses to insert the desired payloads into
Mars orbit are quite large, so it is a reasonable
assumption to ignore the thruster hardware at this stage
of analysis. Additionally, for potentially massive
components such as fuel tanks, all of the systems under
consideration will have similarly scaled components so
the relative error here is not significant. Finally, the
question of thruster location is not specifically
addressed here. It is assumed that the Mars transfer
burn will be performed before the various designs have
initiated their spin. Thus, all tethers will be retracted,
and the EMFF system will be docked into a single unit.
This way, the whole system can be started on the
transfer orbit as a unit, and then the rotations can be
initiated en route.

Spacecraft Rotation
A unique feature of the EMFF system is that it does not
require fuel to initiate and maintain the nominal spin
rate. All other designs, however, will require some
manner of external thrust to start spinning. It will be
assumed that the monolith structure has a pair of
thrusters on opposite sides of the wheel (i.e. at the ends
of a line of diameter) to create a couple. The single and
multiple tether systems will have a single thruster on
each individual pod, oriented to create a pure moment
with no net force. The selected thruster has the same
specific impulse, 350 s, as the primary thruster.

Under these assumptions, the fuel required to spin up
can be calculated from the rocket equation above,
noting that:

 rV ω∆=∆ (0.21)

Here ∆ω is the change in angular velocity, and r is the
radius from the center of rotation to the thruster. When
calculating the fuel requirement from the rocket
equation, the total fuel requirement is the dry mass of
each individual spacecraft times the number of
spacecraft. The following table shows example fuel
requirements for spin up for the monolith, single tether,
and multiple tether systems. In this table, both ‘mass’
and ‘fuel mass’ represent the individual spacecraft

 8

masses, and should be multiplied by the total number of
spacecraft if total system mass is desired.

Table 6 Propellant mass for system designs

System Dry Mass (kg) Fuel Mass (kg)
Monolith 86,774 56,704

Tether 44,344 28,971
Multiple 43,027 28,117

Cost Estimation
A first order model was developed to estimate
approximate costs of the manned Mars mission. A
detailed work breakdown structure (WBS) was not
created since this study considers high-level concept
designs that focus only on certain aspects of the
mission, i.e. human factors, and structural
configurations. The cost model utilized a mix of
analogy based estimation, and parametric estimation in
determining the costs of the various segments.

The cost model determines the mission cost in FY03$
by evaluating the required expenses in the following
categories:

Space Segment
This is driven by the space segment cost factor (Scf), the
program level cost factor (Pcf), the heritage cost factor
(Hcf), and the space system mass, M.

The space segment cost, Sc, in dollars is calculated,
after adjusting the relationship given by Reynerson, as:

() cfcfcfc PMHSS += (0.22)

The Scf ($/kg) is the price per kg of facility on orbit. For
government run, manned space programs it ranges from
38 to 157 $K/kg, with the mean being 104 $K/kg.22 The
maximum value of 157 $K/kg is used in the model in
order to get a conservative estimate.

The Pcf ($) accounts for the program level costs such as
contractor costs for system engineering, management,
quality assurance, and other costs that cannot be
directly assigned to individual hardware or software
components. The Pcf was determined from the
parametric cost estimation data provided in table 20-4
in SMAD.

The heritage cost factor, Hcf, is a dimensionless quantity
and accounts for the technology readiness level (TRL)
costs. SMAD discusses the development heritage factor
in space segment cost (pg 798) as a multiplicative
factor. It defines heritage as the percentage of a

subsystem that is identical to one or more previous
spacecraft, by mass. This idea is applied in the cost
model by assuming that the TRL can be considered as
the system’s heritage. A TRL of 3 is thus considered to
have a heritage of only 30%, and the basic RDT&E cost
estimate is increased by 70% to account for additional
costs that will be accrued due to the development
required for the new technology. This assumption
provides a means to roughly estimate effects of
different design TRLs on the cost. Note that the
heritage factors are more appropriate to consider at the
subsystem level, and it would be more accurate if they
were considered when determining costs of specific
subsystems. However, in this study only structures and
human life support systems were considered in detail.
Therefore, a blanket ‘heritage factor’ to the whole
system cost estimate in this model really means an
application to only these two subsystems.

The mass, M (kg), of the system is the total mass of the
facility in space. The mass is often the primary cost
driver of space systems.23 The model used in the study
also uses the facility’s mass as a chief factor in the cost.

Launch Segment
The launch segment costs are determined by using the
launch cost factor, Lcf, the insurance cost factor, Icf, and
the mass of the system, M, to be placed in orbit.

The launch cost is determined as:

MILL cfcfc = (0.23)

The launch cost factor, Lcf, is based on historical data
and planned future cost goals. It is the cost per kilogram
of placing a payload in LEO orbit. Table 20-14 in
SMAD lists the cost per kg to LEO for various launch
vehicles in FY00$. The average value for US launch
vehicles comes out to be 14.66 $K/kg. Only US launch
vehicles were considered since it is assumed that the
mars mission will be a government run program. Lcf was
taken as 15.4 $K/kg (after converting the dollar value
from FY00 to FY03).

The insurance cost factor, Icf, was used to account for
insurance related expenses associated with launch. For
commercial launches, the insurance is a third of the
launch costs and Icf is typically 1.33. The cost model in
this study assumes a value of 1.5 to account for
somewhat higher insurance costs that would probably
be involved for a new type of mission. Furthermore, a
higher factor would give a conservative estimate.

The mass, M (kg) used in this cost portion is the same
facility mass that was used in determining the space
segment cost.

 9

Ground Operations and Support
The ground operations and support cost is usually much
smaller than the space segment and launch cost. For
missions that extend over long periods of time however,
this cost can become quite significant. The ground
segment costs are normally evaluated by considering
the requirements for the ground station facilities such as
square footage, equipment, personnel, etc. However
since such details are not available at concept level
studies, an analogy-based estimation was done to
determine the operations and support cost for the
manned mars mission. The International Space Station
has a $13 billion operations budget for its ten-year life.
The yearly operations costs are therefore earmarked as
$1.3 billion. The cost model in this study uses a value
of $1.5 billion per year for operations cost.

The total cost is obtained by summing the space
segment, launch and operations cost of the mission.

Software Modules

Volume and Equipment Mass Module

Requirements
The MATLAB module constants.m determines the
number of crew required for the mission as well as the
volume and mass of the vehicle, life support equipment,
as well as the required power for the spacecraft.

Description of Code
The code uses the input of the mission duration to
calculate the number of crew members required for the
mission. The number of crew members combined with
the mission duration is used to size the free volume of
the vehicle along with the life support system and
power requirements.

Constants
The constants used in this module are the values for
spacecraft volume, mass, and power which are given
and explained in the “human factors” and “spacecraft
power” sections of this document.

Inputs
duration (days): This input is the mission duration
from Earth to Mars.

Outputs
crew: This output is the total number of crew required
for the mission to Mars.

free_vol (ft3): This output is the total required “free
volume” in the spacecraft.

cs_vol (ft3): This output is the total required volume for
the crew systems equipment.

cs_mass (ft3): This output is the total required mass of
the crew systems equipment.

ls_air_vol (ft3): This output is the total required
volume for the atmosphere management equipment.

ls_air_mass (kg): This output is the total mass of the
required atmosphere management equipment.

ls_water_vol (ft3): This output is the total required
volume of the water recovery and management
equipment.

ls_water_mass (kg): This output is the total mass of the
required water recovery and management equipment.

power (W): This output is the total power required for
the spacecraft during the Earth-Mars transit. This is
purely based on the number of crew members in the
spacecraft.

Power Module

Requirements
The MATLAB module SolarArrays.m determines mass
of the solar array and the area of the solar array. This
module was used by Kwon, Vaughan, and Siddiqi in
Problem Set 5.

Description of Code
The code uses the required power to determine the mass
of the solar array. Multijunction arrays with no ellipse
periods were used in the calculation

Constants
The constants used in this module are the specific
powers for each type of solar array design.

Inputs
Average_power (W): This input is the required power
that the solar arrays need to deliver.

Ellipse_fraction (0-1): This input is the fraction of the
orbit spent in eclipse.

 10

type (number): This input is selects the solar array type
(1, 2, or 3 for Si, GaAs, or multijunction respectively).

Mission_duration (years): This input is the mission
duration in years.

Outputs
Mass_solarArray (kg): This output is the mass of the
solar array..

Area_solarArray (m3): This output is the area of the
solar array.

Structures Module

Requirements
The MATLAB module structures.m determines mass of
the structure given the total volume required, the
number of vehicles, and the type of architecture. The
architecture options are a toroidal monolithic spinning
spacecraft, a tethered multiple spacecraft, two tethered
spacecraft, or two EMFF spacecraft.

Description of Code
The code uses the required volume and calculates the
dimensions of a cylindrical pressure vessel. The
diameter of the cylinder is constrained by the launch
vehicle diameter. For the toroidal monolith system, it is
assumed that the toroid is cut into sections while it is in
the launch vehicle. The total volume is divided equally
between the number of spacecraft for the design.
Additionally the radius of rotation is used to determine
the length of the cylinder. Once the dimensions of the
structure are determined, its mass is calculated and
outputted.

Constants
The constants used in this module are the values for
density and allowable tensile ultimate stress for
Aluminum 6061-T6 and the maximum internal pressure
for design of the pressure vessel. These values are
given and explained in the “structures” section of this
document.

Inputs
V (m3): This input is the total volume required for the
structure to contain.

D (m): This input is the launch vehicle diameter.

N (number): This input is the number of vehicles in the
array.

R (m): This input is the radius of rotation.

w (rad/s): This input is the rotation rate of the system.

design (‘text’): This input is the desired design, options
include ‘monolith’, ‘multiple’, ‘tether’, and ‘emff’.

Outputs
Mass (kg): This output is the total mass of the
structure.

Tether Mass Module

Requirements
The MATLAB module tether_mass.m determines mass
of the tether given the type of architecture, number of
vehicles, dry mass, tether material, and desired
acceleration.

Description of Code
The code takes the system architecture and decides how
to calculate the tether length and tension. For the
monolith and EMFF, there is no tether. For the single
and multiple tether systems, the values are computed
appropriately as described above. Mass of the tether is
then calculated from the material properties of the
tether and the required length and tension.

Constants
The constants used in this module are the values for
maximum allowable spin rate and minimum allowable
radius, as defined by human factors.

Inputs
AG_type (‘text’): This input is the desired design,
options include ‘monolith’, ‘multiple’, ‘tether’, and
‘emff’.

n (number): This input is the number of vehicles in the
array.

w (rad/s): This input is the rotation rate of the system.

dry_mass (kg): This is the mass of the spacecraft. For
the single tether, an array of 2 masses (can be unique).
For the multiple tether, one mass is provided and the
modules are assumed to be identical.

 11

tether_mat (‘text’): Input describes what material to
use for the tether. Current options are ‘spectra’ and
‘kevlar’.

g_des (m/s2): This desired acceleration at the rim.

Outputs
Mass (kg): This output is the total mass of the tether(s).

Propulsion Module

Requirements
The MATLAB module propulsion.m determines mass
of the required fuel for orbit transfer and spin-up, given
the type of architecture, number of vehicles, dry mass,
tether material, and the moment arm to the thruster.

Description of Code
The code calculates the change in velocity required for
a Hohmann transfer to Mars, and then solves the Earth-
centered problem for ∆V required from a LEO parking
orbit. The rocket equation is then used for an assumed
thruster to find the fuel mass for the transfer. Given the
type of system and the thruster moment arm, the rocket
equation is used again to find the propellant required
for spin-up. This function calls several auxiliary
functions that are included and commented in
Appendix A, namely: ic_circ.m, hohmann.m,
p_conic.m, and r_equation.m.

Constants
The constants used in this module are the gravitational
constants for the Earth and Sun, the radius of the Earth,
the Earth-Sun distance, the parking orbit radius, and the
Mars-Sun distance.

Inputs
AG_type (‘text’): This input is the desired design,
options include ‘monolith’, ‘multiple’, ‘tether’, and
‘emff’.

n (number): This input is the number of vehicles in the
array.

w (rad/s): This input is the rotation rate of the system.

dry_mass (kg): This is the mass of the spacecraft. For
the single tether, an array of 2 masses (can be unique).
For the multiple-tethered spacecraft, one mass is
provided and the modules are assumed to be identical.

r_outer (m): The moment arm for the thruster.

Outputs
Mass (kg): This output is the mass of the propulsion
system per pod.

EMFF Module

Requirements
The MATLAB module emff.m determines mass of the
superconducting EMFF coils needed to rotation rate for
a given amount of artificial gravity.

Description of Code
The code uses the size of the cylinder as the size of the
coils, the total dry mass each satellite, the radius of
rotation, and the rotation rate to determine the mass of
the coils for a three spacecraft collinear array. The
equation used for this is explained in the “emff coil
mass” section.

Constants
The constant used in this module is the
Superconducting coil current density divided by the
wire density as given in the EMFF Lecture.

Inputs
V (m3): This input is the total volume required for the
structure to contain.

D (m): This input is the launch vehicle diameter.

R (m): This input is the radius of rotation.

w (rad/s): This input is the rotation rate of the system.

Mass_tot (kg): This input is the total dry mass of one
of the satellites.

Outputs
Mass_coil (kg): This output is the total mass of the
EMFF coil.

Cost Module

The MATLAB module cost.m calculates the total cost
of a manned mission based on the system mass,
technology readiness level of the system, and mission
duration.

 12

Inputs
mass (kg): This is the total mass of the system /facility
in space.

TRL: The Technology Readiness Level of the system

duration (days): The mission duration from Earth to
Mars.

Outputs
TotalCost ($): This is the total cost of the mission in
$FY03. It is the sum of all the cost segments that are
also given out by the module.

SpaceSegCost ($): The space segment cost in $FY03

LVCost ($): Launch cost in $FY03

OpSupCost ($): Operations support cost in $FY03

Results
The total program costs for a 1.5 year mission for the
different designs are shown in the figure below. It is
seen that the cheapest design option is the monolith
while the multiple tether configuration is the most
expensive.

Figure 7 Cost of different designs

The cost breakdown shows that the space segment cost
is by far the largest portion as compared to launch and
operation costs. A comparison with Apollo and Orbiter
costs show that the model estimates lie within a
reasonable range.

Since the cost model is driven primarily by the system
mass, an analysis of the mass of the different designs
shows a trend that matches with the cost results. The
figure below illustrates the total mass estimates
obtained for the different designs.

Figure 8 Mass comparison of different designs

Although the mass of the EMFF, monolith and tether
designs are in the same range, the monolith is cheaper
than the other two designs due to a higher TRL value.
EMFF and tether designs have lower TRLs (the model
assumed 3 and 4 respectively), therefore they cost more
than the monolith. The dry mass in each design
included the power subsystem, the structural mass, and
crew and life support equipment mass. It also included
mass of subsystems that were unique to each particular
configuration, for instance the dry mass of the EMFF
design includes the mass of coils while in the multiple
tether and tether options it includes the mass of tethers.
From these results it appears that the monolith design
offers the lightest and cheapest option.

Varying Crew Size
One interesting plot is the change in total program cost
versus the number of crew used in the mission to Mars.
As the number of crew increases, the required structure
volume increases, which in turn increases the mass and
cost. The results for the four designs considered are
shown in the figure below.

0 5 10 15
0

2

4

6

8

10

12

14

16

18
x 104

Crew Size

To
ta

l C
os

t (
FY

03
$M

)

EMFF
Tether
Multiple Module/Tether
Toroid

Crew size
investigated

Figure 9 Cost vs. crew size

 13

The above figure shows significant differences in the
rate of change of cost as the crew size changes for the
various spacecraft designs. The single tether and
EMFF designs have nearly identical curves in the figure
as well. This is due to the fact that they both have the
same basic structural design: each design has two main
modules and little or no mass connecting the two
modules. Also, these two designs have nearly identical
TRL values.

The other two designs, the toroid and the multiple-
tethered module, are radically different designs than the
previous two. It can be seen that the cost of the
monolith increases much less dramatically than the cost
of the multiple-tethered module vehicle. This
difference is mainly the result of the fact that the TRL
of the toroid is much higher than that of the other three
designs, especially the multiple-tethered module.

Finally, it can be seen in Figure 9 that the cost of the
Toroid spacecraft becomes the most cost effective
design for crew sizes greater than five. Based on this
information, a Toroid may be the most cost effective
design for a large crew of approximately nine members
for a manned mission to Mars.

Effect of Varying Artificial Gravity
The artificial gravity is created by rotation of the
vehicle(s). A higher artificial gravity results in a higher
rotation rate, given a fixed radius of rotation. For the
tethered two spacecraft, multiple spacecraft, and
monolith systems, a higher rotation rate results in a
larger ∆V needed for spin-up and results in more
propellant. For the EMFF system, the EMFF coil mass
is directly related to the rotation rate as seen in equation
(0.6). Figure 10 illustrates these results for the four
different systems. Each of the systems shown an
increase as the Earth’s gravity is approached. None of
the curves overlap and the multiple-tethered spacecraft
shows the highest mass while the two tethered
spacecraft is the least massive option.

0.2 0.4 0.6 0.8 1
1.465

1.4655

1.466

1.4665

1.467
x 105

M
as

s
of

 E
M

FF
[k

g]

Fraction of the Earth's gravity
0.2 0.4 0.6 0.8 1

1.468

1.47

1.472

1.474
x 105

M
as

s
of

 T
et

he
r[k

g]

Fraction of the Earth's gravity

0.2 0.4 0.6 0.8 1
3.57

3.58

3.59

3.6

3.61
x 105

M
as

s
of

 M
ul

tip
le

 T
et

he
re

d[
kg

]

Fraction of the Earth's gravity
0.2 0.4 0.6 0.8 1

1.434

1.435

1.436

1.437
x 105

M
as

s
of

 M
on

ol
ith

[k
g]

Fraction of the Earth's gravity
Figure 10 Effect of varying the fraction of Earth's

gravity on total system mass

Figure 11 illustrates the effect of varying the fraction of
Earth’s gravity on the total system cost. Since the cost
varies directly with the mass, these results show an
expected trend; the cost shows an increase as the
Earth’s gravity is approached.

Figure 11 Effect of varying the fraction of Earth's

gravity on cost

Conclusion
The preceding design of an artificial gravity Mars
mission demonstrates that the mission has feasibility in
terms of cost since the cost is less than the Apollo
program. The mass of the systems are high mainly due
to the significant propellant mass, but more advanced
propulsion systems could help decrease this. The
monolith system is currently the most favorable design
for cost and mass, and for large crew sizes. The tether
and EMFF designs may become more favorable with
further development of their technology boosting their
TRL.

 14

Future Work
This is an exciting project with much potential for
future work. An improvement that is immediately
obvious is to allow different mission durations and to
evaluate the effect of that change on mission cost and
mass. Currently, a Hohmann transfer from Earth to
Mars is specified, but other orbits should be examined
such as faster one-tangent burns, or perhaps longer
orbits with free-return trajectories. Changing the
mission duration will impact the number of desired
crew-members as well as the required propellant for
transfer, and so could have a large impact on mass and
cost.

Another improvement would be to add a detailed
propulsion system model to this analysis. Current all
propulsion system hardware is neglected, along with
any propellant margin, corrective maneuvers, terminal
rendezvous burn, or mission-abort scenarios. All of
these things could be added to increase the fidelity of
the overall model. Certainly, including these things
will increase the total mass and cost of the systems.

There are many other systems that could be added as
well. Power, while mentioned in this study, could be
investigated in a much more thorough fashion. Issues
could be addressed relating to human needs such as
thermal controls, debris and radiation mitigation, and
communications. Each of these improvements could
greatly enhance the quality of the analysis and make
this an even more valuable tool for future use.

 15

Appendix A: MATLAB source code

main.m
%Constants
g_des = 1/3 * 9.81;
rmin = 30; %meters
wmax = 6; %rpm
w = wmax * pi/30;

D = 5; %m, Launch vehicle width

mission_duration = 1.5; %years

%first call constants
%Get the required volume and average_power
[crew, free_vol, cs_vol, cs_mass, ls_air_vol, ls_air_mass, ls_water_vol, ...
 ls_water_mass, power] = constants(mission_duration*365);
V_ft = free_vol + cs_vol + ls_air_vol + ls_water_vol; %Total Volume, ft^3
V = V_ft * 2.83168*10^-2; %Total Volume, conversion from ft^3 to m^3

M_systems = cs_mass + ls_air_mass + ls_water_mass; %Mass of crew and support systems

%Find Power Mass
[M_power, Area_power] = SolarArrays (power,0,3,mission_duration);

r_des = g_des/w/w; % calculate 'desired' radius to get desired acceleration
if (r_des < rmin);
 r_des = rmin;
 w = sqrt(g_des/r_des);
end

%Now For Each Design
%EMFF%%
N=2;
%Find structural mass
%mass of each cylinder (note that there are two for emff, tether)
M_struct_emff = structure(V, D, N, r_des, w,'emff');
%Find Propulsion system Mass
Mass_dry_emff = M_struct_emff + M_power + M_systems;
M_coil_emff = emff(V, D,r_des, w, Mass_dry_emff);
M_wet_emff=propulsion('emff', N, w, Mass_dry_emff+M_coil_emff, r_des);
%Compute the total mass
M_total_emff = Mass_dry_emff + M_coil_emff+M_wet_emff;
%Computer system mass
M_system_emff = N * M_total_emff;
%Find cost
[TotalCost_emff, SpaceSegCost_emff, LVCost_emff,
OpSupCost_emff]=cost(M_system_emff,3,mission_duration);
%%%

%Tether%%
N=2;
%Find structural mass
%mass of each cylinder (note that there are two for emff, tether)
M_struct_tether = structure(V, D, N, r_des, w,'tether');
%Find Propulsion system Mass for each spacecraft
Mass_dry_tether = M_struct_tether + M_power + M_systems;
M_wet_tether=propulsion('tether', N, w, Mass_dry_tether, r_des);
M_tether = tether_mass('tether', N, w, [(Mass_dry_tether+M_wet_tether)
(Mass_dry_tether+M_wet_tether)], 'kevlar', g_des);
%Compute the total mass
M_total_tether = Mass_dry_tether + M_wet_tether;
M_system_tether = N * M_total_tether + M_tether;
%Find cost
[TotalCost_tether, SpaceSegCost_tether, LVCost_tether,
OpSupCost_tether]=cost(M_system_tether,4,mission_duration);
%%%

%Multiple Tethered 5 spacecraft%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N=5;
%Find structural mass
%mass of each cylinder (note that there are two for emff, tether)
M_struct_multiple = structure(V, D, 5, r_des, w,'multiple');
%Find Propulsion system Mass
Mass_dry_multiple = M_struct_multiple + M_power + M_systems;
M_wet_multiple=propulsion('multiple', N, w, Mass_dry_multiple, r_des);

 16

M_tether_multiple = tether_mass('multiple', 5, w, Mass_dry_multiple+M_wet_multiple, 'kevlar',
g_des);
%Compute the total for each spacecraft
M_total_multiple = Mass_dry_multiple + M_wet_multiple;
%Computer system mass
M_system_multiple = N * M_total_multiple + M_tether_multiple;
%Find cost
[TotalCost_multiple, SpaceSegCost_multiple, LVCost_multiple,
OpSupCost_multiple]=cost(M_system_multiple,4,mission_duration);
%%%

%Monolithic Spacecraft%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Find structural mass
%mass of each cylinder (note that there are two for emff, tether)
M_struct_monolith = structure(V, D, 1, r_des, w,'monolith');
%Find Propulsion system Mass
Mass_dry_monolith = M_struct_monolith + M_power + M_systems;
M_wet_monolith=propulsion('monolith', N, w, Mass_dry_monolith, r_des);
%Compute the total mass
M_total_monolith = Mass_dry_monolith + M_wet_monolith;
%Find cost
[TotalCost_monolith, SpaceSegCost_monolith, LVCost_monolith,
OpSupCost_monolith]=cost(M_total_monolith,8,mission_duration);
%%%

constants.m
% William Nadir
% 16.851 Satellite Enginnering
% Module to estimate Mars mission crew size and vehicle volume and mass requirements
%
% INPUTS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% duration = Mission duration (days)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% OUTPUTS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% crew = Crew size (number of people)
% free_vol = Amount of total "free" volume required for crew (ft^3)
% cs_vol = Amount of total volume required for crew systems (ft^3)
% cs_mass = Mass of crew systems (kg)
% ls_air_vol = Life support equpment (air) total volume (ft^3)
% ls_air_mass = Mass of life support equipment (air) (kg)
% ls_water_vol = Life support equpment (water) total volume (ft^3)
% ls_water_mass = Mass of life support equipment (water) (kg)
% power = Required total spacecraft power (W)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [crew,free_vol, cs_vol, cs_mass, ls_air_vol, ls_air_mass, ls_water_vol, ...
 ls_water_mass, power] = constants(duration)

% Here the required crew size is determined based on the duration of the
% mission to Mars
crew = ceil((.0292 * duration + (9/8))/2); % (No. of crew members)

free_vol = 700 * crew; % Total free volume required (ft^3)

cs_vol = 1.512* crew * duration; % Total crew systems volume required (ft^3)
cs_mass = 7.55 * crew * duration; % Total crew systems mass (kg)

ls_air_vol = 35.3 * crew; % Total ECLSS air control system volume (ft^3)
ls_air_mass = 255 * crew; % Total ECLSS air control system mass (kg)

ls_water_vol = 7.1 * crew; % Total ECLSS water control system volume (ft^3)
ls_water_mass = 50 * crew; % Total ECLSS water control system mass (kg)

power = 3300 * crew; % required S/C power (W)

SolarArrays.m
%This function calculates the mass, cost, and size of a given type of solar array.
%The inputs are eclipse fraction, average power, shadow fraction, mission duration, and cell
type.

function [Mass_solarArray,Area_solarArray]=SolarArrays
(average_power,eclipse_fraction,type,mission_duration)

 17

%P_solarArray: power produced by solar arrays
%Pe :power required during eclipse period
%Pd : power required during daylight period
%Xe :path efficiency from solar array, through battery to loads
%Xd :path efficiency from solar array to loads
%Xcell :cell efficiency
%Isolar :solar illumination intensity
%Id :Inherent degredation
%DSi etc : degredation/yr
%Ld :lifetime degredation

%********************************
% Constants
Xe = 0.65;
Xd = 0.85;
XSi = 0.148;
XGaAs= 0.185;
Xmulti= 0.22;
Isolar = 1367;
Id = 0.77;
DSi = 0.0375;
DGaAs = 0.0275;
Dmulti = 0.005;
SpSi = 0.55; %16.89 design doc kg/m^2
SpGaAs = 0.85; %kg/m^2
Spmulti= 0.85; %kg/m^2
%******************************

Pe = average_power;
Pd = average_power;

%Te = orbit_period*eclipse_fraction; %eclipse time
%Td = orbit_period-Te; %daylight time
%P_solarArray = ((Pe*Te)/(Xe*Td)) + (Pd/Xd) %power produced by solar arrays

P_solarArray = Pd/Xd;

%Silicon is type 1, GaAs is type2, and multijunction is 3

if type == 1
 Xcell = XSi;
 Degredation = DSi;
MassPerArea = SpSi;
SpecificPower = 25;
%SpecificCost = SpCostSi;
end

if type == 2
 Xcell = XGaAs;
 Degredation = DGaAs;
MassPerArea = SpGaAs;
SpecificPower = 60; %ref:
http://lheawww.gsfc.nasa.gov/docs/balloon/2nd_tech_workshop/Loyselle.pdf
%SpecificCost = SpCostGaAs;
end

if type ==3

 Xcell = Xmulti;
 Degredation = Dmulti;
MassPerArea = Spmulti;
SpecificPower = 66; %assumed based on info in SMAD
%SpecificCost = SpCostmulti;
end

%Power out of solar cell assuming sun rays are normal to solar panels
Pout = Xcell * Isolar;

%Power at begining of life

Pbol = Pout *Id;
Ld = (1-Degredation)^mission_duration;

%Power at end of life

Peol = Pbol*Ld;

Area_solarArray = P_solarArray/Peol;

Mass_solarArray = P_solarArray/SpecificPower;

%Cost = SpecificCost * Mass_solarArray;

 18

%Cost = NaN;

structure.m
function [mass] = structure(V, D, N, R, w,design)

% V = 85; %m^3
% D = 5; % Launch vehicle diameter
% N = 2; %number of vehicles
% R = 20; % distance from center of rotation to floor(really ceiling)
% design = 'monolith'; %choices: monolith, multiple, tether, emff
% w = 6; %rotation rate in rpm
%Material Selection: AL 6061-T6
rho = 2.85 * 10^3; %kg/m^3, density
Ftu = 290 * 10^6; %Pa, Allowable Tensile Ultimate Stress

% Design Factors
Pmax = 0.1096 * 10^6; %Pa, Maximum Internal Pressure
SF = 2.0; %Safety Factor

Pu = SF * Pmax; %Design Ultimate Internal Pressure

switch lower(design)
 case {'emff', 'tether'}
 r = D/2; %m, Radius of the cylinder
 l = (V/N)/(pi*r^2); %m, Length of the Cylinder
 % Thin-Walled pressure cylinder thickness
 t = Pu * r / (Ftu); %m

 if t < 0.015
 t = 0.015; %minimum thickness necessary for radiation dosage
 end

 %Calculating the mass of the cylinder structure
 Mcyl = 2 * r * l * t * rho;
 Mends = pi * r^2 * t * rho;
 mass = 2 * Mends + Mcyl;

 case {'multiple'}
 Vi = V/N;
 r = D/2; %m, Radius of the cylinder
 l = Vi/(pi*r^2); %m, Length of the Cylinder

 % Thin-Walled pressure cylinder thickness
 t = Pu * r / (Ftu); %m

 if t < 0.015
 t = 0.015; %minimum thickness necessary for radiation dosage
 end

 %Calculating the mass of the cylinder structure
 Mcyl = 2 * r * l * t * rho;
 Mends = pi * r^2 * t * rho;
 mass = (2 * Mends + Mcyl);
 case {'monolith'}
 %Given V
 %R is set from minimum radius needed for artifical gravity

 rt = 1/pi * sqrt(V/(2*R)); %inner toroid radius
 %if rt < some height, then rt = minimum height
 if rt < 1.8288/2 % if height is less than six feet
 rt = 1.8288/2; %meters
 end

 t = Pu * rt / Ftu; %m
 if t < 0.015
 t = 0.015; %minimum thickness necessary for radiation dosage
 end

 %Calculating the mass of the toroid structure
 Mass_toroid = rho * t * (2*pi*rt) * (2*pi*R);

 %Calculating the mass of the center spherical shell
 % rs = 1/10 * R;
 % t_shell = 0.015;
 % Mass_shell = 4*pi*rs^2 * t_shell*rho;
 %
 % %Calculating the mass of the beams
 % Num_beams = 4;
 % rb = R - rs;
 % h = 0.1; %beam width
 % Mass_beam = rb * h^2 *rho;

 %Calculating total monolith mass

 19

 % mass = Mass_toroid + Mass_shell + Mass_beam * Num_beams;
 mass = Mass_toroid;
 otherwise
 disp('Unknown method.')
end

tether_mass.m
function [mass]=tether_mass(AG_type, n, w, dry_mass, tether_mat, g_des)

% Function "tether_mass.m" takes parameters of the system and returns the
% calculated mass of the tether.
%
% Inputs:
% AG_type [] - The type of system in question (monolith, multiple, tether, emff)
% n [] - The number of spacecraft, only applicable for the pinwheel design
% w [rad/s] - The desired rotational rate of the system [to be hardcoded?]
% dry_mass [kg] - The dry mass of the spacecraft. This should be a row
% vector with appropriate dimensions as follows:
% * Monolith: N/A
% * EMFF: N/A
% * Single Tether: [(habitation module) (other mass)] ###[1x2]
% * Pinwheel: (mass of nodes, assumed uniform) ###[1x1]
% tether_mat [] - Indicates what tether material should be used
% g_des [m/s^2] - The desired acceleration at the habitation module
%
% Outputs:
% mass [kg] - The mass of the tether

% Constants

rmin = 30; %meters
wmax = 6; %rpm
verbose = 1;

% /Constants

% Tether

% source for this stuff 'http://callisto.my.mtu.edu/my4150/props.html' is ok

if strcmp(tether_mat, 'kevlar')
 sig_uts = 3.6e9; % [Pa]
 density = 1440; % [kg/m^3]
elseif strcmp(tether_mat, 'spectra')
 sig_uts = 2.6e9; % [Pa]
 density = 970; % [kg/m^3]
else
 fprintf('Error :: tether_mass :: Unknown tether material!\r')
end

% /Tether

wmax = wmax*pi/30; % rad/s
if (w > wmax)
 fprintf('Warning :: tether_mass :: Spacecraft spinning too fast!\r')
end

if strcmp(AG_type, 'monolith')
 mass=0;
elseif strcmp(AG_type, 'emff')
 mass=0;
elseif strcmp(AG_type, 'tether')
 m1=dry_mass(1);
 m2=dry_mass(2);
 r_des = g_des/w/w; % calculate 'desired' radius to get desired acceleration
 if (r_des < rmin);
 r_des = rmin;
 w = sqrt(g_des/r_des);
 fprintf(['Warning :: tether_mass :: Calculated radius is below minimum, used minimum
radius of ' num2str(rmin) ' [m].\r'])
 fprintf([' Angular rate should be less than ' num2str(w*30/pi) '
[rpm].\r'])
 end
 tlength=r_des*(m1+m2)/m2; % calculate tether length based on desired radius and relative
masses
 F=m1*r_des*w*w; % calculate tension in the tether
 A=F/sig_uts; % required tether area is tension/ultimate tensile strength

 mass=density*tlength*A * 5; % calculate tether mass using factor of safety of 5

 if (verbose == 1)

 20

 fprintf(' \r')
 fprintf(['Designed a ''' AG_type ''' tether of ' tether_mat '.\r'])
 fprintf(['Desired radius: ' num2str(r_des) ' [m].\r'])
 fprintf(['Tether length: ' num2str(tlength) ' [m].\r'])
 fprintf(['Tether tension: ' num2str(F) ' [N].\r'])
 fprintf(['Tether area: ' num2str(A) ' [m^2].\r'])
 fprintf(['Tether mass: ' num2str(mass) ' [kg].\r'])
 fprintf(' \r')
 end

elseif strcmp(AG_type, 'multiple')
 m=dry_mass(1);
 r_des = g_des/w/w; % calculate 'desired' radius to get desired acceleration
 if (r_des < rmin);
 r_des = rmin;
 w = sqrt(g_des/r_des);
 fprintf(['Warning :: tether_mass :: Calculated radius is below minimum, used minimum
radius of ' num2str(rmin) ' [m].\r'])
 fprintf([' Angular rate should be less than ' num2str(w*30/pi) '
[rpm].\r'])
 end
 alpha=2*pi/n; % angle between the spokes
 beta=.5*(pi-alpha); % angle betwen spokes and outer strands
 tlength1=n*r_des; % calculate length for the spokes
 tlength2=n*2*r_des*sin(alpha/2); % calculate length for outer strands

 F1=m*r_des*w*w; % calculate tension in the spoke tethers
 F2=F1/2/cos(beta); % calculate tension in the rim tethers

 A1=F1/sig_uts; % required tether area is tension/ultimate tensile strength
 A2=F2/sig_uts;

 mass1=density*tlength1*A1 * 5; % calculate spoke tether masses using factor of safety of 5
 mass2=density*tlength2*A2 * 5; % calculate rim tether masses using factor of safety of 5

 mass=mass1+mass2;

 if (verbose == 1)
 fprintf(' \r')
 fprintf(['Designed a ''' AG_type ''' tether of ' tether_mat '.\r'])
 fprintf(['Desired radius: ' num2str(r_des) ' [m].\r'])
 fprintf(['Spoke tether length (total): ' num2str(tlength1) ' [m].\r'])
 fprintf(['Outer tether length (total): ' num2str(tlength2) ' [m].\r'])
 fprintf(['Spoke tether tension: ' num2str(F1) ' [N].\r'])
 fprintf(['Outer tether tension: ' num2str(F2) ' [N].\r'])
 fprintf(['Spoke tether area: ' num2str(A1) ' [m^2].\r'])
 fprintf(['Outer tether area: ' num2str(A2) ' [m^2].\r'])
 fprintf(['Spoke tether mass: ' num2str(mass1) ' [kg].\r'])
 fprintf(['Outer tether mass: ' num2str(mass2) ' [kg].\r'])
 fprintf(['Total tether mass: ' num2str(mass) ' [kg].\r'])
 fprintf(' \r')
 end

else
 fprintf('Error :: tether_mass :: Unknown spacecraft type!\r')
end

propulsion.m
function mass=propulsion(AG_type, n, w, dry_mass, r_outer)

% function 'proplusion.m' calculates the required fuel mass for both
% "spin-up" and initiation of the interplanetary transfer orbit.

% dry_mass should be the dry mass of a single 'pod'

% Inputs:
% AG_type [] - The type of system in question (monolith, multiple, tether, emff)
% n [] - The number of spacecraft, only applicable for the pinwheel design
% w [rad/s] - The desired rotational rate of the system [to be hardcoded?]
% dry_mass [kg] - The dry mass of the spacecraft. This should be a row
% vector with appropriate dimensions as follows:
% * Monolith: N/A
% * EMFF: N/A
% * Single Tether: [(habitation module) (other mass)] ###[1x2]
% * Pinwheel: (mass of nodes, assumed uniform) ###[1x1]
% r_outer [m] - moment arm to the thruster
%
% Outputs:
% mass [kg] - The mass of the propulsion system per pod

MU_s=1.327e20; %m^3/s^2, gravitational constant for the sun
MU_e=3.986e14; %m^3/s^2, gravitational constant for the earth

 21

res=1.5e11; %m, earth-sun distance
re_mag=6.38e6; %m, earth radius

parking=200e3; % parking orbit ALTITUDE in km

planet1 = 3; % choose Earth as the origin
planet2 = 4; % choose Mars as the destination

planet(1)=0.3871; % define planetary radii for future use
planet(2)=0.7233;
planet(3)=1;
planet(4)=1.524;
planet(5)=5.203;
planet(6)=9.519;
planet(7)=19.28;
planet(8)=30.17;
planet(9)=39.76;

planet = planet * res; % put planet distances in [m]

[r, v] = ic_circ(MU_s, planet(planet1)); % get circular initial conditions for the Earth
[dv, t_trans]=hohmann(MU_s, r, v, planet(planet2)); % calculate dV and transfer time for hohmann
to mars

[re, ve] = ic_circ(MU_e, re_mag+parking); % get circular initial conditions for circular 200km
parking orbit
[eta, dv_earth, t_soi] = p_conic(MU_e, MU_s, norm(dv), re, ve, res); % find the dV required to
Mars from the parking orbit

i_mass=r_equation(dry_mass, dv_earth); % find the mass required for insertion

% s_mass is the spin-up propulsion system mass

if strcmp(AG_type, 'monolith')
 % assumes a pair of thrusters at the rim of the craft, to set up a couple
 dv_req=w*r_outer;
 s_mass=r_equation(dry_mass, dv_req);
elseif strcmp(AG_type, 'emff')
 s_mass=0;
elseif strcmp(AG_type, 'tether')
 dv_req=w*r_outer;
 s_mass=r_equation(dry_mass, dv_req);
elseif strcmp(AG_type, 'multiple')
 dv_req=w*r_outer;
 s_mass=r_equation(dry_mass, dv_req);
end

mass=i_mass + s_mass;

ic_circ.m
function [r, v] = ic_circ(MU, r_init)

% calculate circular initial conditions (position and velocity) given
% a central body and an initial radius

r = [r_init 0 0];
vc = sqrt(MU/r_init);
v = [0 vc 0];

hohmann.m
function [dv, t_trans]=hohmann(MU, r, v, r_target)

% Function ip_hohmann takes the current (sun-centered inertial) position
% and velocity vectors, verifies an initial circular orbit, and then
% calculates the delta-V required at that instant to enter a
% minimum-energy (Hohmann) transfer to a given radius (scalar). The
% function also returns the time of transfer, which is half the period
% of the transfer orbit.

% MU is the gravitational parameter of the central body (m^3/s^2)
% r is the radius vector to the spacecraft (sun-centered)
% v is the velocity vector of the spacecraft (sun-centered)
% r_target is the orbital radius of the target planet

h = cross(r,v); % angular momentum vector
h_mag = norm(h);
p = h_mag*h_mag/MU; % orbit parameter
a = -1/((norm(v)^2)/MU-2/norm(r)); % semimajor axis
e = sqrt(1-p/a);

 22

if (e > .01)
 fprintf('Error :: IC :: Initial orbit is not circular!\r')
 fprintf(['Orbital eccentricity is ' num2str(e) '!\r'])
end

r_mag = norm(r);

a_trans = (r_mag + r_target)/2;
v_trans_i = sqrt(MU*(2/r_mag - 1/a_trans));

dv_trans = v_trans_i - norm(v);
dv = dv_trans*v/norm(v);

t_trans=2*pi*sqrt((a_trans^3)/MU)/2;

p_conic.m
function [eta, dv, t_soi] = p_conic(MU1, MU2, v_inf, r, v, rps)

% inputs:
% MU1: MU for the primary body, i.e. escaping from Earth orbit
% MU2: MU for the contending body in the SOI problem, typically the sun
% v_inf: the scalar velocity required at r_inf to enter the desired
% helicentric transfer. Found by solving heliocentric problem.
% r: the radius vector to the spacecraft
% v: the velocity vector of the spacecraft
% rps: the distance between the two SOI bodies, i.e. the Earth and Sun

% returns:
% eta: the angle between the velocity vector of primary body and radius vector to s/c
% dv: the scalar change in velocity required to get the desired v_inf
% t_soi: the time required to reach the sphere of influence (SOI)

rc = norm(r);
vc = norm(v);

v1 = sqrt(v_inf^2 + 2*MU1/rc); % required velocity at the parking orbit radius

energy = (v_inf^2)/2;
h = rc*v1;
ei = sqrt(1 + 2*energy*h^2/MU1^2); % eccentricity of the transfer orbit

eta = acos(-1/ei); % angle between the velocity vector of primary body and radius vector to
s/c
dv = v1 - vc; % the required delta-v

p = 2*rc;
r_soi=(rps)*(MU1/MU2)^(2/5); % the radius of the sphere of influence

f = acos((p/r_soi-1)/ei); % the true anomaly there

H = 2*atanh(sqrt((ei-1)/(ei+1))*tan(.5*f)); % the hyperbolic anomaly there

N = ei*sinh(H) - H; % kepler's equation for hyperbolas, N ~~ Mean anomaly

a = p/(1-ei^2); % the 'semi-major axis' of the hyperbola (<0!)

t_soi = N/sqrt(MU1/(-a)^3); % the time to reach the sphere of influence (r = r_inf, v = v_inf)

r_equation.m

function mass=r_equation(dry_mass, dV)

% !!!The Rocket Equation!!!

% function 'r_equation.m' takes the dry mass of the vehicle and the
% required dV to gain the transfer orbit, and computes the mass of
% fuel required for injection (given a particular thrusting system)
%
% Inputs:
% dry_mass [kg] - The mass of the spacecraft w/o fuel
% dV [m/s] - The change in velocity required to gain the transfer orbit
%
% Outputs:
% mass [kg] - The mass of the fuel required

 23

% Assume typical bipropellant chemical thruster w/ Isp ~ 350s

Isp = 350;
g = 9.81;

mass = dry_mass * (1-exp(-(dV/(Isp*g))));

emff.m
function [mass_coil] = emff(V, D,R, w, Mass_tot)
%The code uses the size of the cylinder as the size of the coils,
%the total dry mass each satellite, the radius of rotation,
%and the rotation rate to determine the mass of the coils
%for a three spacecraft collinear array.

r = D/2; %m, Radius of the cylinder
l = V/(pi*r^2); %m, Length of the Cylinder
Ic_pc = 16250; %Superconducting coil current density divided by wire density.
w_rad = w * 2*pi/60;%converting rpm to rad/sec

mass_coil = w_rad/(l*Ic_pc)*sqrt(Mass_tot * (R + r)^5 /(3 * 17 * 10^-7));

cost.m
%This module determines cost of a mars transfer vehicle based on vehicle
%weight.

%References:
% 1. Reynerson, C. "Human Space System Modeling: A tool for designing
%inexpensive Moon and Mars exploration missions"

% 2. SMAD

function [TotalCost, SpaceSegCost, LVCost, OpSupCost]=cost(mass,TRL,duration)

%mass: is total mass of vehicle in kg
%TRL: is technology readiness level and should range from 1 to 9.
%duration: is duration of mission in years

Infl = 1.052; %inflation factor to convert from FY00$ to FY03$ [2]

%Space segment costs

%Space Segment Cost Factor
Scf = 157e3; % ($/Kg) we use maximum value to obtain conservative estimate [1]

%Program level Cost Factor
Pcf = Infl * 1.963*(523e6)^0.841; %($) Program level cost estimated from table 20-4 [2]

%RTDECF of 1 means program based on existing hardware,
%3 means new development program, 2 is somewhere in between [1]
%Rcf = 2;

%Heritage Cost Factor: assume that a TRL of 9 means 90% heritage,
%therefore 10% extra needs to be spent in RDTE, [2] pg 798.
Hcf = 2-TRL/10;

%SpaceSegCost = Scf*Rcf*Hcf*Mass+Pcf;
SpaceSegCost = Scf*Hcf*mass+Pcf;
%**

%Launch Vehicle Cost

%Launch Vehicle cost factor
Lcf = 15.4e3; %($/Kg) [1]

%Insurance cost factor
Icf = 1.5; %for commercial launches it is 1.33, for govt. we are assuming a bit higher number [1]

LVCost = Lcf*Icf*mass;

%**

%Ground Operations and Support Costs

OpSupCost = 1.5e9*(duration); %($) ISS operational budget is $13 billion for 10 years [1]

%**

TotalCost = SpaceSegCost+LVCost+OpSupCost;

 24

References

1 Dudley-Rowley, Marilyn, et. al., Crew Size, Composition, and Time: Implications for Exploration Design, AIAA
2002-6111, AIAA, 2002, p. 4.
2 ibid, p. 13.
3 Zubrin, Robert, Athena: A Potential First Step in a Program of Human Mars Exploration, AIAA-96-4465, AIAA,
1996, p. 1.
4 Dudley-Rowley, Marilyn, et. al., Crew Size, Composition, and Time: Implications for Exploration Design, AIAA
2002-6111, AIAA, 2002, p. 13.
5 Conners, M.M., et al., Living Aloft, NASA, 1985, p60.
6 Sloan, James, Commercial Space Station Requirements, AIAA-2000-5228, AIAA, 2000, p. 5.
7 Larson, Wiley, Human Spaceflight: Mission Analysis and Design, McGraw-Hill, 1999, Table 18-8.
8 ibid, p. 554.
9 Wieland, Paul., Designing For Human Presence in Space, NASA Marshall Space Flight Center , 1999, § 2.1.
10 ibid, Table 17-9, p. 554.
11 Wieland, Paul., Designing For Human Presence in Space, NASA Marshall Space Flight Center , 1999, § 2.4.
12 ibid, p. 558.
13 ibid, p. 998.
14 Borowski, Stanley, and Dudzinsky, Leonard, Artificial Gravity Design Option for NASA’s Human Mars Mission
Using “Bimodal” NTR Propulsion, AIAA-99-2545, AIAA, 1999, p. 3.
15 ibid, p. 4.
16 ibid, p. 71.
17 ibid, p. 994.
18 Sloan, James, Commercial Space Station Requirements, AIAA-2000-5228, AIAA, 2000, p. 5.
19 Miller, David, Course lecture notes, Electromagnetic Formation Flight, Presented 10/2002.
20 Properties of Selected Materials, http://callisto.my.mtu.edu/my4150/props.html.
21 Vaughan, A., Figgess, A., Interaction between mission orbit, space environment, and human needs, course
project, 2003.
22 Reynerson, C., Human Space System Modeling: A Tool for Designing Inexpensive Moon and Mars Exploration
Missions, AIAA 2000-5240, AIAA, 2000.
23 Wertz, J. R. and Larson, W. J. (editors), Space Mission Analysis and Design, 3rd Edition, 1999 Microcosm Press,
El Segundo California.

 25

	Problem Set 3: Design Module for a Spacecraft Attitude Contr
	Summary
	Results
	Useful References
	Reaction Wheels
	Atmospheric Model
	ACS Equations

	Problem Set 4: Efficient Orbit Transfer: Use of Electric Pro
	Summary
	Results
	Useful References
	Electric Propulsion
	Spiral Orbit Raising

	Problem Set 5: Space Hotel Design: Preliminary Structural De
	Summary
	Results
	Useful References
	Human Factors
	Cost Modeling

	Problem Set 6: Design of an Artificial Gravity Mars Mission
	Summary
	Results
	Useful References

	PS3 Solution.pdf
	Motivation
	Problem Statement
	Introduction
	Results

	PS6_solution.pdf
	Motivation
	Problem Statement
	Introduction
	Crew Size and Composition
	Human Factors
	Interior “Free” Space for Crew
	Life Support System Equipment Volume and Mass
	Crew Systems
	ECLSS Atmosphere Management
	ECLSS Water Management

	Artificial Gravity
	Gravity Gradient, Coriolis, and Cross-coupled Acceleration E
	Radiation Design Considerations

	Spacecraft Power
	Structures
	Cylinder
	Toroid
	EMFF Coil Mass
	Tether Sizing

	Spacecraft Propulsion
	Mars Transfer
	Spacecraft Rotation

	Cost Estimation
	Space Segment
	Launch Segment
	Ground Operations and Support

	Software Modules
	Volume and Equipment Mass Module
	Requirements
	Description of Code
	Constants
	Inputs
	Outputs

	Power Module
	Requirements
	Description of Code
	Constants
	Inputs
	Outputs

	Structures Module
	Requirements
	Description of Code
	Constants
	Inputs
	Outputs

	Tether Mass Module
	Requirements
	Description of Code
	Constants
	Inputs
	Outputs

	Propulsion Module
	Requirements
	Description of Code
	Constants
	Inputs
	Outputs

	EMFF Module
	Requirements
	Description of Code
	Constants
	Inputs
	Outputs

	Cost Module
	Inputs
	Outputs

	Results
	Varying Crew Size
	Effect of Varying Artificial Gravity

	Conclusion
	Future Work
	Appendix A: MATLAB source code
	References

