
Problem Set 3: Design Module for a Spacecraft Attitude 
Control System 
 

Summary 
The software module designed for this problem set calculated the disturbance torques on 
a satellite in a specified orbit, sized the required reaction wheels to counteract the 
disturbance torques, and sized the propulsion system required to dump angular 
momentum when the reaction wheels become saturated. 
 

Results 
The software module developed was tested with an orbit similar to the fictional FireSat 
satellite orbit from SMAD.  The results from the software module were similar to those 
given in SMAD for the FireSat. 
 

Useful References 

Reaction Wheels 
 
E. Ahronovich, M. Balling, Reaction Wheel and Drive Electronics For LeoStar Class 
Space Vehicles, 12th Annual USU Conference on Small Satellites, 1998, 
www.sdl.usu.edu/conferences/smallsat/proceedings/12/ssc98/1/ssci5.pdf 
Dynacon Enterprises Limited, Dynacon MicroWheel 200, 
www.dynacon.ca/pdf/files/productpdf_6.pdf 
Honeywell Aerospace Electronic Systems, Constellation Series Reaction Wheels, 
http://content.honeywell.com/dses/assets/datasheets/constellation_series_reaction_wheels
.pdf.  
Honeywell Aerospace Electronic Systems, Miniature Reaction Wheels, 
http://content.honeywell.com/dses/assets/datasheets/mini-wheel_reaction_wheel.pdf 
Honeywell Aerospace Electronic Systems, Honeywell Model HR 0610 Reaction Wheel, 
http://content.honeywell.com/dses/assets/datasheets/hr0610_reaction_wheel.pdf 
Teldix Space Product Group, Momentum and Reaction Wheels 14-68 Nms with external 
Wheel Drive Electronics, http://www.teldix.de/P22/RDR23-68.pdf 
Teldix Space Product Group, Momentum and Reaction Wheels 14-68 Nms with 
integrated Wheel Drive Electronics, http://www.teldix.de/P22/RSI25-68.pdf 
Teldix Space Product Group, Momentum and Reaction Wheels 2-12 Nms with integrated 
Wheel Drive Electronics, http://www.teldix.de/P22/RSI4-12.pdf 
Teldix Space Product Group, High motor torque Momentum and Reaction Wheels 14-68 
Nms with integrated Wheel Drive Electronics, http://www.teldix.de/P22/RSI18-68.pdf 
Teldix Space Product Group, Momentum and Reaction Wheels 0.04-0.12 Nms with 
integrated Wheel Drive Electronics, http://www.teldix.de/P22/RSI01.pdf 



Teldix Space Product Group, Momentum and Reaction Wheels 0.2-1.6 Nms with 
integrated Wheel Drive Electronics, http://www.teldix.de/P22/RSI02.pdf 
 
 
The references listed above are for reaction wheels from Honeywell and Teldix.  These 
two companies are some of the only companies that list their reaction wheel product 
specifications online.  These reaction wheel specifications are useful for students that 
need real reaction wheel information to use in projects. 
 

Atmospheric Model 
 
Benson, Tom, http://www.grc.nasa.gov/WWW/K-12/airplane/atmosmet.html, Earth 
Atmosphere Model, Metric Units, NASA Glenn Research Center, 2002. 
 
 
The website listed above is a good reference to an atmospheric model available online.  
This NASA developed atmospheric model is somewhat inaccurate, but it is a good 
starting point for a rough initial design. 
 

ACS Equations 
 
Wertz, James, and Larson, Wiley, Space Mission Analysis and Design, 2nd Ed., 
Microcosm, Inc., 1997. 
 
SMAD, listed above, contains a great deal of ACS information for a first-order spacecraft 
design.  The equations for determining disturbance torques as well as sizing reaction 
wheels and ACS propulsion systems are contained in SMAD as well. 
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Motivation 
Spacecraft often have pointing requirements.  Satellite 
antennas and optics will generally require that the 
spacecraft remain pointed at the desired target within a 
certain pointing tolerance.  There are many 
environmental effects that disturb the spacecraft, and 
the attitude control systems (ACS) must be designed to 
account for this.  The ACS system for this project will 
be designed for a three-axis stabilized spacecraft.  This 
module will be useful for next semester when the x-ray 
telescope being designed will require three-axis 
stabilization. 
 

Problem Statement 
Design a tool that sizes attitude control system actuators 
for a three-axis stabilized spacecraft given disturbance 
torques created by various environmental effects.  
Environmental effects include gravity gradient, solar 
radiation, magnetic field, and aerodynamic forces.  
ACS actuators being investigated include momentum 
wheels and thrusters. 
 

Introduction 
MATLAB is used to evaluate the disturbance torques 
on the spacecraft and select and size appropriate ACS 
actuators to meet the pointing requirements of the 
spacecraft. 
 
For spacecraft without large slewing requirements, 
momentum wheels are primarily used to counteract 
disturbance torques.  Momentum wheels and the 
propulsion system to dump the excess momentum will 
be the primary focus of the software module. 
 
The user will input information about the satellite 
including mass properties, physical dimensions, and 
orbit information (altitude, inclination, and 
eccentricity). The tool then examines the relevant 

environmental disturbance torques and finds the worst-
case torque conditions for the specific spacecraft and 
orbit. Next, the tool will size the momentum wheels 
required to overcome worst-case disturbance torques.   
The masses of the momentum wheels are obtained from 
a database of available momentum wheel 
specifications.  In addition, the module calculates the 
mass of the propulsion system required to dump 
momentum from the momentum wheels when they 
become saturated over the lifetime of the spacecraft.   
 
Finally, the tool is executed for a test case in order to 
check the validity of the module.  In addition, other test 
cases are run in order to construct parametric design 
figures that show trends of the output involving 
disturbance torques and ACS mass as a function of 
spacecraft size and orbit parameters. 
 
 

Software Module 
 
ACS Environmental Disturbance Torque Tool 
 
Description of Code 
This MATLAB software tool sizes ACS angular 
momentum storage and dumping devices for a specified 
vehicle in any orbit.  The tool only addresses 
disturbance torques from the main environmental 
sources: atmospheric drag, solar radiation, magnetic 
field, and gravity gradient.  The ACS sizing is only 
meant to account for disturbance torques and does not 
address the design needs for vehicle slewing.  The tool 
requires input data structures to describe the vehicle, 
orbit, and planet (Table 1). 
 
 



Table 1  Software tool inputs 

Parameter Description 

veh.dim [m], vehicle dimensions (x,y,z) 

veh.CG [m], vehicle CG offset from geometric 
center 

veh.mass [kg], vehicle mass 

veh.mat vehicle surface material code (see 
Appendix) 

veh.life [years], vehicle design life 

OE.a [m], orbit semi-major axis 

OE.e orbit eccentricity 

OE.i [deg], orbit inclination 

OE.Om [deg], argument of periapsis 

OE.om [deg], longitude of the ascending node 

planet.mu [m3/s2], earth gravity constant 

planet.r_pol [m], earth polar radius 

planet.r_equ [m], earth equatorial radius 

  
 
The vehicle is modeled as a rectangular prism and 
described by the three edge lengths, mass, center of 
gravity, and exterior surface material.  Using the 
dimensions and mass, the vehicle’s moment of inertia 
can be determined using1: 
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Using the orbital elements, the orbital period and 
inertial position and velocity are calculated2.  
Throughout the orbit, worst case environmental 
disturbance torques are calculated for the four 
environmental sources.  Details of the torque 
calculations will be addressed in the following sections.   
 
The total disturbance torque is then integrated for one 
complete orbit.  This provides the worst case angular 
momentum imposed on the vehicle for one orbital 
period.  Integrating the orbital torque instead of 
assuming an average from the maximum torque is 
advantageous because it incorporates the varying 
effects resulting from different orbit types.  Two very 
different orbits might have the same maximum torque, 
but would in reality experience very different 
disturbance effects (i.e. circular orbit versus highly 
elliptic orbit). 
 
For the angular momentum experienced by the vehicle, 
it is assumed that 80% is cyclic in nature and therefore 
only requires temporary storage during the orbit.  The 
remaining 20% is secular and will continue to 
accumulate until the momentum dumping system 
applies an external torque and eliminates this 

momentum.  This ratio was chosen because cyclic 
momentum loads are known to drive the ACS design 
and this ratio matched well with guidance provided in 
SMAD. 
 
The cyclical angular momentum drives the momentum 
wheel design.  The tool selects a momentum wheel 
system that can store the calculated cyclical momentum 
and then estimates the mass of the wheel. 
 
Next, the tool selects the thruster system to dump the 
accumulating secular torque for the duration of the 
vehicle life.  This determines the thruster system mass 
and thrust capability. 
 
Finally, the tool outputs these calculated ACS specs for 
the worst case environmental disturbance torques.  
Table 2 shows the software tool output. 

 

Table 2  Software tool output 

Parameter Units 

Cyclical angular momentum (per orbit) [Nms] 

Secular angular momentum (per orbit) [Nms] 

ACS Momentum wheel mass [kg] 

ACS Thruster system mass [kg] 

ACS Thruster thrust [N] 

 
 
Program Execution 
The ACS ENV tool is executed using MATLAB.  First, 
various constant parameters are specified by the user 
within the “ACS_env_ini.m” file (see Table 1).  Next, 
the tool is executed by entering at the Matlab command 
prompt: 
 
>> [h_cyc,h_sec,wheel_mass,thr_mass,thr_force] 
= ACS_env(OE,veh,planet); 
 
The five program outputs are specified in Table 2.  
Copies of the initialization file and all program modules 
can be found in the appendix. 
 
 
Aerodynamic Torque Module 
 
Requirements 
This MATLAB module, torque_aero.m, calculates the 
torque due to aerodynamic drag on the spacecraft.  This 
drag is caused by the vehicle flying through the Earth’s 
atmosphere during close approaches to the planet.  An 
atmospheric model is used to approximate the density 
of the atmosphere at each position of the spacecraft.  
Combined with geometric and aerodynamic 
information, the torque caused by drag is determined. 
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Description of Code 
The code uses an atmospheric model for the “upper 
atmosphere” from NASA.  This model provides an 
approximation of the density of Earth’s atmosphere for 
use in drag calculations on the spacecraft.3 
 
The code also assumes the spacecraft is shaped as a 
rectangular parallelepiped of edge dimensions X, Y, 
and Z.  The origin of the spacecraft is defined to be the 
geometric center of the 3-D shape.  The coordinate 
system definition for the assumed spacecraft in the 
MATLAB module is shown below in Figure 1. 
 

 
Figure 1  S/C coordinate system definition 

 
In addition, the center of pressure, the location at which 
the aerodynamic drag is acting, is assumed to be at the 
center of one face of the spacecraft.  It is assumed that 
the worst case drag the spacecraft experiences is the 
case in which the vehicle has one face directly facing 
the direction of travel though the atmosphere.  In 
addition, it is assumed that the face on which the drag is 
acting has the largest surface area on the spacecraft.  
This results in the worst-case drag possible on the 
vehicle. 
 
The worst-case of the aerodynamic drag torque also 
results from the worst-case moment arm of the force 
acting on the vehicle.  This worst-case moment arm is 
determined from the absolute value of the maximum 
CG offset from the geometric center.  The geometric 
center is assumed to be the coordinate system origin for 
the spacecraft.  Since the center of pressure acting on 
each face is at the center of the face, the largest moment 
arm acting around the center of gravity is the maximum 
distance in one axis of the center of gravity from the 
geometric center. 
 
Constants 
The only constant used in this module was the 
coefficient of drag, CD, which is assumed to be 2.2.  
This assumption was made due to a lack of 
experimental data about the drag and lift characteristics 

of this vehicle.  Also, Chobotov recommends that a 
drag coefficient value of 2.2 be used as a conservative 
estimate.4 
 
Inputs 
size (m):  This input was a vector containing the three 
edge lengths of the rectangular parallelepiped-shaped 
spacecraft. 
 
V (m/s):  This input is the instantaneous velocity of the 
spacecraft at any given time when the module is called 
by the main program. 
 
h (m):  This input is the altitude of the spacecraft at any 
time in which the module is called by the main 
program. 
 
CG (m):  This input is a vector of the center-of-gravity 
offset from the geometric center of the spacecraft.  This 
is used to determine the worst-case moment arm on 
which the drag force is acting. 
 
Outputs 
Ta (N*m):  This output is the disturbance torque on the 
spacecraft due to atmospheric drag in the spacecraft.  
This is sent back to the main program when this 
subroutine is called. 
 
Theory & Equations 
In order to estimate the atmospheric density at any 
given time during the orbit of the spacecraft, a density 
model provided by NASA was used.  The model used 
was for the “upper atmosphere.”  This meant that it was 
acceptable for use above 25km altitude.  The equations 
below were used for this approximation.5 
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In the above equations, T is the atmospheric 
temperature (degrees Celsius), p is the atmospheric 
pressure (KPa), and ρ is the atmospheric density 
(kg/m3). 
 
The force acting on the spacecraft due to drag was 
determined by the following equation.6 
 

2
2
1 AVCF Dρ=   (3) 

 
The A in the above equation is the surface area of the 
face of the spacecraft normal to the airflow hitting the 
vehicle. 
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The torque due to aerodynamic drag on the spacecraft is 
calculated using the following equation. 
 

zyxiwhereDFT ia ,,)),(max( ==  (4) 
 

The torque, Ta, is calculated by multiplying the drag 
force on the spacecraft, F, by the maximum distance of 
the center of gravity from the geometric center out of 
the x, y, or z directions, Di.  This would allow for the 
largest moment arm and therefore would result in the 
highest disturbance torque due to aerodynamic drag. 
 
 
Torque from Solar Radiation 
Solar radiation pressure if found from the equation: 
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where Fs is the solar constant, 1367 W/m2, c is the 
speed of light, 3x108 m/s, As is the surface area of the 
satellite facing the sun, q is the reflectance factor, i is 
the angle of incidence to the sun, cps is the location of 
the center of solar pressure, and cg is the center of 
gravity of the satellite.  The units of solar radiation 
pressure are Newton-meters. 
 
The worst case is for an incidence angle of zero 
degrees, so i=0 was always used in calculations.  Also 
in a worst case situation, As would be the surface area 
of the largest face of the satellite.  The value for q is 
based on the material of the satellite, which is specified 
on input.   
 
 
Gravity-gradient Disturbance Torques 
The gravity field of the Earth can place unwanted 
torques on a satellite.  When a satellite is affected by 
the Earth’s gravity field, the longitudinal axis becomes 
aligned toward the center of the Earth.  The strength of 
the torque is a function of the distance of the satellite 
from the Earth.  Also, the torque is symmetric about the 
nadir vector of the satellite. 
 
The equation for finding the worst case gravity-gradient 
torque is: 
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where µ is the gravitational constant of the Earth, 
3.986*1014 m3/s2, R is the orbit radius, Iz and Iy are the 
moments of inertial about the z and y axes of the 
satellite, and θ is the maximum deviation of the z-axis 

from the local vertical.  To calculate the worst case 
scenario, θ is assumed to be 45o. 
 
 
Magnetic Field Disturbance Torques 
The magnetic field of the earth can cause torques on a 
satellite.  The strength of the magnetic field torque on a 
satellite is a function of the satellite’s position.  The 
magnetic field intensity B is found by the equation: 
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where B0 is the magnetic field at the equator at the 
Earth’s surface, 0.3 gauss, R is the radial distance from 
the Earth, and λ is the magnetic latitude.  The worse 
case disturbance torque from the magnetic field on the 
satellite can then be found by multiplying B by the 
residual dipole of the satellite, D: 
 

 Tm = DB   (8) 
 
The vehicle residual magnetic dipole (D) is assumed to 
be 1 Am2 for this problem. 
 
 
Mass in Reaction Wheels 
Using the cyclic angular momentum calculated by the 
tool, the reaction wheel mass can be estimated.  To 
determine mass of a reaction wheel, data was collected 
on many existing, commercial reaction wheels.  A 
fourth-order polynomial curve was fit to this data using 
MATLAB, to compare momentum storage in reaction 
wheels and their weight in kilograms.  From the curve, 
the approximate mass of a momentum wheel given its 
momentum storage can be determined.  The figure 
below illustrates the data collected (red points) as well 
as the polynomial curve fit used (shown as the blue 
line). 
 

 
Figure 2  Mass vs. angular momentum capability for 

momentum wheels 
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Sources used for collecting data on reaction wheels are 
included in the references section of this 
paper.7,8,9,10,11,12,13,14,15,16,17 
 
 
ACS Propulsion System Design Module 
 
Requirements 
This MATLAB module, called prop_system.m, 
calculated the thrust required to dump momentum at 
each momentum dump thruster firing as well as the 
total ACS propulsion system mass required for 
momentum dumping. 
 
Description of Code 
This code calculates the worst-case moment arm of an 
ACS thruster about a spin axis of the spacecraft and 
combines that moment arm with the required thrust for 
dumping momentum to size the propulsion subsystem.   
 
The code assumes the spacecraft is shaped as a 
rectangular parallelepiped of edge dimensions X, Y, 
and Z, with thrusters arranged at locations shown in the 
figure below.  The thrusters are the red triangles in the 
figure below. 
 

 
Figure 3  Assumed thruster locations on spacecraft 

 
A Hydrazine monopropellant propulsion system is 
assumed to be used for momentum dumping for this 
spacecraft.  Although the specific impulse, Isp, for 
Hydrazine can be as high as 245 seconds,18 a 
conservative value for the Isp for Hydrazine is assumed 
in this module.  This conservative Isp value is 200 
seconds. 
 
Although the thrusters and propulsion system plumbing 
are not directly sized, a conservative value for 
propulsion system mass is estimated.  It is assumed that 

the mass of the propulsion system is 85% propellant.19  
This, by sizing the propellant, the total system mass can 
be determined by dividing by 0.85. 
 
It should also be noted that it is assumed in this module 
that the time for each thruster firing is one second.   
 
Constants 
The only constant used in this module is the 
acceleration due to gravity at the Earth’s surface, g.  
This is assumed to be 9.8 m/s2. 
 
Inputs 
size (m):  This input was a vector containing the three 
edge lengths of the rectangular parallelepiped-shaped 
spacecraft. 
 
CG (m):  This input is a vector of the center-of-gravity 
offset from the geometric center of the spacecraft.  This 
is used to determine the worst-case moment arm on 
which the drag force is acting. 
 
lifetime (years):  This input is the lifetime of the 
satellite.  It is used to determine how many thruster 
firings to dump momentum will be needed throughout 
the life of the spacecraft. 
 
H (N*m*s):  This input is the stored maximum 
momentum in any one momentum wheel.  It is the 
momentum which will need to be dumped by using the 
thruster firing of the ACS system. 
 
sat_rate (days/saturation):  This input is the time it 
takes for the wheels of the spacecraft to become 
saturated with angular momentum.  It is at this point 
that the momentum wheels have no more capacity to 
control the attitude of the spacecraft by spinning up any 
faster. 
 
Outputs 
F (N):  This output is the force required for the thruster 
to impart on the spacecraft in order to dump the 
required momentum. 
 
p_mass (kg):  This output is the total mass of the 
propulsion system used to dump momentum when the 
momentum wheels become saturated throughout the 
lifetime of the spacecraft. 
 
Theory & Equations 
The force required to dump momentum is obtained by 
using the following equation. 
 

Lt
HF =   (9) 
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In the above equations, L is the moment arm of the 
thruster to the required spin axis (meters) and t is the 
thruster firing time. 
 
The propellant mass, mP, and total propulsion system 
mass, p_mass, are then calculated using the following 
equations. 

ratesat
lifetimepulsestotal

_
25.365**3_ =  (10) 

gI
tpulsestotalFm

sp
P

)_(
=   (11) 

85.0
_ Pmmassp =   (12) 

 
Total_pulses is the total number of thruster firings 
required throughout the lifetime of the spacecraft to 
counteract the environmental disturbance torques.  The 
numerator of the total_pulses equation has a factor of 3 
in it because it is assumed that all three wheels will 
need to be desaturated at each time momentum is 
required to be dumped.  The Isp in the equation above is 
for Hydrazine.  The 0.85 factor is explained in the 
“Description of Code” section. 
 
 
 

Results 
Module test case 
In order to verify that the MATLAB code is working 
properly, the module was used to determine the 
disturbance torques and calculate the required ACS 
mass for a test case.  The test case used was the main 
spacecraft example in Space Mission Analysis and 
Design, by Wertz and Larson.  This example is the 
FireSat satellite.  The main parameters used to simulate 
the FireSat example to test this module with are shown 
below in Table 3. 
 

Table 3  FireSat-like test case parameters 

Parameter Value Description 

veh.dim [ 1.7 1 1.7] [m], vehicle dimensions (x,y,z) 

veh.CG [0.2 0 0] [m], vehicle CG offset from 
geometric center 

veh.mass 200 [kg], vehicle mass 

veh.mat 9 vehicle surface material code 
(corresponds to 0.63 reflectance) 

veh.life 4 [years], vehicle design life 

OE.a 7,078,000 [m], orbit semi-major axis 

OE.e 0.0 orbit eccentricity 

OE.i 45 [deg], orbit inclination 

OE.Om 0 [deg], argument of periapsis 

OE.om 0 [deg], longitude of the ascending 
node 

planet.mu 3.986e14 [m3/s2], earth gravity constant 

planet.r_pol 6,357,000 [m], earth polar radius 

planet.r_equ 6,378,000 [m], earth equatorial radius 

 
Based on the input parameters in the above table, the 
MATLAB module calculated the cyclical and secular 
angular momentum required to counteract disturbance 
torques on the spacecraft for one orbit, the required 
momentum wheel mass for the ACS system, the thrust 
required for each instance angular momentum of the 
spacecraft needs to be dumped, and the ACS propulsion 
system mass required for dumping angular momentum 
for the life of the spacecraft. 
 
A plot of the orbit of the FireSat spacecraft example is 
shown below in Figure 4. 
 

 
Figure 4  FireSat orbit 
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The disturbance torques imposed on the spacecraft are 
shown in the polar plot in following figure.  Zero 
degrees on the plot corresponds to the orbital ascending 
node. 
 

 
Figure 5  Disturbance Torques for FireSat Test Case 

 
The curves in the plot in Figure 5 show the disturbance 
torque due to gravity gradient is the largest contributor 
to the overall disturbance torque on the spacecraft.  The 
torque due to magnetic fields is the second-largest 
contributor to the total disturbance torque.  Torque due 
to solar radiation and aerodynamic drag are the two 
minor contributors to overall disturbance torque.  Solar 
pressure on the spacecraft is a weak force, which results 
in the torque from solar radiation being small.  The 
torque due to drag is low because the spacecraft is in an 
700km orbit.  The Earth’s atmosphere at an altitude of 
700km is almost nonexistent. 
 
A comparison of the results from SMAD and results 
from the MATLAB code is shown below in Table 4. 
 

Table 4  FireSat-like test case solution vs. Module 

Parameter Value SMAD 
Solution 

Cyclical angular momentum 
(per orbit) 

0.3845 
[Nms] 0.4 [Nms] 

Secular angular momentum 
(per orbit) 

0.0961 
[Nms] N/A 

ACS Momentum wheel mass 1.41 [kg] N/A 

ACS Thruster system mass 2.46 [kg] 2.43 [kg] 

 
It can be seen in the above table that the values for 
cyclical angular momentum and ACS thruster system 
mass are nearly identical.  The values for secular 
angular momentum and ACS momentum wheel mass 

are not included in SMAD and therefore can not be 
compared to the module solution. 
 
Module output 
The following section will display the capabilities of 
the MATLAB module by presenting data collected by 
running the module for various orbits and spacecraft 
sizes. 
 
First, required angular momentum to counteract cyclic 
disturbance torques on the spacecraft is calculated for 
various orbit eccentricities and altitudes at perigee.  The 
results are shown below in Figure 6. 
 

 
Figure 6  Cyclic angular momentum vs. eccentricity 

for various radii of perigee 

 
The curves in the figure show several interesting trends 
which correspond with reality.  First, the highly-
eccentric orbits generally have lower required angular 
momentum storage capability.  This is due to the fact 
that these orbits are far away from the Earth for most of 
the orbit.  This nearly eliminates disturbance torques 
from drag, magnetic fields, and gravity gradient.  The 
remaining torque, caused from solar radiation, is a 
small contributor to disturbance torque. 
 
The reason the angular momentum increases slightly 
near the high end of eccentricity is most likely due to 
the fact that the satellite in those orbits will be passing 
by Earth at extremely high speeds compared to the 
smaller-eccentricity orbits.  This high speed near Earth 
may contribute to much larger torque due to drag for 
that portion of the orbit. 
 
Another interesting observation from the figure above 
is that the disturbance torque for satellites around 400 
or 500km altitude is much greater than that of satellites 
in slightly higher low-Earth orbits of 600km.  This 
shows a potential significant cost savings for an ACS 
system if a LEO satellite were placed in a 600km orbit 
as opposed to a 400km orbit, for example. 
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Figure 7 below graphs ACS mass versus orbit 
eccentricity for various radii of perigee. 
 

 
Figure 7  ACS mass vs. eccentricity for various radii 

of perigee 

 
Figure 7 is interesting because it shows that the ACS 
mass for highly-eccentric orbits does not follow the 
exact same trend as that shown in the previous figure.  
The reason the ACS mass is reduced for the highly-
eccentric orbits and does not continue with the same 
trend as the angular momentum is due to the fact that 
the highly-eccentric orbits have large orbit periods.  
Since the lifetime of the spacecraft is kept constant for 
these trend studies, a longer orbit period would result in 
fewer ACS angular momentum dumping situations 
during the lifetime of the satellite.  It would take more 
time for a longer orbit for the attitude control system to 
become saturated with angular momentum and then 
require thrust to dump the momentum.  This reduces the 
mass of the ACS propulsion system and produces the 
trends seen in the above figure. 
 
The figure below plots angular momentum versus 
altitude for various inclinations for circular orbits. 
 

 
Figure 8  Angular momentum vs. altitude for 

various inclinations of circular orbits 

 
Figure 8 shows a clear trend that for all circular orbit 
inclinations, there is an altitude at which the required 
angular momentum storage of the ACS system has 
reduced significantly and levels-off.  This altitude is 
around 525km.  This means there could be a significant 
benefit to putting LEO spacecraft in circular orbits 
above 525km in altitude in order to minimize the 
angular momentum capacity required for the ACS 
system. 
 
In addition, there is a difference in angular momentum 
between various inclinations.  It is especially noticeable 
at lower altitudes.  For example, at 400km altitude, the 
angular momentum required for the 0 degree inclination 
(equatorial) orbit is approximately 20 N*m*s greater 
than that of the 90 degree inclination (polar) orbit.  This 
trend also reverses itself after the 525km altitude mark 
and the polar orbit becomes the maximum angular 
momentum case. 
 
The figure below shows the ACS mass versus orbit 
altitude for circular orbits of various inclinations. 
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Figure 9  ACS mass vs. altitude for various 

inclinations of circular orbits 

 
Figure 9 clearly exhibits the same trend of that shown 
in Figure 8.  This shows that the ACS mass is directly 
related to the required angular momentum storage of 
the spacecraft for circular orbits. 
 
The figure below shows the angular momentum storage 
required versus vehicle size for three different types of 
orbits.  The vehicle density was held constant while 
volume and the corresponding mass were varied.  The 
three investigated orbits are the Molniya orbit, a 
circular LEO orbit of 400km, and a GEO orbit. 
 

 
Figure 10  Angular momentum vs. vehicle volume 

for three orbit types 

 
Although the vertical axis in the above figure is in a 
logarithmic scale, it can be seen that the angular 
momentum required for a 400km LEO orbit is much 
greater than that for a Molniya or a GEO orbit.  The 
main reason for this is the fact that satellites in Molniya 
or GEO orbits spend all or most of an orbit period far 
from Earth.  This means the spacecraft in those orbits 
will not experience much aerodynamic drag, will 
experience a reduced torque due to gravity gradient, 

and may experience less torque due to the Earth’s 
magnetic fields. 
 
Figure 10 also clearly shows that as the spacecraft 
grows in size, the angular momentum requirement 
increases as well.  This is due to increased aerodynamic 
drag. 
 
Figure 11 below shows the ACS mass versus vehicle 
volume for the same orbits as in the previous figure. 
 

 
Figure 11  ACS mass vs. vehicle volume for three 

orbit types 

 
Figure 11 above shows the trend that the ACS mass 
increases roughly at the same rate as the angular 
momentum requirement for orbits of the same type as 
vehicle volume is increased. 
 
 

Conclusion 
A MATLAB module was created which took inputs of 
orbital parameters, spacecraft dimensions, and the 
spacecraft environment and output cyclical angular 
momentum, secular angular momentum, ACS 
momentum wheel mass, and ACS thruster system mass.  
The module was checked by running the FireSat 
example.  In addition, other cases were checked with 
the module and realistic data was output from the 
module. 
 
The values of angular momentum and ACS mass are of 
use for preliminary design of an attitude control system.  
The designer can input preliminary information about a 
spacecraft design and get rough numbers for 
preliminary sizing of the ACS system and its impact on 
the spacecraft mass budget. 
 
 

Future Work 
The module can be expanded to include reaction 
wheels, control-moment gyros, and magnetic torquers.  
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In addition, the database of momentum wheels can be 
expanded to include more wheels and include other 
ACS actuator specifications as well. 
 
Another area for future work is to validate the module 
by running a real life example of a satellite and 
comparing the results to experimental data. 
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Appendix A 
 
FireSat-like Test Case Input 
 
%############################### 
%## ACS Env 
%## 
%##   Initialization file 
%## 
  
 
  %# Vehicle Properties #% 
    veh.dim = [1.7 1 1.7]; %[m], Length of edges on rectangular-prism shaped vehicle (length, 
width, depth) 
    veh.CG = [0.2 0 0]; %[m], center of gravity offset from geometric center 
    veh.mass = 200; %[kg] (minus ACS system) 
    veh.mat = 9; %Surface material code 
    veh.life = 4; %[yrs], Vehicle lifespan 
 
 
  %# Orbital Elements #% 
    OE.a = 7078000; %[m], semi-major axis 
    OE.e = 0.0; % eccentricity 
    OE.i = 45 *pi/180; %[rad], inclination 
    OE.Om = 0 *pi/180; %[rad], argument of periapsis (angle from ascending node to periapsis) 
    OE.om = 0; % [rad],longitude of the ascending node (angle between x and asc. node) 
 
 
  %# Planet Properties #% 
    planet.mu = 3.986e14; %[m^3/s^2], Earth gravity constant 
    planet.r_pol = 6357000; %[m], Polar radius 

planet.r_equ = 6378000; %[m], Equitorial radius 
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ACS Env Main Program 
 
 
% ## ACS sizing for Environmental Disturbance torques ## 
% 
%   Input: 
%     OE - Orbital elements for vehicle orbit 
%     veh - vehicle parameters 
%     planet - planet parameters 
% 
%   Output: 
%     ang_mom_cyc - cyclical ang momentum storage requirement [Nms] 
%     ang_mom_sec - secular ang momentum received per orbit [Nms] 
%     w_mass - spec for momentum wheel mass [kg] 
%     t_mass - spec for thruster mass [kg] 
%     thrust - spec for thruster thrust [N] 
% 
 
function [ang_mom_cyc, ang_mom_sec, w_mass, t_mass, thrust] = ACS_env(OE,veh,planet); 
 
%## Calculate vehicle moment of inertia ##% 
 
  Ixx = veh.mass*(veh.dim(1)^2 + veh.dim(2)^2)/12; %[kg*m^2] 
  Iyy = veh.mass*(veh.dim(1)^2 + veh.dim(3)^2)/12; %[kg*m^2] 
  Izz = veh.mass*(veh.dim(2)^2 + veh.dim(3)^2)/12; %[kg*m^2] 
  I = diag([Ixx Iyy Izz]) 
 
 
%# Calculate time for one orbit 
  t = 2*pi*sqrt(OE.a^3/planet.mu); %[sec] 
 
 
%# Calculate Solar radiation torques 
  Ts = torque_solar(veh.dim, veh.CG, 0, veh.mat); 
 
 
ang_step = pi/50; %[rad] 
ang_range = [0:ang_step:2*pi]; 
ii = 1; 
 
 
%## Calculate max disturbance torque around one complete orbit ##% 
for ang = ang_range 
 
 
     %# Calculate orbital postion and velocity 
      [r,v] = oe2rv([OE.a OE.e OE.i OE.Om OE.om ang], planet.mu); 
      v_mag = norm(v); %[m/s], Calculate velocity magnitude 
      R(ii,:) = r; %[m] 
     V(ii,:) = v; %[m/s] 
      V_MAG(ii,:) = v_mag; 
 
      E = acos((OE.e + cos(ang))/(1+OE.e*cos(ang))); %Eccentric anomoly 
      time(ii,:) = sqrt(OE.a^3/planet.mu)*(E-OE.e*sin(E)); %time to 'ang' 
 
     %# Post-process orbit elevation (latitude) 
      aa = sqrt(r(1)^2 + r(2)^2); 
      lat = atan2(r(3), aa); %[rad] 
      LAT(ii,:) = lat; 
 
  
 
     %# Post-process altitude 
      r_planet = (planet.r_pol*planet.r_equ)/... 
                  sqrt(planet.r_pol^2*cos(lat)^2 + planet.r_equ^2*sin(lat)^2); %[m], 

Calculate planet radius 
    assuming 
oblate 
sphereoid 

 
      alt = norm(r)-r_planet; %[m], Subtract planet radius from vehicle position vector 

magnitude 
      ALT(ii,:) = alt; 
 
  
     %# Calculate Aerodynamic torques 
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      Ta = torque_aero(veh.dim, v_mag, alt, veh.CG); 
      TA(ii,:) = Ta; 
  
 
     %# Calculate Magnetic torques 
     Tm = torque_magnetic(lat, norm(r), r_planet); 
      TM(ii,:) = Tm; 
  
 
     %# Calculate Gravity torques 
     Tg = torque_gravity(norm(r), planet.mu, I); 
      TG(ii,:) = Tg; 
 
      TS(ii,:) = Ts; 
 
 
     %# Sum all disturbance torques 
      T(ii,:) = Ts + Ta + Tm + Tg; %[Nm] 
  
 
      ii=ii+1; %Increment counter 
 
end 
 
 
%## post-process time values ##% 
  max_t = ceil(length(time)/2); 
  for jj = [max_t+1: length(time)]; 
    time(jj) = 2*time(max_t)-time(jj); 
  end 
 
 
%## Integrate max torques around orbit to find total ang mom ##% 
  ang_mom = trapz(time,T); %[Nms], total angular momentum around one complete orbit 
 
  ang_mom_cyc = 0.8 * ang_mom; %[Nms], cyclical angular momentum per orbit 
  ang_mom_sec = ang_mom - ang_mom_cyc; %[Nms], Secular angular momentum per orbit 
 
 
%## Size ACS actuators for cyclical momentum storage##% 
  wheel_data = get_wheel_data; %Loads Reaction wheel data (mass vs Nms)  
  w_mass = polyval(wheel_data, ang_mom_cyc); 
   
 
%## Size ACS thrusters for secular momentum dumping ##% 
   orb_sat = 1; %[orbits/saturation] 
   day_sat = orb_sat*t/86400; %[day/saturation] 
   [thrust, t_mass] = prop_system(veh.dim, veh.CG, veh.life, ang_mom_sec, day_sat); 
 
 
%## Plot results ##% 
 plot_planet_3D(R,planet); 
  
 figure(23); 
 polar(ang_range', T, 'k') 
 hold on 
 polar(ang_range', TS, 'b'); 
 polar(ang_range', TA, 'm'); 
 polar(ang_range', TM, 'r'); 
 polar(ang_range', TG, 'g'); 
 hold off 
 legend('total', 'solar', 'aero', 'magnetic', 'gravity'); 
   xlabel('[deg]') 
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torque_aero.m 
 
 
% Bill Nadir 
% 16.851 Satellite Engineering 
% 10/11/2003 
 
 
% Module for calculating external spacecraft torque caused by Aerodynamic forces 
 
function Ta = torque_aero(size,V,h,CG) 
 
% Here the force on the S/C, F, is calculated 
 
% INPUTS 
% size  = edge lengths of the S/C: vector (x,y,z) side lengths (meters) 
% V     = S/C velocity (m/s) 
% h     = S/C altitude (m) 
% CG    = location of the center of gravity (x,y,z) for the S/C (assumed offset from the 
%         geometric center of (0,0,0)) (m) 
 
% OUTPUT 
% Ta    = Torque on S/C due to aerodynamic drag (Nm) 
 
% rho is the atmospheric density at the location of the S/C 
% An atmospheric model for the upper atmosphere (h>25000m) is used to 
% approximate the density of the upper atmosphere 
% T is the atmospheric temperature, p is atmospheric pressure 
 
T   = -131.21 + .00299*h; % in deg C 
p   = 2.488*(((T + 273.1)/216.6)^-11.388); % pressure in KPa 
rho = p / (.2869*(T + 273.1)); % in kg/m^3 
 
% C_D is the drag coefficient of the cube-shaped S/C (assumed = 2.2) 
 
C_D = 2.2; 
 
% Cpa   = location of the center of aerodynamic pressure (x,y,z) 
%         (assumed at the center of the face of one side of the cube which is 
%         facing directly into the atmosphere = max drag) 
 
% Here the surface areas of the sides of the S/C are determined 
% This is used to assume the worst-case drag on the vehicle 
% [x*z y*z x*y] => find max 
 
area = [size(1)*size(3) size(2)*size(3) size(1)*size(2)]; 
max_area = max(area); 
F = 0.5*rho*C_D*(max_area^2)*(V^2); 
 
% here the external aerodynamic torque on the S/C is calculated 
Ta = F*max(abs(CG)); 
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torque_gravity.m 
 
 
%   Disturbance torque from gravity gradient 
% 
%   Input: 
%     r = vehicle radius [m] 
%     mu = planet gravity constant [m^3/s^2] 
%     I = vehicle moment of inertia [kg*m^2] 
% 
%   Output: 
%     T_grav = gravity gradient torque [Nm] 
% 
 
function T_grav = torque_gravity(r, mu, I) 
 
  %# Max moment 
    Imax = max(diag(I)); %[kg*m^2] 
 
  %# Min moment 
    Imin = min(diag(I)); %[kg*m^2] 
 
  %# Angle deviation from vertical 
    theta = 45*pi/180; %[rad], worst case angle chosen 
 
  %# Calc gravity gradient torque 
    T_grav = 3*mu*sin(2*theta)*(Imax - Imin)/(2*r^3); %[N*m] 
 
 
 
 
 

torque_magnetic.m 
 
 
%   Disturbance torque from magnetic field 
% 
%   Input: 
%     lat = vehicle latitude [rad] 
%     r = vehicle position vector magnitude [m] 
%     re = earth radius [m] 
% 
%   Output: 
%     T_mag = magnetic field torque [Nm] 
% 
 
function T_mag = torque_magnetic(lat,r,re) 
 
  %# Earth magnetic field (approx as dipole) 
    B = (1 + sin(lat)^2)^(0.5) * 0.3/((r/re)^3); %[gauss] 
 
    B_t = B*1e-4; %[tesla], [N/(A*m)] 
 
  %# Vehicle residual dipole 
    D = 1; %[A*m^2] 
 
  %# Mag torque 
    T_mag = B_t*D; %[Nm] 
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torque_solar.m 
 
 
function T_solar = torque_solar(A, CG, i, mat) 
 
% function to computer solar radiation pressure 
 
% INPUTS 
% A: vector describing size of object  
% CG: distance from center of solar pressure to center of mass (m) 
% i: angle of incidence of the Sun (radians) 
% mat: ID of material on outside of craft 
 
% OUTPUT 
% T_solar: solar radiation pressure, in N*m 
 
% some constants: 
% speed of light, m/s 
c = 3*10^8; 
 
% solar constant, W/m^2 
F_s = 1367;  
 
% get reflectance, q, from file based on material used 
tmp = xlsread('material_prop.xls','abs'); 
q = tmp(mat,3); 
 
% find surface area of largest face of orbit 
A_s = A(1)*A(2); 
if(A(1)*A(3) > A_s) 
    A_s = A(1)*A(2); 
end 
 
if(A(2)*A(3) > A_s) 
    A_s = A(2)*A(3); 
end 
 
F = (F_s/c)*A_s*(1 + q)*cos(i); 
 
T_solar = F*(max(abs(CG))); 
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get_wheel_data.m 
 

 
function p = get_wheel_data 
 
wheel(1) = struct('name', 'Teldix RSI 01-5/15', 'ang_moment', 0.04, 'mass', 0.6); 
wheel(2) = struct('name', 'Teldix RSI 01-5/28', 'ang_moment', 0.12, 'mass', 0.7); 
wheel(3) = struct('name', 'LeoStar', 'ang_moment', 4.7, 'mass', 3.628); 
wheel(4) = struct('name', 'Dyncon MicroWheel 200', 'ang_moment', 0.18, 'mass', 0.93); 
wheel(5) = struct('name', 'Honeywell HR12', 'ang_moment', 50, 'mass', 9.5); 
wheel(6) = struct('name', 'Honeywell HR14', 'ang_moment', 75, 'mass', 10.6); 
wheel(7) = struct('name', 'Honeywell HR16', 'ang_moment', 100, 'mass', 12); 
wheel(8) = struct('name', 'Honeywell Miniature Reaction Wheel', 'ang_moment', 1.0, 'mass', 

1.3); 
wheel(9) = struct('name', 'Honeywell HR0610', 'ang_moment', 12, 'mass', 5.0); 
wheel(10) = struct('name', 'Teldix DR23-0', 'ang_moment', 23, 'mass', 6.9); 
wheel(11) = struct('name', 'Teldix RDR68-6', 'ang_moment', 68, 'mass', 9.1); 
wheel(12) = struct('name', 'Teldix RSI 25-75/60', 'ang_moment', 25, 'mass', 6.3); 
wheel(13) = struct('name', 'Teldix RSI 68-75/60x', 'ang_moment', 68, 'mass', 8.5); 
wheel(14) = struct('name', 'Teldix RSI 4-75/60', 'ang_moment', 4, 'mass', 3.7); 
wheel(15) = struct('name', 'Teldix RSI 12-75/60x', 'ang_moment', 12, 'mass', 4.85); 
wheel(16) = struct('name', 'Teldix RSI 18-220/45', 'ang_moment', 18, 'mass', 6.3); 
wheel(17) = struct('name', 'Teldix RSI 30-280/30', 'ang_moment', 30, 'mass', 8.5); 
wheel(18) = struct('name', 'Teldix RSI 68-170/60', 'ang_moment', 68, 'mass', 8.9); 
wheel(19) = struct('name', 'Teldix RSI 02-25/30', 'ang_moment', 0.2, 'mass', 1.7); 
wheel(20) = struct('name', 'Teldix RSI 04-25/60', 'ang_moment', 0.4, 'mass', 1.7); 
wheel(21) = struct('name', 'Teldix RSI 1.6-25/60', 'ang_moment', 1.6, 'mass', 2.4); 
 
for(i=1:length(wheel)) 
    %plot(wheel(i).ang_moment, wheel(i).mass, 'r*'); 
    %hold on; 
    ang(i) = wheel(i).ang_moment; 
    mass(i) = wheel(i).mass; 
end 
 
 
[p,s] = polyfit(ang, mass, 4); 
%f = polyval(p, ang); 
%plot(ang, f, 'g*'); 
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oe2rv.m 
 
 
%  CREDIT: Christopher D. Hall  
%          http://www.aoe.vt.edu/~cdhall/ 
% 
%  oe2rv.m  Orbital Elements to r,v 
% 
%  [r,v] = oe2rv(oe,mu) 
%   oe = [a e i Om om nu] 
%   r,v  expressed in  IJK  frame 
% 
% a = semi-major axis 
% e = eccentricity 
% i = inclination 
% Om = argument of periapsis 
% om = right ascension of the ascending node (longitude of ascending node) 
% nu = true anomaly (at epoch). ***(location on orbit)*** 
 
function [ri,vi] = oe2rv(oe,mu) 
 a=oe(1); e=oe(2); i=oe(3); Om=oe(4); om=oe(5); nu=oe(6); 
 p = a*(1-e*e); 
 r = p/(1+e*cos(nu)); 
 rv = [r*cos(nu); r*sin(nu); 0];   % in PQW frame 
 vv = sqrt(mu/p)*[-sin(nu); e+cos(nu); 0]; 
% 
% now rotate 
% 
 cO = cos(Om);  sO = sin(Om); 
 co = cos(om);  so = sin(om); 
 ci = cos(i);   si = sin(i); 
 R  = [cO*co-sO*so*ci  -cO*so-sO*co*ci  sO*si; 
    sO*co+cO*so*ci  -sO*so+cO*co*ci -cO*si; 
    so*si            co*si           ci]; 
 ri = (R*rv)'; 
 vi = (R*vv)'; 
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prop_system.m 
 

 
% Bill Nadir 
% 16.851 Satellite Engineering 
% 10/11/2003 
 
% Module for calculating spacecraft propulsion system mass for required 
% momentum dumping 
 
function [F, p_mass] = prop_system(size,CG,lifetime,H,sat_rate) 
 
% INPUTS 
% size      = edge lengths of the S/C: vector (x,y,z) side lengths (meters) 
% CG        = (x,y,z) coordinates of the location of the CG (offset from the 
%             geoometric center of the S/C) 
% lifetime  = required lifetime of the spacecraft [yrs] 
% H         = maximum stored momentum in any one momentum wheel (saturation 
%             point of a momentum wheel) [N*m*s] 
% sat_rate  = The rate of saturation of a momentum wheel (used to determine 
%             how often momentum needs to be dumped) [days/saturation] 
% OUTPUTS 
% p_mass    =  total mass of the propulsion subsystem which will provide 
%              momentum dumping capability for the spacecraft [kg] 
% F         = Thrust required to dump momentum 
 
% Hydrazine (monopropellant) is chosen as the fuel for this propulsion 
% system and a conservative specific impulse, Isp, is 200 seconds 
Isp = 200; 
 
% Here the earth's gravity constant is initialized (9.8 m/s^2) 
g = 9.8; 
 
% Here the impulse time, t, of the thruster firing is set 
% It is assumed that the thruster required for momentum dumping will fire 
% for 1 second 
t = 1; 
 
% Here the locations of the six required thrusters are initialized [x y z] 
% Each row is for a different thruster 
thruster = [0 size(2)/2 size(3)/2; 0 size(2)/2 -size(3)/2; size(1)/2 0 size(3)/2; -size(1)/2 

0 size(3)/2; size(1)/2 -size(2)/2 0; -size(1)/2 -size(2)/2 0]; 
 
% Here the moment arms for the six thrusters from the CG are determined 
 
% For X-thrusters (spin about X-axis), moment arm is in Y-direction (cols 1,2) 
% For Y-thrusters (spin about Y-axis), moment arm is in Z-direction (cols 3,4) 
% For Z-thrusters (spin about Z-axis), moment arm is in X-direction (cols 5,6) 
moment_arms = [abs(CG(2) - thruster(1,2)) abs(CG(2)- thruster(2,2)) abs(CG(3) - 

thruster(3,3)) abs(CG(3) - thruster(4,3)) abs(CG(1) - thruster(5,1)) abs(CG(1) - thruster(6,1))]; 
 
% Here we will assume the worst-case distance from the thruster to the CG 
% (shortest) which will require the largest thrust to impart the required 
% torque on the S/C for momentum dumping 
worst_moment_arm = min(moment_arms); 
 
 
% Here the thrust required to dump the momentum is calculated (per pulse) 
F = H / (worst_moment_arm * t); 
 
 
% Here the required propellant mass for this propulsion system is estimated 
total_pulses = (lifetime * 365.25) / sat_rate; % total thruster pulses required over lifetime 
m_prop = (F * total_pulses * t)/(Isp * g);  % mass in kg 
 
 
% Here the total propulsion system mass is determined by assuming that 85% 
% of the propulsion system mass is propellant (SMAD, p. 660) - conservative 
p_mass = m_prop / 0.85;  % mass in kg 
 

 
 
 



material_prop.xls20 
 
 
 

NAME Info MaterialNumber Absorptivity Reflectance
OpticalSolarReflector SSE 1 0.07 0.93
QuartzOverSilver SMAD 2 0.077 0.923
SilvercoatedFEP SSE 3 0.08 0.92
SilveredTeflon SMAD 4 0.08 0.92
AluminizedTeflon SMAD 5 0.163 0.837
WhiteEpoxy Al.Substrate 6 0.248 0.752
WhiteEnamel Al.Substrate 7 0.252 0.748
AluminizedFEP SSE 8 0.16 0.84
SilverPaint SSE 9 0.37 0.63
SolarCellFusedSilica SMAD 10 0.805 0.195
BlackPaint Al.Substrate 11 0.975 0.025
Titanium6AL4V AsReceived 12 0.766 0.234
SteelAm350 AsReceived 13 0.567 0.433
Titanium6AL4V Polished 14 0.448 0.552
AluminiumTape SSE 15 0.21 0.79
Aluminum606T6 Polished 16 0.2 0.8
Gold AsRolled 17 0.299 0.701
Aluminum606T6 AsReceived 18 0.379 0.621
GoldizedKapton SSE 19 0.25 0.75
PolishedBeryllium SSE 20 0.44 0.56
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Problem Set 4: Efficient Orbit Transfer: Use of Electric 
Propulsion for Orbit Raising 
 

Summary 
A software module was developed to size the power and electric propulsion systems for a 
spacecraft based on spacecraft mass, initial and final orbit radii, and a desired transfer 
time, assuming constant tangential thrust.  Several types of electric propulsion systems 
were investigated for use in orbit raising of satellites, such as Xenon ion propulsion, 
Xenon-Hall effect propulsion, and pulsed plasma thrusters (PPT). 
 

Results 
A test case was run for raising the orbit of a communications satellite from a LEO 
parking orbit into geosynchronous orbit.  During the investigation of the various types of 
electric propulsion systems, it was learned that certain types of electric propulsion 
systems, such as pulsed plasma thrusters, do not have the capability for reasonable 
transfer times for such an orbit transfer.  Therefore, only the Xenon ion and Xenon Hall 
thrusters were considered for this test case. 
 
It took approximately 600 “orbits” in the spiral orbit transfer maneuver to raise the orbit 
of the satellite from a parking orbit to geosynchronous orbit.  It was also noticed that this 
sort of orbit raising maneuver was just within the lifetime capabilities of the two types of 
electronic propulsion systems considered.  This means that this type of electric 
propulsion could be a viable option for orbit raising to geosynchronous orbits for 
satellites that do not have to be urgently rushed into service in GEO. 
 

Useful References 

Electric Propulsion 
Martinez-Sanchez, Manuel, Spacecraft Electric Propulsion – An Overview, Journal of 
Propulsion and Power, Vol. 14, No. 5, 9/98-10/98, p. 690. 
Tajmar, Martin, Advanced Space Propulsion Systems, Springer Wien, New York, 2003, 
p. 76. 
 
The references above contain detailed information about all available electric propulsion 
systems.  They contain performance, mass, and additional information about each 
propulsion system. 
 

Spiral Orbit Raising 
Course notes, AA420, University of Washington Dept. of Aeronautical and Astronautical 
Engineering, 1999. 



 
The course notes from this University of Washington engineering course contain a useful 
derivation for a simplified spiral maneuver using electric propulsion with constant thrust.  
More detailed calculations exist for optimal maneuvers using electric propulsion, but the 
derivation from this course is best for the scope of this problem set. 



Problem Set 4 Solution 
MEMORANDUM 

 
 

16.851 Satellite Engineering 
 

 To:  Professor David W. Miller 
  Col. John E. Keesee 
 
 From: 16.851 Students 
 
 Date: 29 October 2003 
 
 Subj: Use of Electric Propulsion for Orbit Raising:  Orbits, Propulsion, and Power 
 
 cc: Marilyn Good 
 

MOTIVATION 
Electric propulsion systems offer the capability for mass-efficient orbit transfers.  The 
specific impulse for electric propulsion is much higher than for chemical propulsion, ranging 
from 1,500 to 20,000 seconds;1 however, electric propulsion provides much lower thrust than 
chemical propulsion.  This results in much longer spacecraft maneuver times for a given 
change in velocity.  If short maneuver times are not critical, electric propulsion may lend 
itself to be used as the propulsion system for orbit transfer maneuvers. 
 

PROBLEM STATEMENT 
Create a software module that sizes the power and electric propulsion systems for a 
spacecraft, given the spacecraft mass, initial and final circular orbit radii, and a specified 
transfer time, assuming constant tangential thrust.  Use this module to characterize the 
dependence of propulsion and power system mass on orbit transfer requirements.  Investigate 
this dependency for several different types of electric propulsion, such as pulsed plasma 
thrusters (PPT), Xenon ion propulsion, and Xenon Hall-effect propulsion. 
 

SOLUTION 
See attached. 

 
 

                                                           
1 http://web.mit.edu/dept/aeroastro/www/labs/SPL/electric.htm, MIT Space Propulsion Lab Website, 2002. 
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Efficient Orbit Transfer: Use of Electric Propulsion for Orbit Raising 
Software Designed to Provide Preliminary Sizing of Power and Propulsion Systems 

 

16.851 Satellite Engineering 

 

Massachusetts Institute of Technology, Cambridge, MA 

October 2003 

 

Motivation 
Electric propulsion systems offer the capability for 
mass-efficient orbit transfers.  The specific impulse for 
electric propulsion is much higher than for chemical 
propulsion, ranging from 1,500 to 20,000 seconds;1 
however, electric propulsion provides much lower 
thrust than chemical propulsion.  This results in much 
longer spacecraft maneuver times for a given change in 
velocity.  If short maneuver times are not critical, 
electric propulsion may lend itself to be used as the 
propulsion system for orbit transfer maneuvers. 

Problem Statement 
Create a software module that sizes the power and 
electric propulsion systems for a spacecraft, given the 
spacecraft mass, initial and final circular orbit radii, and 
a specified transfer time, assuming constant tangential 
thrust.  Use this module to characterize the dependence 
of propulsion and power system mass on orbit transfer 
requirements.  Investigate this dependency for several 
different types of electric propulsion, such as pulsed 
plasma thrusters (PPT), Xenon ion propulsion, and 
Xenon Hall-effect propulsion. 

Introduction 
Inputs to the software module include the initial and 
final orbit radii and the orbit transfer time.  The module 
determines the constant propulsive force required to 
move the spacecraft from the initial orbit to the final 
orbit in the specified time.  Using this constant force, 
and given the type of propulsion system, the propulsion 
system is sized by determining the total propulsion 
system mass required for the orbit transfer.  For this 
propulsion system, the batteries and solar arrays 
required to support the maneuver are sized.  The 
performance results are compared for several types of 
electric propulsion systems. 

Software Module 

Test Case Script 
Requirements 
The MATLAB script electric_propulsion.m is used to 
simplify the use of the primary software modules, and 
to run pre-configured test cases to produce the results 
presented in this report. 

Description of the code 
The script initializes the orbit transfer and spacecraft 
properties, calls each of the primary software modules 
in turn, and plots the results.  In summary, the script 
performs the following functions: 

• Set inputs:  spacecraft mass, propulsion type, 
transfer time, initial radius, final radius. 

• Get propulsion system properties from 
propulsion_properties.m. 

• Determine the thrust and the orbit 
characteristics for the transfer maneuver using 
ep_orbit.m. 

• Size the power and propulsion systems to 
provide the needed thrust and ∆v, using 
propulsion_power.m. 

• Plot the results. 

Typing electric_propulsion at the MATLAB prompt 
runs the test case and produces the output shown in this 
report. 

Propulsion Properties Module 
Requirements 
The MATLAB module propulsion_properties.m sets 
the propulsion system-specific values based on the type 
of propulsion system selected. 

Description of the code 
The desired type of propulsion system is passed to the 
module as a character string (e.g. ‘ion’).  Propulsion 
system constants such as specific impulse and 
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efficiency for the specified type of electric propulsion 
system are returned in a data structure.  This structure is 
a required input for the electric_propulsion.m and 
propulsion_properties.m modules. 

Inputs 
p_system:  a string specifying which propulsion 
system is to be used.  Valid values are ‘ion’ (Xenon 
Ion), ‘hall’ (Xenon Hall), and ‘ppt’ (Pulsed Plasma 
Thrusters). 

Outputs 
properties:  a data structure containing descriptions 
of properties inherent to the propulsion system type, 
such as Isp, efficiency, and lifetime. 

Orbital Transfer Module 
Requirements 
The MATLAB module ep_orbit.m determines the 
constant tangential thrust required to expand an orbit 
using an electric propulsion system, and characterizes 
the expansion path, determining quantities such as the 
eclipse entry and exit times and the ∆v applied during 
each orbit. 

In order to maintain reasonable scope in the project, 
several assumptions were made with respect to the 
initial and final orbits and transfer path.  First, all orbits 
are assumed to be circular and equatorial.  This 
simplification applies to the initial and final orbits, as 
well as to all intermediate steps in the transfer path.  
The assumption of circularity during the transfer is 
reasonable both because the ∆v imparted by the 
propulsion system during the maneuver is far smaller in 
magnitude than the orbital velocity, and because this ∆v 
is applied continuously throughout the orbit, rather than 
at discrete points. 

Description of the code 
The code first verifies that all input quantities lie within 
valid ranges.  The constant thrust is then calculated 
using Equation 14.  The algorithm then steps through 
the transfer path one orbit at a time, calculating variable 
quantities such as mass, eclipse time, orbital radius, and 
∆v, and recording how these quantities change through 
the transfer maneuver. 

Inputs 
mass (kg):  the initial mass of the spacecraft. 

prop:  a data structure containing propulsion system 
properties, as output by propulsion_properties.m. 

time (s):  the required orbital transfer time. 

r0 (m):  initial circular orbit radius. 

r1 (m):  final circular orbit radius. 

Outputs 
thrust [N]:  constant thrust magnitude required to 
complete the specified maneuver. 

radii [m]:  history of orbit radii. 

period [s]:  history of orbital period. 

eclipse [s]:  history of eclipse entry and exit times. 

deltav [m/s]:  history of applied ∆v. 

Derivation of the spiral orbit �v equation2 
For thrust T<<mg, the specific mechanical energy ε of 
the spacecraft in its orbit changes as:  

m
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=
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 (1) 

For thrust applied in the velocity direction, this can be 
expressed using the magnitudes of T and v.  The 
acceleration of the spacecraft is related to the specific 
mechanical energy as: 
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In a circular orbit, the specific mechanical energy and 
its derivative can also be expressed as: 
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Equating these two relations for the time derivative of 
the specific mechanical energy: 
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Substituting in the velocity in a circular orbit 
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This relationship can be integrated to give the change in 
r as a function of the change in time: 
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Rearranging this relationship reveals the ∆v: 
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Note that this result, although simple and apparently 
intuitive, is not generally true for orbital transfers using 
chemical propulsion.  The ∆v required to expand an 
orbit using impulsive burns is actually less than this 
amount, since the burns can be made at discreet optimal 
points during the orbit. 

Derivation of thrust equations 
The thrust T is related to the propellant mass flow rate 
and exit velocity c as 

cmT �=  (10) 

This relationship can be integrated for constant mass 
flow rate (i.e. constant thrust and exit velocity) over a 
time period t to obtain the propellant mass for constant 
T and c: 
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The rocket equation provides a relationship between the 
initial spacecraft mass, propellant mass, ∆v, and exit 
velocity: 
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Combining these results gives: 
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Using the ∆v equation previously derived, this equation 
can be solved for the velocity v as a function of time t. 
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This equation can then be solved for the radius r as a 
function of time: 
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This equation can be used to calculate the radius at any 
time t during the transfer maneuver. 

Propulsion and Power Sizing Module 
Requirements 
The MATLAB module propulsion_power.m calculates 
the mass of the electric propulsion system, the required 
solar array area, the required battery mass, and the mass 
of the solar arrays based on a given spiral-shaped orbit 
transfer.  The module requires inputs of constant thrust 
during the orbit transfer, transfer time, time information 
which specifies when the spacecraft is in eclipse or 
sunlight during the orbit transfer, and the selection 
about which type of electric propulsion system is being 
investigated for the orbit transfer. 
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Description of the code 
The code assumes that the starting point of the spiraling 
orbit transfer is at the moment when the satellite enters 
the earth’s eclipse in the initial orbit.  Each “orbit” of 
the spiral orbit transfer is considered to be the time 
from when the satellite enters the earth’s eclipse until 
the next time it enters the eclipse.  These orbits of the 
spiral orbit transfer are used to size the power system of 
the spacecraft.  This is discussed in the Theory & 
Equations section for this module. 

The code first checks to make sure that the input values 
from the user of initial orbit, final orbit, transfer time, 
and propulsion system type, are valid.  For example, the 
transfer time must be less than the lifetime of the 
selected propulsion system. 

Constants 
The first constant used in this module is the 
gravitational acceleration constant, g.  It is input into 
the module as being equal to 9.81 m/s2. 

The next sets of constants are specific for each 
propulsion system.  Table 1 lists the basic constants 
used to describe the performance of each propulsion 
system, and Table 2 lists additional properties and 
constants. 

Table 1.  Propulsion system constants3 

Propulsion 
System 

Isp    
(s) 

Efficiency 
(%) 

Lifetime 

Xe Ion 2800 65 10000 hr 

Xe Hall 1600 50 >7000 hr 

PPT 1000 7 4000 N*s 

Table 2.  Additional propulsion system constants4 

Propulsion 
System 

Thrust 
Range5 

(N) 

Thruster 
Mass 

(kg/kW) 

PPU 
Mass 

(kg/kW) 

Misc. 
Mass 

(kg/kW) 

Xe Ion 
.01 - 
.20 

4.5 8 10 

Xe Hall 
.08 - 
.20 

2.5 8 10 

PPT 
.001 - 

.10 
120 110 small 

 

Two additional constants used are used in the 
calculations for sizing the power system.  These 
constants, Xe and Xd, are the efficiencies of the 
electrical paths from the solar arrays through the 
batteries to the loads and the path directly from the 

arrays to the loads, respectively.6  Since it is assumed 
that a direct energy transfer power system is being used, 
the values for Xe and Xd are 0.65 and 0.85, 
respectively. 

The final constant used in this module is the solar 
illumination intensity.  This is assumed to be 
1358 W/m2. 

Inputs 
thrust (N):  This input is the constant thrust required 
for the spacecraft to achieve its desired final orbit 
within the specified transfer time. 

orbit (s):  This input is an array of times during the 
orbit.  The numbers specify the time during the orbit 
transfer when the spacecraft enters and exits the 
earth’s eclipse. 

Properties (s):  the propulsion system properties, as 
output by propulsion_properties.m. 

t_transfer (s):  This input is the total transfer time 
specified for the spiral-shaped orbit raising 
maneuver. 

Outputs 
power.A_cells_req (m2):  This output is the total solar 
array area required to provide the necessary power 
for the propulsion system being used in the orbit 
transfer maneuver. 

power.m_cells_req (kg):  This output is the total mass 
of the solar arrays required to power the propulsion 
system as well as charge the batteries when in 
sunlight. 

power.m_batt_req (kg):  This output is the total mass 
of the batteries needed to provide power to the 
propulsion system during the worst case eclipse 
(longest duration). 

propulsion.m_thruster (kg): This output is the mass 
of the thrusters in the chosen propulsion system. 

propulsion.m_ppu (kg): This output is the mass of the 
power processing unit in the chosen propulsion 
system. 

propulsion.m_misc (kg): This output is the mass of 
miscellaneous components in the chosen propulsion 
system. 

propulsion.m_propellant (kg): This output is the 
mass of the propellant in the chosen propulsion 
system. 

Theory & Equations 
Based on the inputs to the module, the first desired 
quantity to be calculated is the required power for the 
propulsion system.  In order to calculate the required 
power, the mass flow rate of the propellant must be first 
determined.  This is done using Equation 19 below.7 
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In the above equation, F is the propulsion system 
constant thrust, Isp is the specific impulse of the 
propulsion system, and g is the gravitational 
acceleration constant. 

Next, the required power for the propulsion system is 
determined in Equation 20.8 
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In the above equation,  is the efficiency of the 
propulsion system, as reported in Table 1. 

The next required quantity to be determined is the 
power required to be generated by the solar arrays for 
each orbit.  This would include the power provided to 
the propulsion system as well as the power provided to 
the batteries for charging.  The following equation is 
used to determine this required power for each “orbit” 
portion of the orbit transfer. 
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In Equation 21, Te and Td are the durations of the 
eclipse and daylight times for each orbit portion of the 
spiral orbit transfer.  Each orbit is determined by the 
time at which the satellite enters the earth’s eclipse until 
the time it next enters the eclipse.  These orbits are 
denoted in the equation with the subscript i.  It can be 
seen that only the eclipse and daylight times change 
with each successive orbit. 

Normally, the numerator of Equation 21 has different 
power values for daytime and eclipse, but in this case, 
since the power required by the propulsion system does 
not vary from daylight to eclipse, this quantity is held 
constant at the value P, determined earlier. 

Next, the power generated per area by the solar arrays 
is determined.  This calculation is shown in 
Equation 22.  It should be noted here that Gallium 
Arsenide solar cells are being used for the purposes of 
this software module.  In addition, it should be noted 
here that it is assumed that beyond the inherent 
inefficiencies in the solar cells, no additional 
degradation is assumed for the solar cells during the 
orbit transfer.  This assumption is made because the 
orbit transfer is relatively short compared to the life of 
the satellite and the arrays will likely not degrade 
significantly during this orbit raising maneuver.  
Therefore, the power determined in the following 

equation is assumed to be an end-of-life (EOL) power 
for the solar arrays as far as the orbit raising maneuver 
is concerned. 

dm
W

cellsEOL Ip )1358()( 20 η=  (22) 

��� ���� ��	
�� �����	��� cells is the efficiency of the 
GaAs cells, which is approximately 18%.  In addition, 
the quantity Id is the inherent degradation of the solar 
cells.  This is assumed to be 0.77.9 

It should also be mentioned here that the solar arrays 
are assumed to track the sun and therefore it is assumed 
that the radiation from the sun is perfectly incident at all 
times on the solar arrays.  This means that any reduced 
performance to any incidence angle to the solar 
radiation is ignored. 

Next, the required solar array area for each orbit during 
the transfer maneuver is determined.  This is shown in 
the equations below. 
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Equation 24 show how module determines the required 
solar array area to be the maximum of all the areas 
calculated for all orbit portions of the spiral orbit 
raising maneuver. 

Next, the required solar array mass can be determined.  
This is done using the following equation from 
SMAD.10 

)max(04.0__
isaPreqcellsm ∗=  (25) 

Next, the battery capacity is determined to allow for 
sizing of the batteries for the spacecraft.  It is assumed 
that NiH2 batteries are being used with a specific 
energy density of approximately 50 W*hr/kg.11  It is 
also assumed that only a single battery is being used.  
Equation 26 below is used to determine the battery 
capacity required for each orbit eclipse during the orbit 
transfer. 
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In the above equation, DOD is the depth-of-discharge 
of the nickel-hydrogen batteries.  This assumed to be 
75% since the number of cycles the batteries will need 
to be cycled for throughout the orbit transfer will not 
degrade the depth-of-discharge capability of the 
batteries to any significant amount.12 
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The quantity n is the power transfer efficiency to the 
batteries.  This is assumed to be 0.9.13 

Next, the required battery mass is determined.  This is 
shown in the following two equations. 
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_ =  (27) 

)_max(__ ibattmreqbattm =  (28) 

Finally, the propulsion system mass is determined using 
information from Table 2.  The required figures from 
the table are multiplied by the propulsion system power 
to determine the masses of all the components of the 
propulsion system.  In addition, the mass of the 
propellant is determined from the following equation. 

transfertmmpropellant _*�=  (29) 

Once the propellant mass is determined, the total 
propulsion system mass is calculated as the sum of the 
thruster, power processing unit, miscellaneous, and 
propellant masses. 

Results 
The software module was run for a specific test case of 
raising a satellite from a circular parking orbit at an 
altitude of 10,000 km to a geosynchronous orbit.  In 
addition, the transfer time was varied by the user within 
the ranges allowed for Xenon ion and Xenon Hall 
propulsion systems. 

It should be noted that the orbit number being used in 
many of the following charts is how the spiral orbit 
transfer is broken up into individual parts.  Each orbit in 
the transfer is determined from the time the satellite 
enters the earth’s eclipse until it reenters the eclipse. 

In Figure 1, it can be seen how the orbital period 
changes with the orbit number, as the radius of the orbit 
increases. 
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Figure 1.  Orbit period vs. orbit number 

The data in Figure 1 agree with what is expected for a 
spiraling orbit transfer, where the radius is constantly 
increasing.  Figure 2 shows how the orbit radius varies 
with the orbit number for the test case. 
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Figure 2.  Orbit radius expansion with orbit number 

It can be seen in Figure 2 that the orbit radius increases 
from the initial parking orbit until it reaches the orbit 
radius for geosynchronous orbit. 

Figure 3 shows the time spent in eclipse during each 
orbit of the spiral transfer, and Figure 4 shows the 
fraction of each orbit during which the satellite is in 
eclipse. 
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Figure 3.  Eclipse time vs. orbit number 
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Figure 4.  Eclipse fraction vs. normalized radius 

As seen in Figure 3, as the radius increases, the time 
spent in eclipse should increase; however, as seen in 
Figure 4, the ratio of time spent in eclipse to the orbital 
period should decrease as the orbit radius increases.  It 
should also be noted from Figure 4 that the orbit 
transfer ends when the orbit radius is 6.5 times the 
radius of the Earth, in geosynchronous orbit. 

Figure 5 displays how the ∆v per orbit provided by the 
propulsion system varies for each successive orbit 
during the transfer. 
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Figure 5.  Single-orbit deltaV vs. orbit number 

As expected, the ∆v per orbit imparted by the electric 
propulsion system is continuously increasing as time 
elapses during the transfer orbit.  This occurs because 
the orbital radius is constantly increasing throughout 
the orbit transfer due to the constant thrust provided by 
the electric propulsion system. 

Figure 6 shows a perspective view of the complete path 
traversed during the spiral orbit transfer, from the initial 
orbit to the final orbit.  The color of the spiral orbit 
transfer path varies from red at the 10,000 km altitude 
parking orbit to blue at the final, geosynchronous orbit.  
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Figure 6.  Orbit transfer path 

Approximately 600 orbits are required to reach the final 
desired orbit, resulting in the densely-packed path 
shown above.  Figure 7 shows a blown-up view of a 
portion of the spiral orbit track, in which individual 
spiral tracks are visible. 
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Figure 7.  Blown-up view of spiral orbit path 

It can be seen from Figure 7 that the change in orbital 
radius in each successive orbit is very small as 
compared to the orbital radius.  This behavior is 
expected for low-thrust, long term maneuvers. 

Figure 8 shows the required thrust from the propulsion 
system as a function of the user-specified transfer time. 

 
Figure 8.  Dependency of thrust on transfer time 

As expected, the thrust required to complete the transfer 
in the specified time decreases as the transfer time 
increases, for both the Xenon Ion and Hall propulsion 
systems.  This makes sense because the required 
acceleration (and therefore thrust) should decrease as 
the transfer time increases. 

It can also be seen in Figure 8 that the required thrust 
for each transfer time differs for the ion and Hall 
propulsion systems.  This is due to the differences in 
mass flow rate of propellant out of the thrusters.  The 
Xenon Hall thrusters have a lower Isp than the Ion 
thrusters, which corresponds to a higher mass flow rate 
to produce a given thrust magnitude.  The mass of the 
spacecraft decreases more rapidly with higher 
propellant mass flow rates, leading to more rapidly 
decreasing spacecraft mass, with the result that lower 
average thrust is requirement to achieve a given 

acceleration.  This effect is likely due in part to the 
assumption that the initial spacecraft mass is 
independent of the type of propulsion system used. 

Figure 9 shows how the total mass of the propulsion 
and power systems varies as a function of the specified 
orbit transfer time. 
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Figure 9.  Total propulsion and power system mass 

as a function of transfer time 

It can be seen in Figure 9 that no designs exist for 
transfer times less than approximately 5000 hours.  This 
is due to the fact that neither the Xenon Ion nor the Hall 
propulsion systems are capable of producing high 
enough thrust to complete the orbit transfer maneuver 
in less time than 5000 hours.  The maximum thrust 
capability of the two propulsion systems is shown 
explicitly in Figure 8 with a red horizontal line. 

It should also be mentioned that the preceding figures 
do not show any data for the pulsed plasma propulsion 
system.  It was determined during the testing of this 
software module that the PPT propulsion system does 
not have the capability to provide the ∆V necessary to 
perform the orbit transfer maneuver test case.  Although 
PPT results are not shown, the software module is 
designed to handle such types of propulsion systems, 
and will return performance results given input 
requirements appropriate to the types of propulsion 
systems being considered. 

Table 3 summarizes the final results for the sizing of 
the power and propulsion systems for the orbital 
transfer test case, using the Xenon Ion propulsion 
system.  Table 4 summarizes the results for sizing the 
system using the Xenon Hall effect propulsion system. 
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Table 3.  Sizing results using Xenon Ion propulsion  

Solar cell area 
Solar cell mass 
Battery mass 
Thruster mass 
PPU mass 
Misc. mass 
Propellant mass 
Total mass 

19.0 m2 
142.7 kg 

81.5 kg 
6.4 kg 

20.4 kg 
25.5 kg 

223.3 kg 
499.8 kg 

Table 4.  Sizing results using Xenon Hall propulsion 

Solar cell area 
Solar cell mass 
Battery mass 
Thruster mass 
PPU mass 
Misc. mass 
Propellant mass 
Total mass 

26.2 m2 
197.0 kg 
112.6 kg 

15.8 kg 
28.1 kg 
35.2 kg 

130.9 kg 
519.5 kg 

 

Based on these results, the Ion and Hall propulsion 
systems appear to have similar performance for the test 
case transfer scenario.  The Ion system is slightly less 
massive than the Hall-effect system, even though it 
requires 70% more propellant to accomplish the 
transfer.  The mass savings is due to the lesser power 
requirement for the ion engine, which translates directly 
into smaller, less massive solar arrays and batteries. 

Conclusion 
A software module was created to size the propulsion 
and power systems for a spacecraft that uses electric 
propulsion for simple orbital transfers.  The module 
requires the spacecraft mass, the initial and final 
circular orbit radii, a transfer time, and a propulsion 
system type.  The software then determines the constant 
tangential thrust required to complete the orbit transfer 
in the specified time, the path of the satellite during the 
transfer maneuver, and the masses of the power and 
propulsion systems. 

This tool is useful for preliminary sizing of propulsion 
and power requirements for a satellite when electric 
propulsion is used for orbital transfer.  Although the 
tangential thrust approach to orbital transfer is sub-
optimal, it is useful for rapid comparison of the relative 
performance of different types of propulsion system. 

This tool can be easily extended to compare an arbitrary 
number of different types of electric propulsion system 
types.  If the transfer scenario investigated is not within 
the capability of a propulsion system, results for that 
system are not displayed. 

Future Work 
One major task that could be undertaken in the future to 
improve and expand the capability of this software 
module would be to allow for plane changes during the 
orbit transfer.  Another task would be to implement the 
equations for optimal thrust.  Either one of these tasks 
would involve a significant amount of work 
(appropriate for Master’s thesis-level research14), but 
would result in an extremely useful tool which could be 
used to provide detailed results for a greater number of 
orbit transfer scenarios. 
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Appendix A:  MATLAB source code 
The MATLAB files containing the implementations of the equations and relations described in this document are 
listed below.  To run the test case, simply type electric_propulsion at the MATLAB prompt. 

 

electric_propulsion.m 

% constants 
R_earth = 6378.1363; % [km] Earth average radius 
geo = 42164.169637;  % [km] geostationary, from STK. 
fignum = 0; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% begin user-configurable inputs % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% initial spacecraft mass 
m0  = 2000; 
 
% propulsion system type (’ion’, ’hall’, ’ppt’) 
prop_type = ’ion’; 
 
% orbital transfer time 
ttime = 3600*24*250; 
 
% initial orbital radius 
r0 = R_earth + 10000; 
 
% final orbital radius 
r1 = geo; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% end user-configurable inputs % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% get the propulsion system properties 
prop = propulsion_properties(prop_type); 
 
% get the orbital transfer properties 
[thrust, radii, period, eclipse, deltav] = ep_orbit(m0, prop, ttime, r0*1000, 
r1*1000); 
 
% size the propulsion and power systems 
[propulsion, power] = propulsion_power(thrust,eclipse,prop,ttime); 
 
%%%%%%%%%%%%%%%%%%% 
% display results % 
%%%%%%%%%%%%%%%%%%% 
 
radii  = radii/1000;                % change from [m] to [km] 
orbits = 1:length(radii);           % orbit numbers 
etime  = eclipse(2,:)-eclipse(1,:); % time spent in eclipse 
 
fignum=fignum+1; 
figure(fignum) 
plot(orbits, period/3600); 
xlabel(’Orbit number’) 
ylabel(’Orbital period [hours]’); 
 
fignum=fignum+1; 
figure(fignum) 
plot(orbits, radii); 
xlabel(’Orbit number’); 
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ylabel(’Radius [km]’); 
 
fignum=fignum+1; 
figure(fignum) 
plot(orbits, etime); 
xlabel(’Orbit number’); 
ylabel(’Time in eclipse [s]’); 
 
fignum=fignum+1; 
figure(fignum) 
plot(orbits, deltav); 
xlabel(’Orbit number’); 
ylabel(’Single-orbit {\Delta}V [m/s]’); 
 
fignum=fignum+1; 
figure(fignum) 
plot(radii/R_earth, etime./period); 
xlabel(’Normalized radius (r/R_E)’); 
ylabel(’Eclipse fraction’); 
 
% plot all the orbit tracks around the Earth 
fignum=fignum+1; 
figure(fignum) 
t = 0:pi/40:2*pi; 
x = cos(t); 
y = sin(t); 
z = zeros(size(x)); 
[sx,sy,sz] = sphere(20); 
colormap(’white’); 
h1 = surf(sx,sy,sz); 
set(h1,’EdgeColor’,[.5 1.0 .5]); 
set(h1,’FaceColor’,[.8 1.0 .8]); 
hold on 
c = ’bgrcmyk’; 
scale = radii/R_earth; 
for i=orbits 
   h2 = plot3(scale(i)*x,scale(i)*y,scale(i)*z); 
   r = 1.0 - i/orbits(end)/2; 
   b = 0.5 + i/orbits(end)/2; 
   set(h2, ’Color’, [r 0.3 b]); 
end 
hold off 
axis equal; 
 
% zoom in to see some of the tracks closer up 
fignum=fignum+1; 
figure(fignum) 
for i=orbits 
   h3 = plot(radii(i)*x,radii(i)*y); 
   r = 1.0 - i/orbits(end)/2; 
   b = 0.5 + i/orbits(end)/2; 
   set(h3, ’Color’, [r 0.3 b]); 
   hold on 
end 
hold off 
axis equal; 
maxrad = max(radii); 
axis([maxrad/sqrt(3) 1.1*maxrad/sqrt(2) maxrad/sqrt(3) 1.1*maxrad/sqrt(2)]); 
xlabel(’Distance [km]’) 
ylabel(’Distance [km]’) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% trade over prop type and transfer time % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% propulsion system type (’ion’, ’hall’, ppt’) 
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prop_types = {’ion’, ’hall’}; 
 
% orbital transfer time 
ttimes = 3600*24*[150:20:290]; 
 
data = []; 
for i=1:length(prop_types) 
   prop_type = prop_types{i}; 
    
   for j=1:length(ttimes) 
      ttime = ttimes(j); 
       
      % get the propulsion system properties 
      prop = propulsion_properties(prop_type); 
       
      % get the orbital transfer properties 
      [thrust, radii, period, eclipse, deltav] = ... 
         ep_orbit(m0, prop, ttime, r0*1000, r1*1000); 
       
      % size the propulsion and power systems 
      [propulsion, power] = propulsion_power(thrust,eclipse,prop,ttime); 
 
      % save the interesting data 
      data(i,j).thrust = thrust; 
      data(i,j).time   = ttime; 
      if ~isempty(propulsion) & ~isempty(power) 
         data(i,j).mass = propulsion.m_thruster + propulsion.m_ppu + ... 
            propulsion.m_misc + propulsion.m_propellant + ... 
            power.m_cells_req + power.m_batt_req; 
      else 
         % no design was feasible for this case 
         data(i,j).mass = NaN; 
      end 
   end 
end 
 
times   = []; 
thrusts = []; 
masses  = []; 
 
% sort the data into standard vectors 
for i=1:length(prop_types) 
   times   = [times cat(2,data(i,:).time)’]; 
   thrusts = [thrusts cat(2,data(i,:).thrust)’]; 
   masses  = [masses cat(2,data(i,:).mass)’]; 
end 
 
fignum=fignum+1; 
figure(fignum) 
plot(times/3600,thrusts); 
xlabel(’Transfer time [hr]’); 
ylabel(’Required thrust [N]’); 
legend(’Ion’,’Hall’); 
 
fignum=fignum+1; 
figure(fignum) 
plot(times/3600,masses); 
xlabel(’Transfer time [hr]’); 
ylabel(’Propulsion and power mass [kg]’); 
legend(’Ion’,’Hall’); 
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propulsion_properties.m 

function [properties] = propulsion_properties(p_system) 
%PROPULSION_PROPERTIES  sets propulsion system properties 
% 
% [PROPERTIES] = PROPULSION_PROPERTIES(P_SYSTEM); 
%   Returns a structure containing properties for the selected  
%   type of propulsion system.  This structure is used as an  
%   input to EP_ORBIT and PROPULSION_POWER. 
% 
% Inputs 
%  P_SYSTEM    A string describing the type of propulsion system    
%              to use.  Valid strings are ’ION’, ’HALL’, or ’PPT’. 
%  
% Outputs 
%  PROPERTIES  A structure containing propulsion system  
%              characteristics in the following fields: 
% 
%                 type       - descriptive string 
%                 Isp        - specific impulse (s) 
%                 eta        - efficiency 
%                 lifetime   - lifetime (hours) 
%                 th_mass    - thruster mass (kg/kW) 
%                 ppu_mass   - power processor unit mass (kg/kW) 
%                 misc_mass  - misc. prop. system mass (kg/kW) 
%                 max_thrust - Maximum thrust allowed (N) 
%                 min_thrust - Minimum thrust allowed (N) 
% 
%              An empty set is returned if P_SYSTEM is not a 
%              valid string. 
 
% William Nadir 
% 16.851: Satellite Engineering 
% 10/26/2003 
 
properties = []; 
switch lower(p_system) 
    
   case ’ion’   % Xenon Ion propulsion system 
      type        = ’ion’; 
      Isp         = 2800;     % specific impulse (s) 
      eta         = 0.65;     % efficiency 
      lifetime    = 10000;    % lifetime (hours) 
      th_mass     = 4.5;      % thruster mass (kg/kW) 
      ppu_mass    = 8;        % power processor unit mass (kg/kW) 
      misc_mass   = 10;       % miscellaneous prop system mass (kg/kW) 
      max_thrust  = .2;       % Maximum thrust allowed (N) 
      min_thrust  = .01;      % Minimum thrust allowed (N) 
       
   case ’hall’   % Xenon Hall propulsion system 
      type        = ’hall’; 
      Isp         = 1600;     % specific impulse (s) 
      eta         = 0.50;     % efficiency 
      lifetime    = 7000;     % lifetime (hours) 
      th_mass     = 2.5;      % thruster mass (kg/kW) 
      ppu_mass    = 8;        % power processor unit mass (kg/kW) 
      misc_mass   = 10;       % miscellaneous prop system mass (kg/kW) 
      max_thrust  = .2;       % Maximum thrust allowed (N) 
      min_thrust  = .08;      % Minimum thrust allowed (N) 
       
   case ’ppt’   % Pulsed plasma (Teflon) propulsion system 
      type        = ’ppt’; 
      Isp         = 1000;     % specific impulse (s) 
      eta         = 0.07;     % efficiency 
      lifetime    = 4000;     % lifetime (N*s) 
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      th_mass     = 120;      % thruster mass (kg/kW) 
      ppu_mass    = 110;      % power processor unit mass (kg/kW) 
      misc_mass   = 0;        % miscellaneous prop system mass (kg/kW) 
      max_thrust  = .1;       % Maximum thrust allowed (N) 
      min_thrust  = .001;     % Minimum thrust allowed (N) 
       
   otherwise 
      disp(’Invalid input for p_system’); 
      return 
end 
 
properties.type      = type; 
properties.Isp       = Isp; 
properties.eta       = eta; 
properties.lifetime  = lifetime; 
properties.th_mass   = th_mass; 
properties.ppu_mass  = ppu_mass; 
properties.misc_mass = misc_mass; 
properties.max_thrust= max_thrust; 
properties.min_thrust= min_thrust; 
 
 
 

ep_orbit.m 

function [thrust, radii, per, eclipse, deltav] = ep_orbit(m0, prop, ttime, r0, r1) 
%EP_ORBIT   Calculates circular orbit data for electric propulsion maneuvers 
% 
% [THRUST, RADII, PERIOD, ECLIPSE, DELTAV] = EP_ORBIT(MASS, PROP, TIME, R0, R1) 
% 
% Determines the constant tangential thrust needed to expand a circular orbit 
% of radius R0 to radius R1 in the specified time TTIME.  Calculates the start 
% and end times of each eclipse period, assuming an orbit in the plane of the 
% ecliptic.  Solves for the constant direction (tangential), constant thrust 
% case, rather than the optimal case, which is beyond the scope of this project. 
% 
% Inputs 
%  MASS     [kg] Initial spacecraft mass 
%  PROP     [-] Propulsion data structure (output of PROPULSION_PROPERTIES) 
%  TIME     [s] Required orbital transfer time 
%  R0       [m] Initial circular orbit radius 
%  R1       [m] Final circular orbit radius 
% 
% Outputs 
%  THRUST   [N] Constant thrust required to complete the maneuver 
%  RADII    [m] History of orbit radii 
%  PERIOD   [s] History of orbit period 
%  ECLIPSE  [s] Eclipse enter and exit times for each orbit 
%  DELTAV   [m/s] Delta V applied through each orbit 
 
% constants 
mu = 3.986004415e14; % [m^3/s^2] 
R  = 6378136.3;      % [m] Earth radius 
g  = 9.80665;        % [m/s^2] gravitational acceleration at Earth radius 
 
% propellant specific impulse and exit velocity 
Isp = prop.Isp; 
c = Isp*g; 
 
% check for invalid inputs 
if (m0 <= 0) 
   error(’Initial mass must be positive’); 
end 
if (Isp <= 0) 
   error(’Isp must be positive’); 
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end 
if (ttime <= 0) 
   error(’Transfer time must be positive’); 
end 
if (r0 <= R) 
   error([’Initial radius must be greater than Earth radius (’ num2str(R) ’ m)’]); 
end 
if (r1 < r0) 
   error(’Final radius must be greater than or equal to initial radius’); 
end 
 
% constant thrust required to perform this maneuver in the specified time 
thrust = (m0*c/ttime)*(1-exp((sqrt(mu/r1)-sqrt(mu/r0))/c)); 
 
% initial values 
timein  = 0; 
timesun = 0; 
orbit   = 0; 
cdeltav = 0; 
eclipse = []; 
deltav  = []; 
r = r0; 
m = m0; 
 
% iterate through the orbits, saving data 
while (r<r1) 
   orbit = orbit+1; 
    
   % assume slow variation, so radius and mass are constant through each orbit 
   radii(orbit) = r; 
   mass(orbit)  = m; 
    
   % time required to complete one orbit 
   period = 2*pi*sqrt(r^3/mu); 
   per(orbit) = period; 
 
   % the delta V applied through this orbital period 
   deltav(orbit) = 2*period*thrust/m; 
    
   % angle off eclipsed sun line at which eclipse begins 
   theta = asin(R/r); 
 
   % time at which s/c crosses the eclipsed sun line 
   if (orbit == 1) 
      timesun = period*theta/(2*pi); 
      timein  = 0; 
   else 
      timesun = timesun + period; 
      timein  = timesun - period*theta/(2*pi); 
   end 
 
   % time at which s/c leaves eclipse 
   timeout = timesun + period*theta/(2*pi); 
 
   % save eclipse data 
   eclipse(1,orbit) = timein;    % enter eclipse 
   eclipse(2,orbit) = timeout;   % leave eclips 
    
   % determine starting radius and mass for next iteration 
   r = mu*(c*log(1-period*thrust/(m*c))+sqrt(mu/r))^-2; 
   m = m-thrust*period/c; 
end 
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propulsion_power.m 

function [propulsion, power] = propulsion_power(thrust,orbit,properties,t_transfer) 
% Here the basic information for the propulsion systems is input 
% 
% This module is used for sizing the electric propulsion system along with 
% the required solar arrays and batteries for a circular orbit transfer 
% 
% Inputs 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% THRUST        = Constant thrust required to put complete the orbit 
%                 transfer within the specific transfer time (N) 
% ORBIT         = Data specifying times at which the satellite is in sun 
%                 and eclipse during sprialing orbit transfer (times of  
%                 entering and exiting eclipse) 
% PROPERTIES    = a structure containing propulsion system properties, 
%                 as created by the function PROPULSION_PROPERTIES. 
% T_TRANSFER    = transfer time specified by user (seconds) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% Outputs 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% PROPULSION    = structure containing fields with propulsion system data 
%                    m_thruster 
%                    m_ppu 
%                    m_misc 
%                    m_propellant 
% 
% POWER         = structure containing fields with power system data 
%                    A_cells_req = total required solar cell area (m^2) 
%                    m_cells_req = total estimated solar array mass (kg) 
%                    m_batt_req  = total battery mass required (kg) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% William Nadir 
% 16.851: Satellite Engineering 
% 10/26/2003 
 
propulsion = []; 
power      = []; 
 
type        = properties.type; 
Isp         = properties.Isp; 
eta         = properties.eta; 
lifetime    = properties.lifetime; 
th_mass     = properties.th_mass; 
ppu_mass    = properties.ppu_mass; 
misc_mass   = properties.misc_mass; 
max_thrust  = properties.max_thrust; 
min_thrust  = properties.min_thrust; 
 
% Here a check is performed to determine whether the input values of thrust 
% and transfer time are acceptable for use with the chosen propulsion system 
validity = 1; 
switch type 
   case {’ion’, ’hall’} 
      if t_transfer > lifetime*3600 
         disp([’ERROR: transfer time (’ num2str(t_transfer/3600) ... 
               ’ hr) exceeds life of propulsion system (’ num2str(lifetime) ’ hr).’]); 
         validity = 0; 
      end 
       
   case {’ppt’} 
      if t_transfer > lifetime/thrust 
         disp([’ERROR: transfer time (’ num2str(t_transfer/3600)... 
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               ’ hr) exceeds life of propulsion system (’ 
num2str(lifetime/thrust/3600)... 
               ’ hr) at ’ num2str(thrust) ’ N thrust.’]); 
         validity = 0; 
      end 
end 
 
% is thrust within the allowed range? 
if thrust > max_thrust  
   disp(’ERROR: thrust is over the capability range of propulsion system’) 
   validity = 0; 
end 
if thrust < min_thrust 
   disp(’ERROR: thrust is under the capability range of propulsion system’) 
   validity = 0; 
end 
 
% this lets all error messages display before returning 
if (~validity) 
   return 
end 
 
g = 9.81; % gravitational acceleration constant (m/s^2) 
 
% This is the constant power required for the electric propulsion system to 
% get the satellite from orbit A to orbit B 
mass_flow_rate = thrust / (Isp * g); % (kg/s) 
 
prop_power_continuous = (thrust^2) / (2 * mass_flow_rate * eta); % (Watts) 
 
% Constants for direct energy power control system 
Xe = 0.65; 
Xd = 0.85; 
 
eta_cells = 0.18;       % cell efficiency for GaAs cells (conservative = 18%) 
 
I_degradation = 0.77;   % inherent degradation of solar cells 
 
p_sun = 1358;           % solar input power density (W/m^2) 
 
% Here we calculate the energy collection effectiveness of GaAs solar cells 
% assuming no degradation over the time of orbit transfer (short time span) 
power_per_area = eta_cells * p_sun * I_degradation; % (W/m^2) 
 
% Initialize parameters for for loop to utilize ’orbit’ vector data 
[A, B] = size(orbit); 
 
% The number of columns in the ’orbit’ array is the number of orbits + 1 
N_orbit = B - 1; 
 
% Here the ’orbit’ array is analyzed to determine the total eclipse and day 
% times for each ’orbit’ in the spiral orbit transfer 
for I = 1:N_orbit 
    
   eclipse_times(I) = orbit(2,I) - orbit(1,I); % (seconds) 
   day_times(I) = orbit(1,I+1) - orbit(2,I);   % (seconds) 
    
end 
 
% Here the depth-of-discharge (DOD) for the battery is defined (NiH2 
% battery) 
DOD = .80; 
 
% Here the battery charging efficiency is defined (90%) 
charge_efficiency = 0.9; 
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% Here the battery specific energy density is defined for NiH2 batteries 
sp_energy_density = 50; % (W*hr/kg) 
 
% this for loop determines the power required for each portion of the 
% spiral orbit transfer as well as the solar array area and battery mass 
% required for each portion of the orbit transfer 
for M = 1:N_orbit 
    
   % P_sa is the required power for the propulsion system for one entire 
   % orbit (Watts) 
   P_sa(M) = (((prop_power_continuous * eclipse_times(M)) / Xe) + ... 
      ((prop_power_continuous * day_times(M)) / Xd)) / day_times(M); 
    
   A_cells(M) = P_sa(M) / power_per_area; % required area of solar arrays (m^2) 
    
   m_cells(M) = 0.04 * P_sa(M); % estimated mass of solar arrays (kg) 
    
   % Here the required battery capacity is calculated for one battery with 
   % an efficiency of 0.9 for each eclipse during the spiral orbit 
   % transfer (W*hr) 
   Cr(M) = (prop_power_continuous * (eclipse_times(M)/3600)) / ... 
      (DOD * charge_efficiency); 
    
   % Here the required battery mass is determined 
   m_batt(M) = Cr(M) / sp_energy_density; % (kg) 
    
end 
 
% required solar cell area to provide power for the orbit transfer (m^2) 
A_cells_req = max(A_cells);  
 
% required solar array mass (kg) 
m_cells_req = max(m_cells);  
 
% required battery mass to provide power for the orbit transfer (kg) 
m_batt_req = max(m_batt);    
 
m_thruster = th_mass * prop_power_continuous / 1000; % (kg) 
m_ppu = ppu_mass * prop_power_continuous / 1000;     % (kg) 
m_misc = misc_mass * prop_power_continuous / 1000;   % (kg) 
m_propellant = mass_flow_rate * t_transfer;          % (kg) 
 
% power output structure 
power.A_cells_req       = A_cells_req; 
power.m_cells_req       = m_cells_req; 
power.m_batt_req        = m_batt_req; 
 
% propulsion output structure 
propulsion.m_thruster   = m_thruster; 
propulsion.m_ppu        = m_ppu; 
propulsion.m_misc       = m_misc; 
propulsion.m_propellant = m_propellant; 
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Problem Set 5: Space Hotel Design: Preliminary 
Structural Design and Cost Estimation 
 

Summary 
A space hotel was designed based on a modular concept, the capability of modern launch 
vehicles, and various human factors.  Finally, a cost model is used to estimate the cost of 
manufacturing, assembling, launching, and operating the space hotel.  The software 
module created is used to investigate how the duration of each guest’s stay at the hotel 
and the maximum occupancy of the hotel affect the total cost of the hotel. 
 

Results 
Based on the design constraints of the hotel design, the only variation in the structural 
design was the number of habitation modules around the outer ring of the hotel.  This had 
a major cost impact on the hotel. 
 
Another major cost impact on the hotel was the duration of the stay of each guest.  The 
longer a guest stayed, the less frequently a vehicle would need to dock with the hotel to 
bring and take home guests.  Launching people to the hotel is a significant cost. 
 
Based on these constraints, it was found that the most economical space hotel design is 
one in which there are few guests and they stay for long durations of time.  This is the 
lowest cost design for a space hotel. 
 

Useful References 

Human Factors 
Conners, M.M., et al., Living Aloft, NASA, 1985. 
Wieland, Paul., Designing For Human Presence in Space, NASA Marshall Space Flight 
Center , 1999, § 2.1. 
Stafford, K.W., et al., Advanced Life Support Systems Integration, Modeling, and 
Reference Missions Document, NASA-Lyndon B. Johnson Space Center, 2001. 
Sloan, James H., Commercial Space Station Requirements, AIAA-2000-5228, 2000. 
Woodcock, Gordon, Space Stations and Platforms, Orbit Book Company, 1986. 
 
The references listed above contain a great amount of useful information about what is 
required to support human life in space.  Beyond these references, there are many AIAA 
papers that discuss manned space missions and what is required beyond unmanned space 
missions once humans are involved.  Information such as shielding, food, water, and 
atmosphere is presented in these references.  This information is key in estimating 
spacecraft volume and mass sizes. 
 



Cost Modeling 
Reynerson, Dr. Charles M., A Space Tourism Platform Model for Engineering and 
Economic Feasibility, 2000. 
 
The reference listed above contains a useful cost model for estimating cost for space 
tourism missions.  The main input to the cost model is mass, so if a realistic mass 
estimate can be made, it may be possible to calculate a reasonable first-order cost 
estimate based on the cost model presented in the reference. 
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Motivation 
Throughout history, people have been fascinated with 
exploring outer space.  Until recently, only astronauts 
have had the privilege of being able to experience life 
in outer space.  However, in 2001, the first space 
tourist, Dennis Tito, traveled to the International Space 
Station onboard a Russian Soyuz rocket. 
 
The travels of Dennis Tito are just the beginning for 
space tourism.  A new space tourism industry would be 
an entirely new commercial use of space and a huge 
potential new market.  Space tourism may encourage 
other private investment in the use of space, which may 
in turn support significant future space exploration. 
 

Problem Statement 
Design a concept for a Space Hotel orbiting Earth.  
Create a CAD model of the hotel to �rough-out� the 
structural design as well as visualize the concept.  The 
Space Hotel should provide all the amenities required 
by a tourist.  These amenities should include gravity, 
power, food, water, and waste removal. 
 
Design a MATLAB module to size the hotel structure 
as well as estimate the requirements for supporting 
human life.  The user will set the number of hotel 
guests and the duration of the stay of each guest on the 
Space Hotel.  These inputs will be the driving factors 
for the concept design.  Based on the design concept for 
the hotel, estimate the costs involved in launching, 
assembling, and operating the hotel.  The module will 
investigate cost with respect to the number of guests 
and the duration the stay of each guest. 
 

Introduction 
First, a conceptual design is created of the Space Hotel.  
A CAD model of the hotel is created with enough detail 
to present the rough conceptual design of the Space 
Hotel. 

 
The spin rate of the hotel in order to produce artificial 
gravity is determined.  Also, determine the other needs 
of the human guests of the hotel are determined.  These 
needs will include electricity, food, water, waste 
removal, and crew. 
 
Cost models are developed to estimate the cost for 
launch, assembly, and operation of the hotel.  Using 
these cost models, the cost with respect to the number 
of guests and the duration of the stay of each guest is 
determined.  In addition, trends are shown which 
illustrate how a Space Hotel can be operated in a cost-
efficient manner. 
 

Space Hotel Structural Design 

Components 
The Space Hotel consists of four main components: 
habitation modules, nodes, a center module, and 
connecting modules between the habitation modules 
and the center module.  Figure 1 shows the 
configuration of the Space Hotel. 
 

 
Figure 1  Isometric view of Space Hotel 
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All four components are visible in Figure 1, above.  The 
large cylindrical components in the shape of a ring are 
the habitation modules.  The spherical-shaped objects in 
between the habitation modules are the nodes.  The 
long, thin, cylindrical components connecting the nodes 
to the center component can be seen as well.  The large 
cylindrical component in the middle is the �center 
module.� 
 

Habitation Modules 
The habitation modules are broken up into several 
compartments for hotel guests to live in.  In addition, 
there is a large volume inside the module reserved for 
equipment to maintain the station as well as other 
storage space. 
 

 
Figure 2  Habitation module internal compartments 

 
The habitation modules are design in order to fit inside 
a realistic launch vehicle fairing.  For the purposes of 
this project, an Atlas V, 5-meter fairing was chosen.  
The Atlas V is a likely launch vehicle to be used to 
launch components for a Space Hotel into orbit.  The 
figure below shows one of the habitation modules 
fitting inside the launch vehicle fairing envelope. 
 

 
Figure 3  Habitation module inside Atlas V fairing 

 

In addition, the size and shape of the habitation module 
is limited by the payload mass capability of the Atlas V 
launch vehicle.  The estimated mass of one of the 
habitation modules, which is explained later in this 
paper, is roughly 10,000 kg.  This mass is less than the 
payload capability of the Atlas V launch vehicle to 
many LEO orbits.  For example, the Atlas V has the 
capability of launching 20,050 kg into a 185 km 
altitude, 28.5 degree inclination orbit.i 

Nodes 
The spherical shaped components between the 
habitation modules are simply interconnecting nodes 
which allow guests to transfer from one habitation 
module to another as well as to the center module.  The 
spheres in the picture are simply placeholders for the 
components in a more detailed design. 
 

Connecting Cylindrical Components 
The long, thin, cylindrical components connecting the 
nodes to the center component are simply tubes which 
allow hotel guests to pass from the habitation module 
section of the hotel to the center module. 
 

Center Module 
The center module of the hotel is designed to roughly 
the same dimensions as the habitation modules in order 
for it to fit inside the same launch vehicle fairing.  The 
purpose of the center module is to allow the hotel 
guests the experience of floating in a zero-gravity 
environment.  Leisure activities can be held in this 
section of the hotel. 
 

Life Support System  
 
Our Space Hotel is situated in orbit around the earth, 
where the environment system for the passengers of the 
hotel is isolated except for the periodical supply by 
space transportation systems. 
 
To support the life of passengers in the space 
environment, specific needs need to be met.  The basic 
needs are the appropriate air composition, temperature, 
and humidity which should be maintained continuously.  
The consumables such as food and water should be 
supplied on passengers� demands.  Wastes should be 
separately stored or removed periodically to maintain 
the optimal mass of the hotel and to keep the 
cleanliness. 
 
In addition to those metabolic needs and effluents of 
humans, other supplies such as food preparation device, 
face/hand washing water, urinal flushing and etc should 
be also included.   For a facility which stays in the 
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space environment for a long period, such as our Space 
Hotel, or International Space Station, functions such as 
O2 recovery and recycling of waste water and solid 
waste become important to keep the re-supply and 
storage expenses from becoming too high.   

ECLSS 
The current state-of-the-art system for long duration life 
support is embodied in the International Space Station 
(ISS) environmental control and life support system 
(ECLSS).  ECLSS includes the function of providing a 
habitable environment, including clean air and water, 
plus solid waste processing, food processing, biomass 
production and thermal control, and supporting 
interfaces with other subsystems.   
 
Considering the similar nature of the ISS and our Space 
Hotel, such as a durable structure for a long stay in the 
space environment, the choice was made to use ECLSS 
for our Space Hotel.  In the following section, the 
details of each requirement and corresponding ECLSS 
device which satisfy the need will be presented. 
 

Supporting System to meet Human Requirements 

Interior Space 

The ISS model is again utilized to estimate the personal 
volume necessary to experience a comfortable stay at 
our Space Hotel.   In the limited space inside the 
structure, the astronauts rest, sleep (in a separate 
section), eat, shower, and also exercise on treadmills on 
the ISS.  The volume of personal space on the ISS was 
calculated by dividing the volume of the habitat module 
by the number of the crewmembers, and was computed 
to be 645.6 (ft^3/person).  This number was feasible 
considering that the minimum volume requirement 
calculated by Breeze (1961)ii was:  

50ft^3/person (1-2 days) 
260 ft^3/person (more than 1 or 2 months) 
600 ft^3/person (for more than 2 months) 

The mission length of the space station is between  3-6 
months.    
 
However, there are three concerns that we have to think 
about: 

- The nature difference between ISS and Space 
Hotel.  More space required for comfort 
- Weightless state which allows passengers to 
utilize the space well is unavailable inside our 
Space Hotel.  With the artificial gravity, more 
space is needed. 
- Less space per person is needed as crew size 
increases 

2.  Thermal system 

Although people can endure a relatively wide range of 
temperature and humidity conditions, the proper range 
in the habitat is important to maintain high work 
efficiency.  For our hotel, it is crucial to provide 
comfort as a service. The ideal temperatures range from 
18 to 27 C (65 to 80 F) and "ideal" humidity ranges 
from dew points of 4 to 16 C (40 to 60 F).  Thermal 
management is divided into two systems, the internal 
and external thermal control systems.  The former 
includes the avionic air assemblies which provide air-
cooling for equipment, the common cabin air 
assemblies which control cabin air, condensate storage, 
and the water flow loops for hear transport.  The 
external control system is included in the assessed 
cooling-mass penalty. 

Food subsystem 

Food will be provided in individual entrees from Earth.  
A mix of fresh, dehydrated, and full-water preserved, 
shelf-stable or frozen food will be used.  This system 
required the significant amount of packaging.  
Supporting technology includes freezers and some food 
preparation equipment. 

Air  

In order to generate air conditions as close as the 
atmospheric configuration, oxygen, carbon dioxide, 
nitrogen, water vapor, trace contaminants, dust, and 
smoke particles are used as the components in the space 
habitats.  Four separate systems, CO2 removal, CO2 
reduction, O2 generation, and trace gas contaminants 
control systems, works to revitalize the air and maintain 
the quality of the air. Regenerative CO2 removal 
equipment based on molecular sieve technology, which 
does not require periodical replacement or storage 
space, is installed in the ISS ECLSS.  CO2 Reduction is 
necessary to extract O required to generate O2. For a 
structure designed for the longer stay in the apace, the 
loss of the mass of CO2 leads to increased storage or 
re-supply requirements.  O2 generation maintains 
sufficiently high oxygen partial pressure (21.4 kPa at 
near sea-level).  Trace gas contaminants control 
systems is important in a closed structure like the Space 
Hotel because the volume is limited relative to 
containment sources.  In addition, Atmosphere Control 
and Supply system is required to maintain proper 
composition and pressure of the air during the flight.  
The following chart shows the flow of air component in 
a recycle loop. This flowchart was extracted from a 
design report written by NASA.iii 
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Figure 4 Atmosphere control and supply 

Water  

Ensuring a clean supply of potable water and water for 
bathing is essential.  Water management consists of 
three parts, water storage and distribution, water 
recovery, and water quality monitoring.   
 
For water recovery, urine is processed by vapor 
compression distillation, which claims 88 percent water 
recovery.  The brine is either returned to Earth or 
dumped.  The water processor deals with all 
unconfirmed water such as hygiene water, effluent from 
the vapor compression distillation, and condensation 
from dehumidification.  
 
When recycled waste water is used, the potential for 
contamination is higher than when using stored water. 
Thus, process control water quality monitor provides 
water quality assurance.  The following chart shows the 
flow of water management systems, extracted again 
from the report by NASA.iv 
 

 

Figure 5 Water recovery and management  

6. Waste Subsystems 

The wastes generated on a space habitat can be 
classified into four general types: metabolic wastes 
consisting of moist solids including feces and vomit, 
other solid wastes, liquid wastes including urine and 
waste hygiene water, and gaseous wastes. For long 
duration missions this mass lost when the waste is 
dumped becomes prohibitive and methods are needed 
to recover to useable products as much mass as 
possible.  On ISS, urine is recycled as explained in the 

Water section.  Solid waste is stored and returned on 
the transfer vehicle or burned upon re-entry in an 
expendable re-supply vehicle. The toilet is also 
included under the subsystems. 
 

Other Considerations 
 
Although omitted in our design of the Space Hotel, we 
could aim to provide an even higher grade comfortable 
environment. For example, additional devices to 
decrease the level of odor and noise, or some decorative 
interior lighting could be installed. Other possibilities 
are to expand recreational facilities such as a plant 
growth facility, and improve safety devices such as fire 
detection and suppression systems.   
 

Mass Estimation 
 
Mass estimation for each component of human 
requirement was calculated using the actual data from 
the ISS.  The optimization of ECLSS design in terms of 
the lowest launch cost was computed applying of 
Equivalent System Mass as related to the mass volume, 
power cooling and crew time needs.v Considering that 
masses of most of the components are proportional to 
the number of crews and the duration, the values shown 
in the following table is calculated by simple division 
with the number of crews  and the duration time of ISS.  
These values are part of inputs for software module 
described in the following section. 
 

Table 1 Mass estimation of human requirements 

Consumables [kg/CM-d]   
Supply Air 0.84   
    ( + 0.29) tank mass 
  Food 1.37   
    ( + 0.24) deposable packaging  
  Thermal 0.003515   
  Water 7 drink, 

food preparation, 
hand/face washing, 
and urinal flushing 

  Clothing 1.6 including EVA 
clothe 

Waste Waste 0.15   
      
Infrastructure [kg/CM]   
ISS ECLSS 
technology 

     20366 including air tank, 
food freezers, CO2 
removal device, 
EVA support 
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Software Module 

Structural Sizing Module 

Requirements 
The MATLAB module structure.m determines the mass 
of the Space Hotel and the required spin rate of the 
hotel to maintain 1g of artificial gravity in the 
habitation modules of the spacecraft. 
 

Description of Code 
The code uses the inputs of the number of guests and 
the duration of the stay of each guest to calculate the 
numbers and sizes of the various components in the 
Space Hotel.  The code calculates the masses of each 
component in the hotel and outputs the total structural 
mass of the hotel. 

Constants 
The first constant used in this module is the 
gravitational acceleration constant, g.  It is input into 
the module as being equal to 9.81 m/s2. 
 
The remaining constants are the �free volumes� of the 
habitation and center modules in the Space Hotel.  
These volumes are determined from the fairing size of 
the Atlas V 5-meter fairing as well as the payload lift 
capability of the launch vehicle.  Taking these 
constraints into consideration, the habitation modules 
were determined to have a �free volume,� Vhab, of 
approximately 4500 ft3. 
 
The center module was determined to have a �free 
volume� of approximately 4500 ft3. 
 

 
Figure 6 Dimensions of habitation and center 

modules (inches) 

 

Inputs 
N_guests:  This input is the total number of people 
living onboard the Space Hotel at any given time. 
 
duration (days):  This input is the time each person 
living on the Space Hotel will spend onboard before 
they head back to earth. 
 

Outputs 
str_mass (kg):  This output is the total structural mass 
of the entire Space Hotel.  This is a sum of all of the 
habitation modules, the interconnecting cylindrical 
modules, as well as the center structural module. 
 
spin_rate (m/s):  This output is the spin rate of the 
Space Hotel which is required to create artificial gravity 
of 1g in the habitation modules of the hotel. 
 

Theory & Equations 
The first step in determining the structural mass of the 
hotel is to determine how much volume each guest of 
the hotel will need during his/her stay.  In 1961, Breeze 
noted that a person on a space station should need 
approximately 50, 260, and 600 cubic feet of volume 
for durations on the space station of 2, 30, and 60 days, 
respectively.  This is discussed in the �Supporting 
System to Meet Human Requirements� section earlier 
in this paper. 
 
Since this is a Space Hotel and should be somewhat 
luxurious and relaxing for the hotel guests, the numbers 
provided from Breeze are multiplied by a factor of 3 to 
result in volumes of 150, 780, and 1800 cubic feet for 
durations of 2, 30, and 60 days, respectively.  In 
addition, since it has been estimated that the minimum 
volume for a space station is 700 cubic feet per personvi 
and it is unlikely that any person would stay on the 
hotel for a short time (i.e. less than one week), the 
volume per person estimated here is reasonable.   
 
In order to determine guest required volumes for 
durations between the data points given, linear 
interpolation was done.  This can be seen below in 
Figure 7. 
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Figure 7 Linear interpolation of volume vs. duration 

Next, the total required volume for the guests is 
calculated by multiplying the number of guests by the 
volume required per guest. 
 

guesttotal VguestsNV *_=  (1) 
 
The number of habitation modules is then determined 
from the following equation and then rounding up to 
the next highest integer. 
 

hab

total
hab V

V
N =    (2) 

 
Based on the sizing requirements given from the launch 
vehicle fairing constraints, the overall size of the 
habitation modules is then given.  Next, the mass of the 
habitation modules is calculated.  This is shown in the 
equation below. 
 

( )22 )( trrLm habhabhabhab −−= πρ  (3) 
 

In the above equation, the density of the habitation 
module is given to be 0.103 lb/in^3 for a material of 
Aluminum 2219.  The wall thickness, t, of the module 
is given to be 0.4 inches.vii 
 
The calculated mass of each habitation module is 
augmented with additional mass for welds, weld lands, 
and thickness tolerances.  This adds an additional 1% to 
the mass of the habitation module.viii 
 
Next, an additional 10% is added to the mass to take 
into account the internal, non-load-bearing structure of 
the habitation module.  This is an extremely rough 
estimate. 
 
In addition, the mass of the required shielding to protect 
the hotel from space debris is added to the weight 
calculation.  A Whipple Shieldix is used for this 

purpose.  This requires an additional thin Aluminum 
covering around the outside of the habitation module.  
This additional Aluminum piece is 0.080 inches thick.  
The design of the Whipple Shield can be seen in the 
figure below. 
 

 
Figure 8 Example Whipple shield 

 
Finally a factor of 1.5 is multiplied by the mass 
estimate due to the lack of design maturity and heritage. 
 
The same procedure of calculating mass is done for the 
thin, cylindrical interconnecting structural members 
connecting the habitation modules to the center module.  
It is also done for the center module as well. 
 
Finally, the spin rate of the hotel required to produce 
artificial gravity in the habitation modules is 
determined.  The equation for centripetal acceleration is 
used.  This is shown below. 
 

R
Va

2

=   (4) 

 
In order to keep a simulated gravity of 1g in the 
habitation modules, the value of a is set to g, which is  
9.81 m/s2, and the value of R is the radius of the Space 
Hotel to the ends of each habitation module.  See the 
figure below to illustrate this. 
 

 
Figure 9 Radius of habitation module ring 
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In order to approximate the value of R for all sizes of 
the Space Hotel, the circumference of the ring of 
habitation modules is assumed to be equal to the 
lengths of the habitation modules plus the lengths of the 
nodes connecting the modules together.  If this 
assumption is made, the radius can be determined form 
the equations 5a and 5b. 
 

)( nodehab DLNDC +== π   (5a) 

ππ 2
)(

22
nodehab DLNCDR

+
===  (5b) 

 
Rearranging equation 4 from above, the following 
equation produces the required spin rate, V, for the 
Space Hotel. 
 

aRV =   (6) 

 

Cost Model Module 

Requirements 
The MATLAB module cost_model.m estimates the cost 
of the Space Hotel including the construction costs, 
logistics, and operation costs. 
 

Description of Code 
The code uses the inputs of the number of guests, the 
duration of the stay of each guest, the number of years 
in operation, and the weight of the Space Hotel to 
calculate total cost.  The code calculates the individual 
costs such as the space structure, the ground support 
costs and logistics.  These are summed together for total 
cost. 

Inputs 
Years(yrs):  This input is number of years the Space 
Hotel expects to be in operation. 
 
n_crew: This input is number of people staying onboard 
the Space Hotel at any time 
 
duration (days):  This input is the time each person 
living on the Space Hotel will spend onboard before 
they head back to earth. 
 
w_f (kg):  This input is the weight of Space Hotel 
structure. 

Outputs 
total_cos ($):  This output is the total cost of 
constructing and operating a Space Hotel for a 
particular number of years, a maximum capacity of 
crew, and for a specified duration. 

 

Theory & Equations 
Various cost factors that result from space facility 
designs and an estimation of rough order of magnitude 
cost are included in this cost model.  The required 
investment areas addressed include the space segment, 
launch vehicles, operations, and logistics.x 
 
Space Segment Cost: 
 
The space segment cost is calculated using: 
 

Sc = Scf * Pcf * Rcf * Wf   (7) 
 
Sc:  space segment cost ($) 
Scf: the price per kg of facility on orbit, for manned 
space programs the mean is 104 $K/kg 
Pcf: the program cost normalized over the number of 
manned vehicles produced (non-dimensional) 
Rcf: research, test, development, and engineering cost 
factor is used to compensate for new development cost.  
The Rcf should be 3 for new development programs, 
and 1 for a program based on existing hardware.  We 
will use 2. (non_dimensional) 
Wf: weight of facility (kg) 
 
Launch Vehicle Cost: 
 
The launch vehicle cost is calculated using: 
 

Lc = Lcf * Icf * Wf   (8) 
 
Lc: launch vehicle cost ($) 
Lcf: launch cost factor estimated using historical data 
and planned cost goals for future development, a mean 
of 15.2 $K/kg ($/kg) 
Icf: insurance cost factor, 1/3 of the launch vehicle cost, 
will use then 1.333. (non-dimensional) 
 
Ground Operation and Support: 
 
A good estimate for the purposes of this model is $80M 
per year for yearly operations and support costs.   
 
Logistics: 
 
The logistic cost was calculated using: 
 

Wcl = 365 * ( ( δcs + δcrew + δcg) * (Nc/Ec) + ε)     (9) 
 
Wcl: yearly crew logistics weight (kg) 
δcs: equipment weight needed for crew support during 
the trip to and from orbit, assumed to be 2000 
kg/person (kg/person) 
δcrew: weight/person (kg/person) 
δcg: weight of gear/person (kg/person) 
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ε: consumption rate for the entire facility (kg/person-
day) 
 

Wmm = Wf * Mmf   (10) 
 
Wmm: materials yearly delivery weight Wmm (kg) 
Mmf: maintenance materials weight fraction, assumed to 
be 0.01 for this model (non-dimensional) 
 

Wl = Wcl + Wmm   (11) 
Lgc = Lcf * Icf * Wl  (12) 

 
Lgc: yearly logistics cost ($) 
 

Osc = Ny * (Yosc + Lgc)  (13) 
 
Osc: total life cycle operations and support ($) 
Ny: life cycle of station (yrs.) 
Yosc: ground operations and support cost, as above 
$80M/year ($) 
 

Total Investment = Sc + Lc + Osc        (14) 
 

Results 
Please refer to the figure below for the graph of results. 
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Figure 10 Cost vs. number of Space Hotel guests 

 
In Figure 10, the different colors represent different 
durations of stay in increments of 20 days starting from 
the minimum of 30 days up to 170 days.  The colors 
closer to the bottom of the graph represent long 
durations of stay.  Here a trade was conducted in which 
the weight of the Space Hotel is calculated for the 
number of guests and duration and then cost is 
estimated based the above factors plus the weight of 
Space Hotel. 
 
It can be seen in Figure 10 that the cost estimation is 
linear.  This prevents any sort of minimization of the 
cost of building, launching, assembling, and running a 
Space Hotel.  However, it can be seen that a Space 

Hotel business model which is designed around fewer 
guests staying for longer durations is a way to keep 
costs low. 
 

Conclusion 
A conceptual design for a Space Hotel was created and 
software was written to estimate the cost required to 
build, launch, assemble, and run the hotel.  These costs 
were estimated based upon mass estimates for structure 
and environmental control systems required to support 
human life onboard the Space Hotel. 
 
If we examine Figure 10, we notice that as duration of 
stay increases, costs decrease.  This can be seen 
because the colored sections on the plot at the bottom 
are the longer guest stay durations.  This makes sense 
because this lowers the logistical cost of shuttling 
people to and from the Space Hotel.  Launches become 
prohibitively expensive if there are large numbers of 
guests and that are staying for short durations.  As the 
number of guests increases, the smaller duration have a 
large effect on the cost.  However, if the duration of 
stay is large, then duration has a smaller effect on costs 
because construction and ground support costs 
dominate.  With long durations, it is possible to keep a 
large number of guests in space with a relatively small 
change in costs. 
 
If one were looking to profit from this type of venture, 
it would be beneficial to require stays of up to 6 months 
and have 100 guests.  The costs would be lower by a 
long duration and large revenues could possibly be seen 
due to the large number of guests staying at the hotel. 
 

Future Work 
A major area for future work would be to create a more 
detailed cost model for the Space Hotel.  This enhanced 
cost model may result in a nonlinear distribution of 
costs, unlike the results shown in Figure 10.  This may 
yield a minimum cost design for the Space Hotel. 
 
In addition, a more detailed structural design of the 
Space Hotel could be created which would yield a more 
accurate mass estimate of the structure. 
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Appendix A:  MATLAB source code 
 

structure.m 
% William Nadir 
% 16.851 Satellite Engineering 
% Problem Set 5 
% 
% Space Hotel Structural Design Software Module 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% 
% INPUTS 
% 
% N_guests  = Number of people staying on board the Space Hotel at any time 
% duration  = Duration of stay for guests of the Space Hotel (days) 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% 
% OUTPUTS 
% 
% str_mass  = Mass estimate of structure of Space Hotel (kg) 
% spin_rate = Spin rate of hotel to produce artificial gravity in 
%             habitation modules (m/s) 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% 
 
function [str_mass,spin_rate] = structure(N_guests, duration) 
 
% Here the volume required per passenger onboard the hotel is determined 
time        = [2 30 60]; % duration of stay (days) 
req_volume  = [150 780 1800]; % required "free volume" per passenger (ft^3) 
 
if duration <= time(1) 
    vol = req_volume(1); 
elseif duration > time(1) && duration < time(2) 
    vol = interp1(time,req_volume,duration,'linear'); 
elseif duration == time(2) 
    vol = req_volume(2); 
elseif duration > time(2) && duration < time(3) 
    vol = interp1(time,req_volume,duration,'linear'); 
elseif duration == time(3) 
    vol = req_volume(3); 
end 
 
% Input habitation module volume here 
hab_free_volume = 4500; % (ft^3) 
 
% Calculate how much free volume is required for the hotel guests 
total_free_vol = N_guests * vol; % (ft^3) 
 
% Determine how many habitation modules are required to house all the 
% guests (rounding up) 
N_habs = ceil(total_free_vol / hab_free_volume); 
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% Here we determine the mass of each hotel component 
bulkhead_thickness = .4; % (in) 
rho = .103; % Al 2219 (lb/in^3) 
 
% Habitation modules 
hab_dia     = 170; % (in) 
hab_length  = 500; % (in) 
node_dia    = 96;  % Nodes at the ends of each habitation module (in) 
 
hab_mass = rho * hab_length * pi * (((hab_dia/2)^2) - ... 
           (((hab_dia - 2*bulkhead_thickness)/2)^2)); 
 
% Here the mass for welds (1%) and internal structure (10%) are added 
hab_mass = hab_mass + (hab_mass * .01) + (hab_mass * .1); 
 
% Here the Whipple Shield mass is determined (radius is 4.2" larger than 
% module) 
whipple_density     = .0975; % Al 6061 (lb/in^3) 
whipple_thk         = .08; % (in) 
whipple_mass_hab    = whipple_density * hab_length * pi * ... 
                      ((((hab_dia/2) + 4.2)^2) - ... 
                      ((((hab_dia - 2*whipple_thk)/2) + 4.2)^2)); 
 
% Final habitation module mass plus 1.5 factor since calculations are very 
% rough 
hab_mass = (hab_mass + whipple_mass_hab)* 1.5; % (lb) 
 
% Determine dimensions of overall hotel structure 
% Assume that the circumference of the habitation module ring is roughly 
% equivalent to the sum of the lengths of the habitation modules 
hotel_dia = (N_habs * (hab_length + node_dia)) / pi; % (in) 
 
% Interconnecting cylidrical structural elements 
ic_dia      = 48; % (in) 
 
% Assume the lengths of the interconnecting tubes is roughly equivalent to 
% the radius of the hotel ring 
ic_length   = hotel_dia / 2; % (in) 
 
ic_mass = rho * ic_length * pi * (((ic_dia/2)^2) - ... 
           (((ic_dia - 2*bulkhead_thickness)/2)^2)); 
 
% Here the mass for welds (1%) and internal structure (10%) are added 
ic_mass = (ic_mass * .01) + (ic_mass * .1); 
 
% Here we determine the Whipple Shield mass for the IC modules 
whipple_mass_ic = whipple_density * ic_length * pi * ... 
                  ((((ic_dia/2) + 4.2)^2) - ... 
                  ((((ic_dia - 2*whipple_thk)/2) + 4.2)^2)); 
 
% Final habitation module mass plus 1.5 factor since calculations are very 
% rough 
ic_mass = (ic_mass + whipple_mass_ic)* 1.5; 
 
% Here we assume the center cylinder mass is equivalent to that of a habitation 
% module 
center_module_mass = hab_mass; % (lb) 
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% Here the total structural mass is calculated (lb) 
str_mass = (hab_mass * N_habs) + (ic_mass * N_habs) + center_module_mass; 
 
% Convert to kilograms from pounds 
str_mass = str_mass * .454;  % (kg) 
 
% Determine spin rate required to produce artificial gravity in habitation 
% modules 
g = 32.2; % (ft/s^2) 
spin_rate = sqrt(g * (hotel_dia/2)); % (ft/s) 
 
% Convert to meters/sec 
spin_rate = spin_rate * .3048;  % (m/s) 
 
 

cost_model.m 
% Christopher Hynes 
% 16.851 Satellite Engineering 
% Problem Set 5 
% 
% Space Hotel Cost Software Module 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% 
% INPUTS 
% 
% years  = number of years in operation 
% n_crew = Number of people staying on board the Space Hotel at any time 
% duration  = Duration of stay for guests of the Space Hotel (days) 
% w_f = weight of structure (kgs) 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% 
% OUTPUTS 
% 
% total_cost = amount (dollars) of total investment required for 
% construction, logistics, and operation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% 
function total_cost = cost_model(years, n_crew, duration, w_f) 
 
%Please see paper for explanations 
s_cf = 104e3; %space segment cost factor [$/kg] 
p_cf = 1.0; % 
r_cf = 2.0; % research and development cost factor 
 
s_c = s_cf*p_cf*r_cf; %space cost 
 
l_cf = 15.2e3; %launch cost factor 
i_cf = 1.33; %insurance cost factor 
 
l_c = l_cf*i_cf*w_f; %launch cost 
 
y_osc = 80e6; %yearly operation cost 
 
delta_cs = 2000; %crew support specific weight [kg/person] 
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delta_crew = 170; %crew specific weight [kg/person] 
delta_gear = 72; %crew specific gear weight [kg/person] 
 
consumption_rate = 9.453515; %rate of consumption [kg/person] 
 
w_cl = 365*((delta_cs + delta_crew + delta_gear)*(n_crew/duration) + consumption_rate*n_crew);  %yearly crew 
logistics weight 
 
m_mf = 0.01; %maintenance materials weight fraction 
 
w_mm = w_f*m_mf; %materials yearly delivery weight 
 
w_l = w_cl + w_mm; %logistics weight 
l_gc = l_cf*i_cf*w_l; %logistics cost (per year) 
 
o_sc = years*(y_osc + l_gc);  % operational cost 
 
total_cost = s_c + l_c + o_sc; 
 

cost_modeltest.m 
% Christopher Hynes 
% 16.851 Satellite Engineering 
% Problem Set 5 
% 
% Space Hotel Cost Software Module 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% 
% INPUTS 
% 
% years  = number of years in operation 
% n_crew = Number of people staying on board the Space Hotel at any time 
% duration  = Duration of stay for guests of the Space Hotel (days) 
% w_f = weight of structure (kgs) 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% 
% OUTPUTS 
% 
% total_cost = amount (dollars) of total investment required for 
% construction, logistics, and operation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% 
% function total_cost = cost_model(years, n_crew, duration, w_f) 
 
N_guests_min = 20; 
N_guests_max = 100; 
duration_min = 30; 
duration_max = 180; 
 
cost_matrix = zeros(N_guests_max - N_guests_min + 1, duration_max - duration_min + 1); 
 
for N_guests = N_guests_min:N_guests_max 
    for duration = duration_min:duration_max 
         
        [str_mass,spin_rate] = structure(N_guests, duration); 
        total_cost = cost_model(10, N_guests, duration, str_mass); 
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        cost_matrix(N_guests - N_guests_min + 1,duration - duration_min + 1) = total_cost; 
    end 
end 
 
figure(1) 
for i = 1:duration - duration_min + 1 
    hold on 
    duration = duration_min + i; 
    if duration < 30 
        plot([N_guests_min:N_guests_max],cost_matrix(:,i),'k*'); 
    elseif duration >= 30 && duration < 50 
        plot([N_guests_min:N_guests_max],cost_matrix(:,i),'b*'); 
    elseif duration >=50 && duration < 70 
        plot([N_guests_min:N_guests_max],cost_matrix(:,i),'r*'); 
    elseif duration >=70 && duration < 90 
        plot([N_guests_min:N_guests_max],cost_matrix(:,i),'m*'); 
    elseif duration >= 90 && duration < 110 
        plot([N_guests_min:N_guests_max],cost_matrix(:,i),'g*'); 
    elseif duration >= 110 && duration < 130 
        plot([N_guests_min:N_guests_max],cost_matrix(:,i),'c*'); 
    elseif duration >= 130 && duration <= 150 
        plot([N_guests_min:N_guests_max],cost_matrix(:,i),'y*'); 
    elseif duration >= 150 && duration <= 170 
        plot([N_guests_min:N_guests_max],cost_matrix(:,i),'b*'); 
    end 
end 
ylabel('Cost ($)') 
xlabel('Number of Hotel Guests') 
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Problem Set 6: Design of an Artificial Gravity Mars 
Mission 
 

Summary 
The purpose of this problem set was to investigate four possible vehicle designs to allow 
for a crew traveling to Mars to experience artificial gravity for the duration of the transit 
to and from Earth.  The four designs investigated were a toroidal-shaped monolith 
structure, a two-module EMFF design, a multi-module, tethered spacecraft, and a two-
module tethered spacecraft.  The main focus of the project was on structures, human 
factors, and cost.  Areas such as power systems and propulsion were investigated in a 
rough manner in order to have realistic numbers for those parts of the spacecraft. 
 
A manned mission to Mars onboard a spacecraft which provides artificial gravity during 
the transit to Mars would allow the crew to be immediately productive as soon as they 
arrive at Mars.  Without artificial gravity, the musculoskeletal deterioration of the crew 
during the transit to Mars would render the crew incapable of most tasks on Mars due to 
the .38g of gravity. 
 
The cost model to determine the total program cost for each vehicle was made possible 
by a cost model that has been developed for just this purpose.  In addition, the technology 
readiness levels (TRLs) of each spacecraft were estimated in order to scale the program 
costs to realistic values. 
 

Results 
It was found that the ideal crew size was approximately 9 people for a mission to Mars.  
This requirement drove the internal volumes of the vehicles which in turn sized the 
structure and determined the program cost.  In addition, human factors such as gravity 
gradient and cross-coupled acceleration effects drove the sizing of the spacecraft. 
 
Based on all of these issues, several MATLAB modules were written to size the 
spacecraft and estimate the program costs for each.  The results showed that the toroidal-
shaped monolith was the cheapest vehicle while the multi-module tethered spacecraft was 
the most expensive.  This is most likely due to the relatively high TRL of the monolith 
vehicle.  It was also found that the multiple-tethered spacecraft had the highest mass of 
the four designs.  In fact, the other three designs had fairly similar masses but the 
multiple-tethered spacecraft had more than double the total mass. 
 
Crew size was also varied to see its effect on the total program cost of each vehicle 
design.  The cost for the multiple-tethered spacecraft increased at a significantly higher 
rate than that of the other three designs.  Also, at a crew size of five and greater, the 
toroidal spacecraft is the cheapest of the four designs. 
 



Finally, the cost of each design increased as the artificial gravity requirement was raised. 
 

Useful References 
Larson, Wiley, Human Spaceflight: Mission Analysis and Design, McGraw-Hill, 1999. 
 
For this project, I found many useful human factors references dealing with humans in 
space for long duration missions.  The most useful of all the references was HSMAD.  
This book contains information about all types of human spaceflight, including long 
duration manned missions to Mars. 
 
In addition to using HSMAD, several useful AIAA papers were found which dealt with 
long duration human spaceflight.  The most useful of these papers dealt with the 
implications of crew size on long duration missions in extreme environments.  This paper 
investigated the interactions of the crew on many space missions as well as long duration 
expeditions to places such as the Antarctic.  The paper found that more heterogeneous 
and larger crews ended up working better together than smaller, more homogeneous 
crews.  This reference is shown below. 
 
Dudley-Rowley, Marilyn, et. al., Crew Size, Composition, and Time: Implications for 
Exploration Design, AIAA 2002-6111, AIAA, 2002. 
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Motivation 
Mars exploration is one of the main directions of 
NASA.  One overarching goal is to someday have a 
manned mission to Mars.  This is the next major step 
for space exploration beyond the moon and out into the 
solar system.   
 
A manned mission to Mars poses several significant 
technological challenges for engineers.  One such 
challenge is to minimize the physiological impact on 
the astronauts during prolonged spaceflight.  A possible 
solution to this is using artificial gravity.  Once the 
crew arrives on Mars, they will almost immediately be 
able to begin useful scientific research, rather than 
spending significant time rehabilitating due to problems 
like bone decalcification.  Using current or planned 
technology, artificial gravity almost certainly requires 
some sort of spinning spacecraft. 
 
The extended mission to Mars also poses psychological 
challenges for the crew.  The psychological well-being 
of the crew may depend on the number of astronauts, 
the gender makeup of the crew, the ages of the crew 
members, and the “free volume” available per 
astronaut.  Many of these human factors will contribute 
to the design of the spacecraft used to transport humans 
to Mars. 
 

Problem Statement 
Create a tool to evaluate the feasibility of an artificial 
gravity Mars mission. The tool should output the cost 
for four designs: a large monolithic station, a tethered 
multi-spacecraft station, a tethered two-spacecraft 
system, and an EMFF system (see Figure 1).  In 
addition, the tool will determine how Mars mission 
inputs such as number of crew members affect the 
design of each system.  A systems engineer using the 
tool will be able to vary these parameters to fit a launch 
or cost constraint. 
 

 
Figure 1  Four designs: (a) monolithic station 

(Toroid), (b) multi-spacecraft tethered, (c) two-
spacecraft tethered, and (d) EMFF. 

Introduction 
This study analyzes human, structural, and cost aspects 
of the various spacecraft types in order to determine 
their feasibility. In addition, the power and propulsion 
systems of these spacecraft are modeled.  The number 
of crew members is treated as a variable in order to 
analyze the effects of this parameter on the designs. 
 
Some of the human factors that are considered, in 
addition to the area issues, are requirements for 
reducing motion sickness (since the spacecraft will be 
spinning) and support systems and maintenance (such 
as food, waste management, thermal and power needs 
etc.).   
 
The structural aspects are dictated by the design 
configuration and human factors. For instance, in order 
to prevent motion sickness, a minimum distance to the 
spin axis is required. Similarly, the space/area needs for 
the crew are imposed requirements on the habitable 
volume of the spacecraft.  In addition, volume must be 
allocated for the Mars science payload, equipment, and 
spacecraft subsystems.  This tool assumes an Earth 

(b)

(c)
(d)

(a)



return vehicle already exists on Mars for the astronauts 
to use.  The design of each particular system has unique 
structural requirements. 

 
Total cost of each type of spacecraft is evaluated based 
on the structural and mass requirements of the design. 
Factors such as launch and operations are included.  
 
Figure 2 summarizes the map of how the various 
subsystems relate to each other.   
 

 
 

Figure 2.  Relationships between the various 
subsystems of the tool. 

 

Crew Size and Composition 
A long journey such as the one to and from Mars would 
put any crew under extreme stress.  The size and 
composition of the crew for a manned Mars mission are 
factors that can be controlled in such a way as to 
minimize the stress during such a mission. 
 
The human-human interface is the most important with 
respect to the psychological and sociological aspects of 
the extreme environment of a manned Mars mission.  
The success of the mission depends on the ability of the 
crew to effectively work together to accomplish their 
mission objectives. 
 
Based on an ongoing study of this human-human 
interface in extreme environments, several important 
observations have been documented.  First, larger crews 
tend to have lower rates of deviance and conflict.  
Second, deviance and conflict tend to decline with 
increasing length of mission.  Third, heterogeneous 
crews have lower rates of deviance and conflict.1
 
Although it was found that a larger crew had fewer 
incidents of deviance and conflict, a maximum value 
for crew size needs to be set.  In the study previously 
mentioned, it was found that the least dysfunction of 
any crew studied was a crew of nine people.2  This 
favorable crew size of 9 and the fact that a manned 
mission to Mars could take as long as nine months, a 

crew size of nine was set for a mission length of nine 
months. 
 
The other end of the spectrum, a shorter mission, needs 
to have a limit for crew size as well. As the duration of 
the mission gets shorter, the “extremeness” of the 
environment decreases.  This is because the crew 
knows that they will not be as far from home as they 
might be on a longer mission and they are closer to 
reality than a nine-month expedition to Mars.  This 
lessening of the “extremeness” of the trip makes it 
plausible for a crew of two members to run a mission 
for duration of approximately one month.  Several 
manned missions to Mars even suggest using a crew of 
two.3  Therefore, it is reasonable to assume a crew of 
two could handle a month-long space mission. 
 
Based on these two limits, linear interpolation is used to 
estimate the crew sizes for mission durations between 
one and nine months.  However, since a worst-case 
scenario is assumed in which the crew must stay in the 
vehicle and return to Earth without landing on Mars, the 
mission durations are doubled for the same estimated 
crew size.  This effectively places a cap of 9 as the crew 
size for a mission to Mars using a Hohmann transfer 
(roughly 9 months transit time each way).  These crew 
size estimates are shown below in Figure 3. 
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Figure 3  Crew size vs. mission duration 

 
In addition to the crew size, the gender, ethnic, and 
cultural makeup of the crew plays a large role in the 
performance of the crew during the mission.  It was 
found that more heterogeneous crews begin a mission 
with some deviance, conflict, and dysfunction, but these 
problems seem to decline as the mission progresses.  
On the other hand, a more homogeneous crew tends to 
begin a mission without much, if any, deviance, 
conflict, or dysfunction, but these problems tend to 
increase throughout the duration of the mission.4  
Therefore, a heterogeneous crew, most likely half men 
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and half women, with a mix of various ethnicities and 
cultures, would tend to produce a more effective crew 
for an extreme mission such as a manned mission to 
Mars. 
 

Human Factors 
Interior “Free” Space for Crew 
The long duration of a mission to Mars requires that 
extra comfort be given to the crew than that given to 
astronauts on a one or two week mission to low Earth 
orbit.  Significant comfort can be given to the crew in 
the form of increased interior volume to use for work 
and leisure activities.  This would result in improved 
mental health of the crew at the time of their arrival at 
Mars. 
 
Breeze (1961) estimated that a crew on a space mission 
would require a minimum volume of 600 ft3 per crew 
member for space missions longer than two months.5  
Sloan,6 on the other hand, estimates the minimum 
volume per crew member for life on a space station to 
be approximately 700 ft3.  Being conservative, a value 
of 700 ft3 is assumed for the free volume required per 
crew member for a manned Mars exploration mission. 
 

Life Support System Equipment 
Volume and Mass 

Crew Systems 
The crew systems onboard the spacecraft for a manned 
mission to Mars contain equipment such as galley and 
food system, waste collection system, personal hygiene, 
clothing, recreational equipment, housekeeping, 
operational supplies, maintenance, sleep provisions, and 
health care.  HSMAD contains a detailed breakdown on 
the mass and volume requirements of crew systems 
specifically designed for a manned Mars mission.7  By 
dividing the numbers provided in HSMAD by the 
estimated mission duration and specified crew size, a 
normalized crew systems mass and volume per crew 
member per day can be determined.  These values are 
shown below in Table 1. 
 

Table 1  Crew systems normalized volume and mass. 

Crew Systems 
Mass (kg/CM-d) 7.55 

Crew Systems 
Vol. (ft^3/CM-d) 1.51 

 

ECLSS Atmosphere Management 
The Environmental Control Life Support System 
(ECLSS) manages the air, water, waste, and other 
systems onboard the spacecraft which support human 
life in space.  The portion of the ECLSS which 
manages the atmosphere onboard the spacecraft utilizes 
physio-chemical (P/C) technology in order to remove 
carbon dioxide from the air, control trace contaminants, 
and provide oxygen to the crew.  An atmosphere 
management system suggested by HSMAD is used for 
the purposes of this study.  This suggestion is a triple-
redundant system of three different types of P/C 
atmospheric management systems. 
 
The three types of P/C systems used in this manned 
Mars mission spacecraft are 4BMS (4-bed molecular 
sieve), TCCS, and Sabatier P/C atmosphere 
management systems.8  A basic flow chart of the 
method used to manage the atmosphere on board the 
spacecraft is shown in the figure below. 
 

 
Figure 4  Atmosphere control and supply9

 
Based on the mass and volume requirements provided 
in HSMAD, the mass per crew member of these 
environmental support systems could be estimated.  The 
three types of atmospheric management systems were 
summed and multiplied by a factor of three for 
redundancy.  These values are shown below in Table 2. 
 

Table 2  ECLSS atmosphere management mass and 
volume per crew member10

ECLSS Atm. 
Mass (kg/CM) 255 

ECLSS Atm. 
Vol. (ft3/CM) 35.3 

 

ECLSS Water Management 
Based on the manned Mars mission design example in 
HSMAD, the ECLSS water management system design 
for this project was estimated.  HSMAD assumes a P/C 
water management system of vapor compression 
distillation (VCD) for use on the spacecraft.  A basic 
flow chart detailing the process of water recovery and 
management is shown in the figure below. 
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Figure 5  Water recovery and management11

 
This technology requires a mass of approximately 25 kg 
per crew member and a volume of 3.53 ft3 per crew 
member.12  A redundancy of two water management 
systems is assumed,13 which brings the total mass per 
crew member to 50 kg and total volume per crew 
member to 7.1 ft3. 
 

Artificial Gravity 
A manned mission to Mars requires that the crew be 
subjected to the space environment for a significant 
period of time.  A travel time of nearly one year would 
result in significant musculoskeletal deterioration of the 
crew members if the transit period were completely 
zero-g.14  This would result in the crew members being 
physically incapable of performing much work, if any, 
when they arrive at Mars. 
 
The downtime as a result of the crew’s required 
physical rehabilitation would dramatically reduce the 
available time on Mars for the crew to perform valuable 
research activities. 
 
In order for the crew to be productive when they reach 
Mars, an artificial gravity of 0.38g, the magnitude of 
gravity on Mars, is created on board the spacecraft 
during the transit to Mars.  The artificial gravity is set to 
Mars gravity because it is unnecessary to provide 
artificial gravity of 1g if the crew will need to adjust to 
Mars gravity of 0.38g when they arrive.  Also, a smaller 
artificial gravity requirement reduces the propellant 
required to spin-up and spin-down the spacecraft, as 
well as the structural requirements on the spinning 
spacecraft (and tethers). 
 

Gravity Gradient, Coriolis, and Cross-
coupled Acceleration Effects 
Due to the fact that the centrifugal acceleration 
resulting from the spin of the spacecraft varies with 
radial distance from the spin center, a different level of 
gravity will exist between various levels of the structure 
as well as throughout the human body.  If this gravity 
gradient is too large, it could become uncomfortable for 
the crew members.15

 

In addition, crew members will experience pseudo 
weight changes depending on their direction of motion 
due to radial and tangential Coriolis effects.  When 
walking parallel to the spacecraft spin axis, crew 
members will feel heavier when walking in the 
direction of the spin and lighter when walking in the 
opposite direction.  Tangential Coriolis effects will be 
felt by crew members walking moving radially about 
the spacecraft (possible in the Toroid spacecraft).  They 
will feel a push in the direction of the spacecraft spin 
when climbing towards or away from the spacecraft’s 
center of motion.  
 
Another potential uncomfortable result of the spinning 
spacecraft, cross-coupled angular acceleration effects, 
can be felt by crew members.  This occurs when a crew 
member moves his/her head in directions transverse to 
the axis of rotation and the direction of flight of the 
spacecraft.  Interior design of the spacecraft may help to 
alleviate this problem.  In addition, researchers at Slow 
Rotating Room in Pensacola, Florida, found that human 
test subjects in a room rotating at speeds up to 10 rpm 
could be trained to adapt to the rotating environment.  
 
These potential impacts to the human crew for the 
manned Mars mission result in design requirements in 
order to minimize the impacts of these potential 
problems and create a safer, healthier, and more 
enjoyable environment for the crew during their long 
journey to Mars.  The two requirements imposed on the 
spacecraft design are a maximum spin rate and a 
minimum spin radius. 
 
Stone (1970) and Thompson (1965) recommend a 
rotation radius greater than 14.6 meters and spin rate 
less than 6 rpm, while Shipov (1997) thinks a minimum 
radius of 20 meters is appropriate.   In order to be 
conservative, a minimum spin radius of 30 meters and a 
rotation rate of 6 rpm were used for the purposes of this 
project. 
 

Radiation Design Considerations 
During the journey from Earth to Mars, the crew will 
not enjoy the protection of the Earth’s atmosphere from 
high energy particles from the Sun.  Solar particle 
events (SPEs) cause large numbers of these high energy 
particles to emanate from the Sun.  These particles may 
impact the spacecraft and could result in harmful health 
effects for the crew. 
 
Background radiation in space, such as galactic cosmic 
rays, may also affect the crew during transit to Mars. 
 
In order to design a spacecraft to provide reasonable 
protection for the crew from radiation, the thickness of 
the aluminum hull of the spacecraft must be designed 
with a minimum thickness.  This thickness is 
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determined from the maximum allowable radiation dose 
for crews.  This is given to be 1 Gy.16

 
This allowable radiation exposure for crews is 
compared to the dose the crew would receive based on 
the aluminum hull thickness to obtain the minimum 
thickness.  The data table used to make this decision is 
shown below. 
 
 

Table 3  Radiation dose from an unusually large 
solar particle event 

Shielding Depth (cm Al) Dose 
(Gy) 

0.5 4.68 
1.0 1.95 
1.5 1.02 
2.0 0.59 
2.5 0.37 

 
Since an acceptable dose for the crew is 1 Gy, a 
minimum hull thickness of 1.5cm of aluminum is 
chosen for this spacecraft. 

Spacecraft Power 
In order to obtain an estimate for the power system for 
the Earth-Mars cruise spacecraft, a rough 
approximation of spacecraft power per crew member 
was required.  Several opinions exist as to exactly how 
much power per crew member is required for the Earth-
Mars cruise phase of a manned Mars mission. 
 
HSMAD assumes 20kW for a six-crew member 
mission to mars.  This normalizes to 3.33kW per crew 
member.17  In addition, Sloan notes that 2kW per crew 
member is required purely for life support.18

 
It is realistic to assume that more power will be 
required than the minimum for life support.  Research 
and other activities will require additional power 
beyond life support.  Therefore, it is assumed for the 
purposes of this project that 3.3kW is required per crew 
member for the Earth-Mars cruise phase of a manned 
Mars mission. 
 

Structures 
Cylinder 
A cylindrical pressure vessel is used as the structure for 
the tethered multiple spacecraft, two tethered spacecraft 
and EMFF spacecraft designs.  A cylindrical habitat 
module was chosen because they have a high TRL and 
can fit easily into a launch vehicle.  The diameter of the 
launch vehicle was used as the diameter of the cylinder.  

Given the required volume and the number of 
spacecraft in the array, the length of the cylinder was 
then determined.  The volume is equally distributed 
among the spacecraft.  The material selected for the 
cylinder was Aluminum 606a-T6, based on the design 
for a habitat module in HSMAD (Chapter 21).  The 
thickness of the cylinder can be determined by the 
Hoop stress (since the hoop stress is greater than the 
longitudinal stress) 

tuh F
t
prf ≤=    (0.1) 

where fh is the Hoop stress, p is the pressure, r is the 
radius of the cylinder, t is the thickness of the cylinder, 
and Ftu is the allowable tensile ultimate stress for 
aluminum.  The thickness is set as 0.015 cm if it is 
found to be less than that because of radiation shielding 
requirements.  The maximum internal pressure of 
0.1096 times a safety factor of 2 is used as the pressure 
inside the cylinder (based on HSMAD).  Finally the 
mass of the cylinder including the two ends is found by  
 

ALAL rlttrmass ρρπ 22 2 +⋅=   (0.2) 
 

The dry mass of each spacecraft includes the structural 
mass plus the solar array mass (see Power Module 
section) and the life support equipment mass. 

Toroid 
The toroid for the monolithic system is found in a 
similar fashion as the cylindrical case.  The inner radius 
of the toroid, rt, is found by the following 
 

RrV t
222π=    (0.3) 

 
where V is the required volume and R is the radius of 
rotation.  The minimum radius is set as 3 feet (0.9144 
m) if the radius, rt, is found to be less than that.  The 
thickness is found using the hoop stress requirement.  
The mass of the toroid is found by the following 
 

( )( ) ALttoroid tRrmass ρππ 22=   (0.4) 
 
The dry mass for the monolithic system includes 
spacecraft includes the toroid mass plus the solar array 
mass (see Power Module section) and the life support 
equipment mass. 

EMFF Coil Mass 
The superconducting EMFF coils are used to rotate the 
two habitat modules for the EMFF design by creating 
torque at a distance17.  The EMFF system assumes that  
spin-up of the array has occurred and the reaction 
wheels will not saturate during the steady state spin by 
rephrasing the array to dump momentum.19
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To determine the mass of the coils, the force generated 
by the coils must equal the centripetal force from steady 
state rotation as seen in Equation (0.5) where R is the 
coil radius, It is the total current, S is the array baseline, 
ω is the rotation rate, and mtot is the total mass of a 
habitat module. 
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For further clarification, Equation (0.5) uses a three 
identical satellite system, where the two outer 
spacecraft are the habitat modules, and the center 
spacecraft contains only the EMFF coil as shown in 
Figure 6.  The reason for this design is to increase the 
amount of electromagnetic force in the system.  The 
center spacecraft increases the electromagnetic force by 
17 times the force produced by the outer spacecraft.  
The result is that the three spacecraft design contains 
EMFF coils that are 17-0.5 times lighter than those in a 
two spacecraft design.  
 

 
Figure 6  EMFF System Layout 

To find the mass of the EMFF coils, the left hand side 
of Equation (0.5) can be rearranged to include the mass 
of the coil, Mc, and the wire current density over the 
wire density, Ic/pc
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For a high temperature superconducting coil, the Ic/pc 
from the EMFF lecture is 16250 A m/kg. 
 

Tether Sizing 
Tethers are required for two of the system designs, so 
their mass is calculated based on the requirements of 
each design.  For the single tether setup, the radius from 
the habitation module to the center of rotation is 
calculated according to the following equation. 
 

 2
maxω
des

des
gr =   (0.7) 

 
Here rdes is the radius that is ‘desired’ by the system 
given the desired force, gdes, and the maximum 
allowable rotation rate, ωmax (ωmax is determined by 
human factors).  If the calculated radius is larger than 
the minimum radius allowed by human factors, then rdes 
can be used to calculate the tether length.  If not, the 
minimum radius is used and the rotation rate must be 
slowed accordingly.  Assuming that the two payloads 
are equal mass, the tether length for this system is then 
twice the desired radius.  The tension in the tether may 
be calculated as: 
 

   (0.8) 2ωdesmrT =
 
Here T is the tension in the tether, m is the mass of one 
payload, and rdes and ω are as above.  This is simply an 
expression of Newton’s Second Law, where the radial 
acceleration is calculated as the radius times the square 
of the angular velocity.  The axial stress equation can 
then be used to calculate the required cross-sectional 
area to support the tension T, given the ultimate tensile 
strength of the chosen material. 
 

 
uts

TA
σ

=   (0.9) 

 
For this analysis, two materials were considered, as 
shown in Table 4.20

 

Table 4  Tether material properties 

Material σuts (GPa) Ρ (kg/m3) 
Kevlar 3.6 1440 
Spectra 2.6 970 

 
Since the area, length, and density of the tether are now 
known, the mass can be easily calculated as follows. 
 

 ρlAm =   (0.10) 
 
The multiple tether design requires a different 
calculation of tether length, but similar techniques are 
used to compute the final mass.  From Figure 1 it is 
clear that the multiple tether system is overconstrained.  
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For a system of tethers in tension this is not necessarily 
a bad thing, it simply makes analysis more tedious.  For 
example, the multiple tether system would maintain its 
shape (while spinning) if it consisted of either the 
spokes or the rim tethers alone.  However, if only the 
spoke tethers were used, there would be a small risk of 
collision between the pods during spin up, etc, so it 
might be wise to include the rim tethers.  The solution 
to this problem is to analyze these systems separately 
and add the results. 
 
Allowing the angle between two spokes to be α, and the 
angle between any spoke and its adjacent rim tether to 
be β, it is clear that: 
 

 
)(2

1

2

απβ
α π

−=

= n   (0.11) 

 
Here n is the number of spokes.  The pods are each at 
distance rdes (or rmin, whichever is larger), as calculated 
above, so the total length of the spokes, ls, is n times r.  
The total length of the rim tether, lr, can be calculated 
as: 
 

)sin(2 2
αnrlr =  (0.12) 

 
The tension in the spokes is calculated without the rim 
tethers in place as: 
 

   (0.13) 2ωmrTs =
 
The tension in the rim tethers is calculated without the 
spokes as: 
 

 βcos
2

s
r

TT =   (0.14) 

 
The area and mass of the rim and spoke tethers can then 
be calculated as before for each type of tether, and the 
results added for total tether mass. The following table 
gives examples of total tether mass for various systems.  
Systems labeled ‘tether’ are single tether systems, while 
systems labeled ‘mult-n’ are multiple tether systems 
with n pods.  The subscript r represents the rim tethers, 
and the subscript s represents the spoke tethers.  To get 
the total tether mass for a mult-n system, add the spoke 
mass to the rim mass.  For single tether systems, the 
mass of both pods is 70,000 kg, and for mult-n systems 
the individual pod mass is taken as 40,000 kg. 
 
 

Table 5  Example tether properties 

System Material Force 
kN 

Area 
(mm2) 

Length 
(m) 

Mass 
(kg) 

Tether Kevlar 261 72.5 75.5 39.4 
Tether Spectra 261 100.4 75.5 36.8 
Mult-5r Kevlar 127 35.2 222 56.3 
Mult-5s Kevlar 149 41.4 189 56.3 
Mult-5r Spectra 127 48.8 222 52.5 
Mult-5s Spectra 149 57.4 189 52.5 
 
 
In general, it is not wise to base a design on the ultimate 
tensile strength of a material, so a factor of safety of 
five is included in the implementation of these 
equations.  It was found that the tether is a small portion 
of the total system mass, so this factor does not have a 
large impact.  In addition, it helps to account for other 
tether properties that have been ignored, such as 
coatings against atomic oxygen, connecting hardware, 
etc. 
 

Spacecraft Propulsion 
A major contributor to total system mass is the 
propulsion system.  While propulsion is not the main 
focus of this analysis, it is recognized that the fuel 
required by these spacecraft will be a significant portion 
of total system mass.  Several parts of the required 
propulsion are treated in some detail, and others are left 
for a future study.  The current analysis is of a high-
risk, one-shot Mars approach.  Enough fuel is provided 
to initiate the Mars transfer and the spin required for 
artificial gravity.  It is assumed that the mission will 
succeed spectacularly.  That is, the landing craft will 
reach Mars interface with hyperbolic velocity, and 
perform an aerocapture-assisted entry and descent 
phase.  The astronauts will return on a vehicle that is 
already in place at their landing site.  There is no 
provision for deceleration on Mars approach, for Earth-
entry in case of an aborted mission, or other margin of 
any kind.  This is obviously no way to design a manned 
mission to Mars, but since the primary thrusts of this 
analysis are cost, structures, and human factors, this 
greatly simplified propulsion model has been used. 
 

Mars Transfer 
In terms of fuel, the cheapest trip to Mars on high-
impulse chemical thrusters is a Hohmann transfer.  The 
Hohmann transfer assumes that the transfer orbit is 
tangent to both the initial and final circular orbits, so it 
is very efficient and easy to analyze.21  Knowing the 
radii of the initial and final orbits, r1 and r2 respective, 
the semi-major axis, a, of the transfer orbit can be 
calculated as follows. 
 

2
21 rra +=   (0.15) 
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The velocity of the spacecraft in the transfer orbit, but 
at the point of making the impulsive injection 
maneuver, can then be calculated from the energy 
integral as: 
 

 )( 12
1 arv −= µ    (0.16) 

 
Here v is the required velocity of the spacecraft in the 
transfer orbit, µ is the gravitational parameter for the 
central body (the Sun), and r1 and a are as above.  The 
required change in velocity can then be calculated as: 
 

cvvV −=∆   (0.17) 
 
Where ∆V is the required change in velocity, v is the 
required spacecraft velocity above, and vc is the circular 
velocity that the spacecraft already has due to the 
orbital motion of the Earth, given by: 
 

1rcv µ=   (0.18) 

 
The required ∆V in the solar frame is only half of the 
calculation, however, for it takes extra fuel to escape 
from the Earth’s sphere of influence.  The ∆V required 
in the solar frame can be considered the “hyperbolic 
excess velocity” that is required in the Earth-centered 
frame, or the speed that the spacecraft has with respect 
to Earth as it leaves the sphere of influence.  The 
change in velocity required from a low Earth parking 
orbit can be found by first calculating: 
 

cri vv µ2+= ∞   (0.19) 

 
Here vi is the insertion velocity that is required from 
LEO, v∞ is the hyperbolic excess speed that is required 
in the heliocentric frame (the ∆V solved for above), and 
rc is the radius of the parking orbit where the spacecraft 
is holding until departure.  For this study, rc was taken 
to be 200km.  The required ∆V is then calculated as 
above, where vc is recalculated for the parking orbit in 
the Earth frame. 
 
For the Hohmann transfer from Earth to Mars studied 
here, the required change in velocity in the solar frame 
(v∞) is calculated as 2.942 km/s.  Using a circular 
parking orbit at 200 km, the burn required for the 
spacecraft is calculated to be 3.61 km/s. 
 
The required ∆V can be used to calculate the fuel 
required to get the spacecraft to Mars.  Using the classic 
rocket equation, the fuel mass is seen to be a function of 
required change in velocity, spacecraft dry mass, and 
the efficiency of the thruster (or specific impulse, Isp) . 

 
 [ ])/(1 gIV

op
spemm ∆−−=  (0.20) 

 
Here mp is the mass of the propellant, mo is the dry 
mass of the vehicle, Isp is the specific impulse of the 
chosen thruster, and g is the acceleration due to gravity 
at the Earth’s surface (where Isp is defined).  For this 
study, a value of 350 seconds is assumed for the 
specific impulse, a typical value for a bipropellant 
chemical thruster [see Ref 23, pg 692].  Thus, for a 
given spacecraft dry mass, the required fuel mass can 
be determined for each structural design.  Note that the 
required fuel masses to insert the desired payloads into 
Mars orbit are quite large, so it is a reasonable 
assumption to ignore the thruster hardware at this stage 
of analysis.  Additionally, for potentially massive 
components such as fuel tanks, all of the systems under 
consideration will have similarly scaled components so 
the relative error here is not significant.  Finally, the 
question of thruster location is not specifically 
addressed here.  It is assumed that the Mars transfer 
burn will be performed before the various designs have 
initiated their spin.  Thus, all tethers will be retracted, 
and the EMFF system will be docked into a single unit.  
This way, the whole system can be started on the 
transfer orbit as a unit, and then the rotations can be 
initiated en route. 
 

Spacecraft Rotation 
A unique feature of the EMFF system is that it does not 
require fuel to initiate and maintain the nominal spin 
rate.  All other designs, however, will require some 
manner of external thrust to start spinning.  It will be 
assumed that the monolith structure has a pair of 
thrusters on opposite sides of the wheel (i.e. at the ends 
of a line of diameter) to create a couple.  The single and 
multiple tether systems will have a single thruster on 
each individual pod, oriented to create a pure moment 
with no net force.  The selected thruster has the same 
specific impulse, 350 s, as the primary thruster. 
 
Under these assumptions, the fuel required to spin up 
can be calculated from the rocket equation above, 
noting that: 
 

 rV ω∆=∆   (0.21) 
 
Here ∆ω is the change in angular velocity, and r is the 
radius from the center of rotation to the thruster.  When 
calculating the fuel requirement from the rocket 
equation, the total fuel requirement is the dry mass of 
each individual spacecraft times the number of 
spacecraft.  The following table shows example fuel 
requirements for spin up for the monolith, single tether, 
and multiple tether systems.  In this table, both ‘mass’ 
and ‘fuel mass’ represent the individual spacecraft 
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masses, and should be multiplied by the total number of 
spacecraft if total system mass is desired. 
 

Table 6  Propellant mass for system designs 

System Dry Mass (kg) Fuel Mass (kg) 
Monolith 86,774 56,704 

Tether 44,344 28,971 
Multiple 43,027 28,117 

 

Cost Estimation 
A first order model was developed to estimate 
approximate costs of the manned Mars mission. A 
detailed work breakdown structure (WBS) was not 
created since this study considers high-level concept 
designs that focus only on certain aspects of the 
mission, i.e. human factors, and structural 
configurations.  The cost model utilized a mix of 
analogy based estimation, and parametric estimation in 
determining the costs of the various segments. 
 
The cost model determines the mission cost in FY03$ 
by evaluating the required expenses in the following 
categories: 
 

Space Segment 
This is driven by the space segment cost factor (Scf), the 
program level cost factor (Pcf), the heritage cost factor 
(Hcf), and the space system mass, M.  
 
The space segment cost, Sc, in dollars is calculated, 
after adjusting the relationship given by Reynerson, as: 
 

( ) cfcfcfc PMHSS +=   (0.22) 
 
The Scf ($/kg) is the price per kg of facility on orbit. For 
government run, manned space programs it ranges from 
38 to 157 $K/kg, with the mean being 104 $K/kg.22 The 
maximum value of 157 $K/kg is used in the model in 
order to get a conservative estimate. 
 
The Pcf ($) accounts for the program level costs such as 
contractor costs for system engineering, management, 
quality assurance, and other costs that cannot be 
directly assigned to individual hardware or software 
components. The Pcf was determined from the 
parametric cost estimation data provided in table 20-4 
in SMAD. 
 
The heritage cost factor, Hcf, is a dimensionless quantity 
and accounts for the technology readiness level (TRL) 
costs. SMAD discusses the development heritage factor 
in space segment cost (pg 798) as a multiplicative 
factor. It defines heritage as the percentage of a 

subsystem that is identical to one or more previous 
spacecraft, by mass.  This idea is applied in the cost 
model by assuming that the TRL can be considered as 
the system’s heritage. A TRL of 3 is thus considered to 
have a heritage of only 30%, and the basic RDT&E cost 
estimate is increased by 70% to account for additional 
costs that will be accrued due to the development 
required for the new technology. This assumption 
provides a means to roughly estimate effects of 
different design TRLs on the cost. Note that the 
heritage factors are more appropriate to consider at the 
subsystem level, and it would be more accurate if they 
were considered when determining costs of specific 
subsystems. However, in this study only structures and 
human life support systems were considered in detail. 
Therefore, a blanket ‘heritage factor’ to the whole 
system cost estimate in this model really means an 
application to only these two subsystems.  
 
The mass, M (kg), of the system is the total mass of the 
facility in space. The mass is often the primary cost 
driver of space systems.23 The model used in the study 
also uses the facility’s mass as a chief factor in the cost.  
 

Launch Segment 
The launch segment costs are determined by using the 
launch cost factor, Lcf, the insurance cost factor, Icf, and 
the mass of the system, M, to be placed in orbit. 
 
The launch cost is determined as: 
 

MILL cfcfc =   (0.23) 
 
The launch cost factor, Lcf, is based on historical data 
and planned future cost goals. It is the cost per kilogram 
of placing a payload in LEO orbit. Table 20-14 in 
SMAD lists the cost per kg to LEO for various launch 
vehicles in FY00$. The average value for US launch 
vehicles comes out to be 14.66 $K/kg. Only US launch 
vehicles were considered since it is assumed that the 
mars mission will be a government run program. Lcf was 
taken as 15.4 $K/kg (after converting the dollar value 
from FY00 to FY03).   
 
The insurance cost factor, Icf, was used to account for 
insurance related expenses associated with launch. For 
commercial launches, the insurance is a third of the 
launch costs and Icf is typically 1.33. The cost model in 
this study assumes a value of 1.5 to account for 
somewhat higher insurance costs that would probably 
be involved for a new type of mission. Furthermore, a 
higher factor would give a conservative estimate. 
 
The mass, M (kg) used in this cost portion is the same 
facility mass that was used in determining the space 
segment cost. 
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Ground Operations and Support 
The ground operations and support cost is usually much 
smaller than the space segment and launch cost. For 
missions that extend over long periods of time however, 
this cost can become quite significant. The ground 
segment costs are normally evaluated by considering 
the requirements for the ground station facilities such as 
square footage, equipment, personnel, etc. However 
since such details are not available at concept level 
studies, an analogy-based estimation was done to 
determine the operations and support cost for the 
manned mars mission. The International Space Station 
has a $13 billion operations budget for its ten-year life.  
The yearly operations costs are therefore earmarked as 
$1.3 billion. The cost model in this study uses a value 
of $1.5 billion per year for operations cost. 
 
The total cost is obtained by summing the space 
segment, launch and operations cost of the mission. 
  

Software Modules 

Volume and Equipment Mass Module 

Requirements 
The MATLAB module constants.m determines the 
number of crew required for the mission as well as the 
volume and mass of the vehicle, life support equipment, 
as well as the required power for the spacecraft. 
 

Description of Code 
The code uses the input of the mission duration to 
calculate the number of crew members required for the 
mission.  The number of crew members combined with 
the mission duration is used to size the free volume of 
the vehicle along with the life support system and 
power requirements. 
 

Constants 
The constants used in this module are the values for 
spacecraft volume, mass, and power which are given 
and explained in the “human factors” and “spacecraft 
power” sections of this document. 
 

Inputs 
duration (days):  This input is the mission duration 
from Earth to Mars. 
 

Outputs 
crew:  This output is the total number of crew required 
for the mission to Mars. 
 
free_vol (ft3):  This output is the total required “free 
volume” in the spacecraft. 
 
cs_vol (ft3):  This output is the total required volume for 
the crew systems equipment. 
 
cs_mass (ft3):  This output is the total required mass of 
the crew systems equipment. 
 
ls_air_vol (ft3):  This output is the total required 
volume for the atmosphere management equipment. 
 
ls_air_mass (kg):  This output is the total mass of the 
required atmosphere management equipment. 
 
ls_water_vol (ft3):  This output is the total required 
volume of the water recovery and management 
equipment. 
 
ls_water_mass (kg):  This output is the total mass of the 
required water recovery and management equipment. 
 
power (W):  This output is the total power required for 
the spacecraft during the Earth-Mars transit.  This is 
purely based on the number of crew members in the 
spacecraft. 
 

Power Module 

Requirements 
The MATLAB module SolarArrays.m determines mass 
of the solar array and the area of the solar array.  This 
module was used by Kwon, Vaughan, and Siddiqi in 
Problem Set 5. 
 

Description of Code 
The code uses the required power to determine the mass 
of the solar array.  Multijunction arrays with no ellipse 
periods were used in the calculation 
 

Constants 
The constants used in this module are the specific 
powers for each type of solar array design. 

Inputs 
Average_power (W):  This input is the required power 
that the solar arrays need to deliver. 
 
Ellipse_fraction (0-1):  This input is the fraction of the 
orbit spent in eclipse. 
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type (number):  This input is selects the solar array type 
(1, 2, or 3 for Si, GaAs, or multijunction respectively). 
 
Mission_duration (years):  This input is the mission 
duration in years. 
 

Outputs 
Mass_solarArray (kg):  This output is the mass of the 
solar array.. 
 
Area_solarArray (m3):  This output is the area of the 
solar array. 
 

Structures Module 

Requirements 
The MATLAB module structures.m determines mass of 
the structure given the total volume required, the 
number of vehicles, and the type of architecture.  The 
architecture options are a toroidal monolithic spinning 
spacecraft, a tethered multiple spacecraft, two tethered 
spacecraft, or two EMFF spacecraft. 
 

Description of Code 
The code uses the required volume and calculates the 
dimensions of a cylindrical pressure vessel.  The 
diameter of the cylinder is constrained by the launch 
vehicle diameter.  For the toroidal monolith system, it is 
assumed that the toroid is cut into sections while it is in 
the launch vehicle.  The total volume is divided equally 
between the number of spacecraft for the design.  
Additionally the radius of rotation is used to determine 
the length of the cylinder.  Once the dimensions of the 
structure are determined, its mass is calculated and 
outputted. 
 

Constants 
The constants used in this module are the values for 
density and allowable tensile ultimate stress for 
Aluminum 6061-T6 and the maximum internal pressure 
for design of the pressure vessel.  These values are 
given and explained in the “structures” section of this 
document. 
 

Inputs 
V (m3):  This input is the total volume required for the 
structure to contain. 
 
D (m):  This input is the launch vehicle diameter. 
 

N (number):  This input is the number of vehicles in the 
array. 
 
R (m):  This input is the radius of rotation. 
 
w (rad/s):  This input is the rotation rate of the system. 
 
design (‘text’):  This input is the desired design, options 
include ‘monolith’, ‘multiple’, ‘tether’, and ‘emff’. 
 

Outputs 
Mass (kg):  This output is the total mass of the 
structure. 
 

Tether Mass Module 

Requirements 
The MATLAB module tether_mass.m determines mass 
of the tether given the type of architecture, number of 
vehicles, dry mass, tether material, and desired 
acceleration.   
 

Description of Code 
The code takes the system architecture and decides how 
to calculate the tether length and tension.  For the 
monolith and EMFF, there is no tether.  For the single 
and multiple tether systems, the values are computed 
appropriately as described above.  Mass of the tether is 
then calculated from the material properties of the 
tether and the required length and tension. 
 

Constants 
The constants used in this module are the values for 
maximum allowable spin rate and minimum allowable 
radius, as defined by human factors. 
 

Inputs 
AG_type (‘text’):  This input is the desired design, 
options include ‘monolith’, ‘multiple’, ‘tether’, and 
‘emff’. 
 
n (number):  This input is the number of vehicles in the 
array. 
 
w (rad/s):  This input is the rotation rate of the system. 
 
dry_mass (kg): This is the mass of the spacecraft.  For 
the single tether, an array of 2 masses (can be unique).  
For the multiple tether, one mass is provided and the 
modules are assumed to be identical. 
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tether_mat (‘text’):  Input describes what material to 
use for the tether.  Current options are ‘spectra’ and 
‘kevlar’. 
 
g_des (m/s2):  This desired acceleration at the rim. 
 

Outputs 
Mass (kg):  This output is the total mass of the tether(s). 
 

Propulsion Module 

Requirements 
The MATLAB module propulsion.m determines mass 
of the required fuel for orbit transfer and spin-up, given 
the type of architecture, number of vehicles, dry mass, 
tether material, and the moment arm to the thruster.   
 

Description of Code 
The code calculates the change in velocity required for 
a Hohmann transfer to Mars, and then solves the Earth-
centered problem for ∆V required from a LEO parking 
orbit.  The rocket equation is then used for an assumed 
thruster to find the fuel mass for the transfer.  Given the 
type of system and the thruster moment arm, the rocket 
equation is used again to find the propellant required 
for spin-up.  This function calls several auxiliary 
functions that are included and commented in 
Appendix A, namely: ic_circ.m, hohmann.m, 
p_conic.m, and r_equation.m.  
 

Constants 
The constants used in this module are the gravitational 
constants for the Earth and Sun, the radius of the Earth, 
the Earth-Sun distance, the parking orbit radius, and the 
Mars-Sun distance. 
 

Inputs 
AG_type (‘text’):  This input is the desired design, 
options include ‘monolith’, ‘multiple’, ‘tether’, and 
‘emff’. 
 
n (number):  This input is the number of vehicles in the 
array. 
 
w (rad/s):  This input is the rotation rate of the system. 
 
dry_mass (kg): This is the mass of the spacecraft.  For 
the single tether, an array of 2 masses (can be unique).  
For the multiple-tethered spacecraft, one mass is 
provided and the modules are assumed to be identical. 
 
r_outer (m):  The moment arm for the thruster. 

 

Outputs 
Mass (kg):  This output is the mass of the propulsion 
system per pod. 
 

EMFF Module 

Requirements 
The MATLAB module emff.m determines mass of the 
superconducting EMFF coils needed to rotation rate for 
a given amount of artificial gravity. 
 

Description of Code 
The code uses the size of the cylinder as the size of the 
coils, the total dry mass each satellite, the radius of 
rotation, and the rotation rate to determine the mass of 
the coils for a three spacecraft collinear array.  The 
equation used for this is explained in the “emff coil 
mass” section. 
 

Constants 
The constant used in this module is the 
Superconducting coil current density divided by the 
wire density as given in the EMFF Lecture. 

Inputs 
V (m3):  This input is the total volume required for the 
structure to contain. 
 
D (m):  This input is the launch vehicle diameter. 
 
R (m):  This input is the radius of rotation. 
 
w (rad/s):  This input is the rotation rate of the system. 
 
Mass_tot (kg):  This input is the total dry mass of one 
of the satellites. 
 

Outputs 
Mass_coil (kg):  This output is the total mass of the 
EMFF coil. 
 

Cost Module 
 
The MATLAB module cost.m calculates the total cost 
of a manned mission based on the system mass, 
technology readiness level of the system, and mission 
duration. 
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Inputs 
mass (kg): This is the total mass of the system /facility 
in space. 
 
TRL: The Technology Readiness Level of the system 
 
duration (days): The mission duration from Earth to 
Mars. 
 

Outputs 
TotalCost ($): This is the total cost of the mission in 
$FY03. It is the sum of all the cost segments that are 
also given out by the module. 
 
SpaceSegCost ($): The space segment cost in $FY03 
 
LVCost ($): Launch cost in $FY03 
 
OpSupCost ($): Operations support cost in $FY03  
 

Results 
The total program costs for a 1.5 year mission for the 
different designs are shown in the figure below. It is 
seen that the cheapest design option is the monolith 
while the multiple tether configuration is the most 
expensive.  
 

 
Figure 7  Cost of different designs 

The cost breakdown shows that the space segment cost 
is by far the largest portion as compared to launch and 
operation costs. A comparison with Apollo and Orbiter  
costs show that the model estimates lie within a 
reasonable range.  
 
Since the cost model is driven primarily by the system 
mass, an analysis of the mass of the different designs 
shows a trend that matches with the cost results. The 
figure below illustrates the total mass estimates 
obtained for the different designs. 

 

 
Figure 8  Mass comparison of different designs 

Although the mass of the EMFF, monolith and tether 
designs are in the same range, the monolith is cheaper 
than the other two designs due to a higher TRL value. 
EMFF and tether designs have lower TRLs (the model 
assumed 3 and 4 respectively), therefore they cost more 
than the monolith. The dry mass in each design 
included the power subsystem, the structural mass, and 
crew and life support equipment mass. It also included 
mass of subsystems that were unique to each particular 
configuration, for instance the dry mass of the EMFF 
design includes the mass of coils while in the multiple 
tether and tether options it includes the mass of tethers. 
From these results it appears that the monolith design 
offers the lightest and cheapest option. 
 

Varying Crew Size 
One interesting plot is the change in total program cost 
versus the number of crew used in the mission to Mars.  
As the number of crew increases, the required structure 
volume increases, which in turn increases the mass and 
cost.  The results for the four designs considered are 
shown in the figure below. 
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Figure 9  Cost vs. crew size 
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The above figure shows significant differences in the 
rate of change of cost as the crew size changes for the 
various spacecraft designs.  The single tether and 
EMFF designs have nearly identical curves in the figure 
as well.  This is due to the fact that they both have the 
same basic structural design: each design has two main 
modules and little or no mass connecting the two 
modules.  Also, these two designs have nearly identical 
TRL values. 
 
The other two designs, the toroid and the multiple-
tethered module, are radically different designs than the 
previous two.  It can be seen that the cost of the 
monolith increases much less dramatically than the cost 
of the multiple-tethered module vehicle.  This 
difference is mainly the result of the fact that the TRL 
of the toroid is much higher than that of the other three 
designs, especially the multiple-tethered module. 
 
Finally, it can be seen in Figure 9 that the cost of the 
Toroid spacecraft becomes the most cost effective 
design for crew sizes greater than five.  Based on this 
information, a Toroid may be the most cost effective 
design for a large crew of approximately nine members 
for a manned mission to Mars. 
 

Effect of Varying Artificial Gravity 
The artificial gravity is created by rotation of the 
vehicle(s).  A higher artificial gravity results in a higher 
rotation rate, given a fixed radius of rotation.  For the 
tethered two spacecraft, multiple spacecraft, and 
monolith systems, a higher rotation rate results in a 
larger ∆V needed for spin-up and results in more 
propellant.  For the EMFF system, the EMFF coil mass 
is directly related to the rotation rate as seen in equation 
(0.6).  Figure 10 illustrates these results for the four 
different systems.  Each of the systems shown an 
increase as the Earth’s gravity is approached.  None of 
the curves overlap and the multiple-tethered spacecraft 
shows the highest mass while the two tethered 
spacecraft is the least massive option. 
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Figure 10  Effect of varying the fraction of Earth's 

gravity on total system mass 

 
Figure 11 illustrates the effect of varying the fraction of 
Earth’s gravity on the total system cost.  Since the cost 
varies directly with the mass, these results show an 
expected trend; the cost shows an increase as the 
Earth’s gravity is approached. 
 

 
Figure 11  Effect of varying the fraction of Earth's 

gravity on cost 

Conclusion 
The preceding design of an artificial gravity Mars 
mission demonstrates that the mission has feasibility in 
terms of cost since the cost is less than the Apollo 
program.  The mass of the systems are high mainly due 
to the significant propellant mass, but more advanced 
propulsion systems could help decrease this.  The 
monolith system is currently the most favorable design 
for cost and mass, and for large crew sizes.  The tether 
and EMFF designs may become more favorable with 
further development of their technology boosting their 
TRL. 
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Future Work 
This is an exciting project with much potential for 
future work.  An improvement that is immediately 
obvious is to allow different mission durations and to 
evaluate the effect of that change on mission cost and 
mass.  Currently, a Hohmann transfer from Earth to 
Mars is specified, but other orbits should be examined 
such as faster one-tangent burns, or perhaps longer 
orbits with free-return trajectories.  Changing the 
mission duration will impact the number of desired 
crew-members as well as the required propellant for 
transfer, and so could have a large impact on mass and 
cost. 
 
Another improvement would be to add a detailed 
propulsion system model to this analysis.  Current all 
propulsion system hardware is neglected, along with 
any propellant margin, corrective maneuvers, terminal 
rendezvous burn, or mission-abort scenarios.  All of 
these things could be added to increase the fidelity of 
the overall model.  Certainly, including these things 
will increase the total mass and cost of the systems. 
 
There are many other systems that could be added as 
well.  Power, while mentioned in this study, could be 
investigated in a much more thorough fashion.  Issues 
could be addressed relating to human needs such as 
thermal controls, debris and radiation mitigation, and 
communications.  Each of these improvements could 
greatly enhance the quality of the analysis and make 
this an even more valuable tool for future use. 
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Appendix A:  MATLAB source code 
 
main.m 
%Constants 
g_des = 1/3 * 9.81; 
rmin = 30; %meters 
wmax = 6; %rpm 
w = wmax * pi/30; 
 
D = 5;  %m, Launch vehicle width 
 
mission_duration = 1.5;   %years 
 
%first call constants 
%Get the required volume and average_power 
[crew, free_vol, cs_vol, cs_mass, ls_air_vol, ls_air_mass, ls_water_vol, ... 
        ls_water_mass, power] = constants(mission_duration*365); 
V_ft = free_vol + cs_vol + ls_air_vol + ls_water_vol; %Total Volume, ft^3 
V = V_ft * 2.83168*10^-2;  %Total Volume, conversion from ft^3 to m^3  
 
M_systems = cs_mass + ls_air_mass + ls_water_mass; %Mass of crew and support systems 
 
%Find Power Mass 
[M_power, Area_power] = SolarArrays (power,0,3,mission_duration); 
 
r_des = g_des/w/w;   % calculate 'desired' radius to get desired acceleration 
if (r_des < rmin); 
    r_des = rmin; 
    w = sqrt(g_des/r_des); 
end 
 
%Now For Each Design 
%EMFF%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
N=2; 
%Find structural mass 
%mass of each cylinder (note that there are two for emff, tether) 
M_struct_emff = structure(V, D, N, r_des, w,'emff'); 
%Find Propulsion system Mass 
Mass_dry_emff = M_struct_emff + M_power + M_systems; 
M_coil_emff = emff(V, D,r_des, w, Mass_dry_emff); 
M_wet_emff=propulsion('emff', N, w, Mass_dry_emff+M_coil_emff, r_des); 
%Compute the total mass 
M_total_emff = Mass_dry_emff + M_coil_emff+M_wet_emff; 
%Computer system mass 
M_system_emff = N * M_total_emff; 
%Find cost 
[TotalCost_emff, SpaceSegCost_emff, LVCost_emff, 
OpSupCost_emff]=cost(M_system_emff,3,mission_duration); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
%Tether%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
N=2; 
%Find structural mass 
%mass of each cylinder (note that there are two for emff, tether) 
M_struct_tether = structure(V, D, N, r_des, w,'tether'); 
%Find Propulsion system Mass for each spacecraft 
Mass_dry_tether = M_struct_tether + M_power + M_systems; 
M_wet_tether=propulsion('tether', N, w, Mass_dry_tether, r_des); 
M_tether = tether_mass('tether', N, w, [(Mass_dry_tether+M_wet_tether) 
(Mass_dry_tether+M_wet_tether)], 'kevlar', g_des); 
%Compute the total mass 
M_total_tether = Mass_dry_tether + M_wet_tether; 
M_system_tether = N * M_total_tether + M_tether; 
%Find cost 
[TotalCost_tether, SpaceSegCost_tether, LVCost_tether, 
OpSupCost_tether]=cost(M_system_tether,4,mission_duration); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
%Multiple Tethered 5 spacecraft%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
N=5; 
%Find structural mass 
%mass of each cylinder (note that there are two for emff, tether) 
M_struct_multiple = structure(V, D, 5, r_des, w,'multiple'); 
%Find Propulsion system Mass 
Mass_dry_multiple = M_struct_multiple + M_power + M_systems; 
M_wet_multiple=propulsion('multiple', N, w, Mass_dry_multiple, r_des); 
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M_tether_multiple = tether_mass('multiple', 5, w, Mass_dry_multiple+M_wet_multiple, 'kevlar', 
g_des); 
%Compute the total for each spacecraft 
M_total_multiple = Mass_dry_multiple + M_wet_multiple; 
%Computer system mass 
M_system_multiple = N * M_total_multiple + M_tether_multiple; 
%Find cost 
[TotalCost_multiple, SpaceSegCost_multiple, LVCost_multiple, 
OpSupCost_multiple]=cost(M_system_multiple,4,mission_duration); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
%Monolithic Spacecraft%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Find structural mass 
%mass of each cylinder (note that there are two for emff, tether) 
M_struct_monolith = structure(V, D, 1, r_des, w,'monolith'); 
%Find Propulsion system Mass 
Mass_dry_monolith = M_struct_monolith + M_power + M_systems; 
M_wet_monolith=propulsion('monolith', N, w, Mass_dry_monolith, r_des); 
%Compute the total mass 
M_total_monolith = Mass_dry_monolith + M_wet_monolith; 
%Find cost 
[TotalCost_monolith, SpaceSegCost_monolith, LVCost_monolith, 
OpSupCost_monolith]=cost(M_total_monolith,8,mission_duration); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
constants.m 
% William Nadir 
% 16.851 Satellite Enginnering 
% Module to estimate Mars mission crew size and vehicle volume and mass requirements 
% 
% INPUTS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% duration      = Mission duration (days) 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% OUTPUTS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% crew                   = Crew size (number of people) 
% free_vol              = Amount of total "free" volume required for crew (ft^3) 
% cs_vol                 = Amount of total volume required for crew systems (ft^3) 
% cs_mass             = Mass of crew systems (kg) 
% ls_air_vol            = Life support equpment (air) total volume (ft^3) 
% ls_air_mass        = Mass of life support equipment (air) (kg) 
% ls_water_vol        = Life support equpment (water) total volume (ft^3) 
% ls_water_mass    = Mass of life support equipment (water) (kg) 
% power                     = Required total spacecraft power (W) 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [crew,free_vol, cs_vol, cs_mass, ls_air_vol, ls_air_mass, ls_water_vol, ... 
        ls_water_mass, power] = constants(duration) 
 
% Here the required crew size is determined based on the duration of the 
% mission to Mars 
crew = ceil((.0292 * duration + (9/8))/2); % (No. of crew members) 
 
free_vol = 700 * crew; % Total free volume required (ft^3) 
 
cs_vol = 1.512* crew * duration; % Total crew systems volume required (ft^3) 
cs_mass = 7.55 * crew * duration; % Total crew systems mass (kg) 
 
ls_air_vol = 35.3 * crew; % Total ECLSS air control system volume (ft^3) 
ls_air_mass = 255 * crew; % Total ECLSS air control system mass (kg) 
 
ls_water_vol = 7.1 * crew; % Total ECLSS water control system volume (ft^3) 
ls_water_mass = 50 * crew; % Total ECLSS water control system mass (kg) 
 
power = 3300 * crew; % required S/C power (W) 

 
SolarArrays.m 
%This function calculates the mass, cost, and size of a given type of solar array. 
%The inputs are eclipse fraction, average power, shadow fraction, mission duration, and cell 
type. 
 
 
function [Mass_solarArray,Area_solarArray]=SolarArrays 
(average_power,eclipse_fraction,type,mission_duration) 
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%P_solarArray: power produced by solar arrays 
%Pe          :power required during eclipse period  
%Pd          : power required during daylight period 
%Xe          :path efficiency from solar array, through battery to loads 
%Xd          :path efficiency from solar array to loads 
%Xcell       :cell efficiency 
%Isolar      :solar illumination intensity 
%Id          :Inherent degredation 
%DSi etc     : degredation/yr 
%Ld          :lifetime degredation 
 
%******************************** 
% Constants 
Xe = 0.65; 
Xd = 0.85; 
XSi = 0.148; 
XGaAs= 0.185; 
Xmulti= 0.22; 
Isolar = 1367;  
Id = 0.77; 
DSi = 0.0375; 
DGaAs = 0.0275; 
Dmulti = 0.005; 
SpSi = 0.55; %16.89 design doc kg/m^2 
SpGaAs = 0.85; %kg/m^2 
Spmulti= 0.85; %kg/m^2 
%****************************** 
 
Pe = average_power; 
Pd = average_power; 
 
%Te = orbit_period*eclipse_fraction; %eclipse time 
%Td = orbit_period-Te;       %daylight time 
%P_solarArray = ((Pe*Te )/(Xe*Td)) + (Pd/Xd) %power produced by solar arrays 
 
P_solarArray = Pd/Xd; 
 
%Silicon is type 1, GaAs is type2, and multijunction is 3 
 
if type == 1 
    Xcell = XSi; 
    Degredation = DSi;  
MassPerArea = SpSi; 
SpecificPower = 25; 
%SpecificCost = SpCostSi; 
end 
 
if type == 2 
    Xcell = XGaAs; 
    Degredation = DGaAs; 
MassPerArea = SpGaAs; 
SpecificPower = 60; %ref: 
http://lheawww.gsfc.nasa.gov/docs/balloon/2nd_tech_workshop/Loyselle.pdf 
%SpecificCost = SpCostGaAs; 
end 
 
if type ==3 
 
    Xcell = Xmulti; 
 Degredation = Dmulti; 
MassPerArea = Spmulti; 
SpecificPower = 66; %assumed based on info in SMAD 
%SpecificCost = SpCostmulti; 
end 
 
%Power out of solar cell assuming sun rays are normal to solar panels 
Pout = Xcell * Isolar; 
 
 
%Power at begining of life 
 
Pbol = Pout *Id; 
Ld = (1-Degredation)^mission_duration; 
 
%Power at end of life 
 
Peol = Pbol*Ld; 
 
Area_solarArray = P_solarArray/Peol; 
 
Mass_solarArray = P_solarArray/SpecificPower; 
 
%Cost = SpecificCost * Mass_solarArray; 
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%Cost = NaN; 
 

structure.m 
function [mass] = structure(V, D, N, R, w,design) 
 
% V = 85;             %m^3 
% D = 5;              % Launch vehicle diameter 
% N = 2;              %number of vehicles 
% R = 20;             % distance from center of rotation to floor(really ceiling) 
% design = 'monolith';    %choices: monolith, multiple, tether, emff 
% w = 6;              %rotation rate in rpm 
%Material Selection: AL 6061-T6 
rho = 2.85 * 10^3;  %kg/m^3, density 
Ftu = 290 * 10^6;   %Pa, Allowable Tensile Ultimate Stress 
 
% Design Factors 
Pmax = 0.1096 * 10^6;   %Pa, Maximum Internal Pressure 
SF = 2.0;           %Safety Factor 
 
Pu = SF * Pmax;     %Design Ultimate Internal Pressure 
 
switch lower(design) 
    case {'emff', 'tether'} 
        r = D/2;            %m, Radius of the cylinder 
        l = (V/N)/(pi*r^2);     %m, Length of the Cylinder 
        % Thin-Walled pressure cylinder thickness 
        t = Pu * r / (Ftu); %m 
         
        if t < 0.015 
            t = 0.015;      %minimum thickness necessary for radiation dosage 
        end 
         
        %Calculating the mass of the cylinder structure 
        Mcyl = 2 * r * l * t * rho; 
        Mends = pi * r^2 * t * rho; 
        mass = 2 * Mends + Mcyl; 
         
    case {'multiple'} 
        Vi = V/N; 
        r = D/2;            %m, Radius of the cylinder 
        l = Vi/(pi*r^2);     %m, Length of the Cylinder 
         
        % Thin-Walled pressure cylinder thickness 
        t = Pu * r / (Ftu); %m 
         
        if t < 0.015 
            t = 0.015;      %minimum thickness necessary for radiation dosage 
        end 
         
        %Calculating the mass of the cylinder structure 
        Mcyl = 2 * r * l * t * rho; 
        Mends = pi * r^2 * t * rho; 
        mass = (2 * Mends + Mcyl); 
    case {'monolith'} 
        %Given V 
        %R is set from minimum radius needed for artifical gravity 
         
        rt = 1/pi * sqrt(V/(2*R));    %inner toroid radius 
        %if rt < some height, then rt = minimum height 
        if rt < 1.8288/2 % if height is less than six feet 
            rt = 1.8288/2;    %meters 
        end 
         
        t = Pu * rt / Ftu;  %m 
        if t < 0.015 
            t = 0.015;      %minimum thickness necessary for radiation dosage 
        end 
         
        %Calculating the mass of the toroid structure 
        Mass_toroid = rho * t * (2*pi*rt) * (2*pi*R); 
         
        %Calculating the mass of the center spherical shell 
        %         rs = 1/10 * R; 
        %         t_shell = 0.015; 
        %         Mass_shell = 4*pi*rs^2 * t_shell*rho; 
        %          
        %         %Calculating the mass of the beams 
        %         Num_beams = 4; 
        %         rb = R - rs; 
        %         h = 0.1;    %beam width 
        %         Mass_beam = rb * h^2 *rho; 
         
        %Calculating total monolith mass 
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        %         mass = Mass_toroid + Mass_shell + Mass_beam * Num_beams; 
        mass = Mass_toroid; 
    otherwise  
        disp('Unknown method.') 
end 
 
 

tether_mass.m 
function [mass]=tether_mass(AG_type, n, w, dry_mass, tether_mat, g_des) 
 
% Function "tether_mass.m" takes parameters of the system and returns the 
% calculated mass of the tether. 
% 
% Inputs: 
%    AG_type [] - The type of system in question (monolith, multiple, tether, emff) 
%    n [] - The number of spacecraft, only applicable for the pinwheel design 
%    w [rad/s] - The desired rotational rate of the system [to be hardcoded?] 
%    dry_mass [kg] - The dry mass of the spacecraft.  This should be a row 
%       vector with appropriate dimensions as follows: 
%           * Monolith: N/A 
%           * EMFF: N/A 
%           * Single Tether: [(habitation module)  (other mass)]    ###[1x2] 
%           * Pinwheel: (mass of nodes, assumed uniform)     ###[1x1] 
%    tether_mat [] - Indicates what tether material should be used 
%    g_des [m/s^2] - The desired acceleration at the habitation module 
% 
% Outputs: 
%    mass [kg] - The mass of the tether 
 
% Constants 
 
rmin = 30; %meters 
wmax = 6; %rpm 
verbose = 1; 
 
% /Constants 
 
% Tether 
 
% source for this stuff 'http://callisto.my.mtu.edu/my4150/props.html' is ok 
 
if strcmp(tether_mat, 'kevlar') 
    sig_uts = 3.6e9;     % [Pa] 
    density = 1440;    % [kg/m^3] 
elseif strcmp(tether_mat, 'spectra') 
    sig_uts = 2.6e9;     % [Pa] 
    density = 970;    % [kg/m^3] 
else 
    fprintf('Error :: tether_mass :: Unknown tether material!\r') 
end 
 
 
% /Tether 
 
wmax = wmax*pi/30;  % rad/s 
if (w > wmax) 
    fprintf('Warning :: tether_mass :: Spacecraft spinning too fast!\r') 
end 
 
if strcmp(AG_type, 'monolith') 
    mass=0; 
elseif strcmp(AG_type, 'emff') 
    mass=0; 
elseif strcmp(AG_type, 'tether') 
    m1=dry_mass(1); 
    m2=dry_mass(2); 
    r_des = g_des/w/w;   % calculate 'desired' radius to get desired acceleration 
    if (r_des < rmin); 
        r_des = rmin; 
        w = sqrt(g_des/r_des); 
        fprintf(['Warning :: tether_mass :: Calculated radius is below minimum, used minimum 
radius of ' num2str(rmin) ' [m].\r']) 
        fprintf(['                          Angular rate should be less than ' num2str(w*30/pi) ' 
[rpm].\r']) 
    end 
    tlength=r_des*(m1+m2)/m2;    % calculate tether length based on desired radius and relative 
masses 
    F=m1*r_des*w*w;   % calculate tension in the tether 
    A=F/sig_uts;   % required tether area is tension/ultimate tensile strength 
     
    mass=density*tlength*A * 5;    % calculate tether mass using factor of safety of 5 
     
    if (verbose == 1) 
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        fprintf(' \r') 
        fprintf(['Designed a ''' AG_type ''' tether of ' tether_mat '.\r']) 
        fprintf(['Desired radius: ' num2str(r_des) ' [m].\r']) 
        fprintf(['Tether length:  ' num2str(tlength) ' [m].\r']) 
        fprintf(['Tether tension: ' num2str(F) ' [N].\r']) 
        fprintf(['Tether area:    ' num2str(A) ' [m^2].\r']) 
        fprintf(['Tether mass:    ' num2str(mass) ' [kg].\r']) 
        fprintf(' \r') 
    end 
     
elseif strcmp(AG_type, 'multiple') 
    m=dry_mass(1); 
    r_des = g_des/w/w;   % calculate 'desired' radius to get desired acceleration 
    if (r_des < rmin); 
        r_des = rmin; 
        w = sqrt(g_des/r_des); 
        fprintf(['Warning :: tether_mass :: Calculated radius is below minimum, used minimum 
radius of ' num2str(rmin) ' [m].\r']) 
        fprintf(['                          Angular rate should be less than ' num2str(w*30/pi) ' 
[rpm].\r']) 
    end 
    alpha=2*pi/n;  % angle between the spokes 
    beta=.5*(pi-alpha);  % angle betwen spokes and outer strands 
    tlength1=n*r_des;    % calculate length for the spokes 
    tlength2=n*2*r_des*sin(alpha/2);  % calculate length for outer strands 
     
    F1=m*r_des*w*w;   % calculate tension in the spoke tethers 
    F2=F1/2/cos(beta);   % calculate tension in the rim tethers 
     
    A1=F1/sig_uts;    % required tether area is tension/ultimate tensile strength 
    A2=F2/sig_uts; 
     
    mass1=density*tlength1*A1 * 5;   % calculate spoke tether masses using factor of safety of 5 
    mass2=density*tlength2*A2 * 5;   % calculate rim tether masses using factor of safety of 5 
     
    mass=mass1+mass2; 
     
    if (verbose == 1) 
        fprintf(' \r') 
        fprintf(['Designed a ''' AG_type ''' tether of ' tether_mat '.\r']) 
        fprintf(['Desired radius: ' num2str(r_des) ' [m].\r']) 
        fprintf(['Spoke tether length (total):  ' num2str(tlength1) ' [m].\r']) 
        fprintf(['Outer tether length (total):  ' num2str(tlength2) ' [m].\r']) 
        fprintf(['Spoke tether tension: ' num2str(F1) ' [N].\r']) 
        fprintf(['Outer tether tension: ' num2str(F2) ' [N].\r']) 
        fprintf(['Spoke tether area:    ' num2str(A1) ' [m^2].\r']) 
        fprintf(['Outer tether area:    ' num2str(A2) ' [m^2].\r']) 
        fprintf(['Spoke tether mass:    ' num2str(mass1) ' [kg].\r']) 
        fprintf(['Outer tether mass:    ' num2str(mass2) ' [kg].\r']) 
        fprintf(['Total tether mass:    ' num2str(mass) ' [kg].\r']) 
        fprintf(' \r') 
    end 
     
else 
    fprintf('Error :: tether_mass :: Unknown spacecraft type!\r') 
end 
 
 

propulsion.m 
function mass=propulsion(AG_type, n, w, dry_mass, r_outer) 
 
% function 'proplusion.m' calculates the required fuel mass for both 
% "spin-up" and initiation of the interplanetary transfer orbit.   
 
% dry_mass should be the dry mass of a single 'pod' 
 
% Inputs: 
%    AG_type [] - The type of system in question (monolith, multiple, tether, emff) 
%    n [] - The number of spacecraft, only applicable for the pinwheel design 
%    w [rad/s] - The desired rotational rate of the system [to be hardcoded?] 
%    dry_mass [kg] - The dry mass of the spacecraft.  This should be a row 
%       vector with appropriate dimensions as follows: 
%           * Monolith: N/A 
%           * EMFF: N/A 
%           * Single Tether: [(habitation module)  (other mass)]    ###[1x2] 
%           * Pinwheel: (mass of nodes, assumed uniform)     ###[1x1] 
%    r_outer [m] - moment arm to the thruster 
% 
% Outputs: 
%    mass [kg] - The mass of the propulsion system per pod 
 
MU_s=1.327e20;  %m^3/s^2, gravitational constant for the sun 
MU_e=3.986e14;   %m^3/s^2, gravitational constant for the earth 
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res=1.5e11;    %m, earth-sun distance 
re_mag=6.38e6;   %m, earth radius 
 
parking=200e3;  % parking orbit ALTITUDE in km 
 
planet1 = 3;  % choose Earth as the origin 
planet2 = 4;  % choose Mars as the destination 
 
planet(1)=0.3871;    % define planetary radii for future use 
planet(2)=0.7233; 
planet(3)=1; 
planet(4)=1.524; 
planet(5)=5.203; 
planet(6)=9.519; 
planet(7)=19.28; 
planet(8)=30.17; 
planet(9)=39.76; 
 
planet = planet * res;   % put planet distances in [m] 
 
[r, v] = ic_circ(MU_s, planet(planet1));   % get circular initial conditions for the Earth 
[dv, t_trans]=hohmann(MU_s, r, v, planet(planet2));  % calculate dV and transfer time for hohmann 
to mars 
 
[re, ve] = ic_circ(MU_e, re_mag+parking);   % get circular initial conditions for circular 200km 
parking orbit 
[eta, dv_earth, t_soi] = p_conic(MU_e, MU_s, norm(dv), re, ve, res);  % find the dV required to 
Mars from the parking orbit 
 
i_mass=r_equation(dry_mass, dv_earth);   % find the mass required for insertion 
 
% s_mass is the spin-up propulsion system mass 
 
if strcmp(AG_type, 'monolith') 
    % assumes a pair of thrusters at the rim of the craft, to set up a couple 
    dv_req=w*r_outer; 
    s_mass=r_equation(dry_mass, dv_req); 
elseif strcmp(AG_type, 'emff') 
    s_mass=0; 
elseif strcmp(AG_type, 'tether') 
    dv_req=w*r_outer; 
    s_mass=r_equation(dry_mass, dv_req); 
elseif strcmp(AG_type, 'multiple') 
    dv_req=w*r_outer; 
    s_mass=r_equation(dry_mass, dv_req); 
end 
 
mass=i_mass + s_mass; 
 
 

ic_circ.m 
function [r, v] = ic_circ(MU, r_init) 
 
% calculate circular initial conditions (position and velocity) given  
%   a central body and an initial radius 
 
r = [r_init 0 0]; 
vc = sqrt(MU/r_init); 
v = [0 vc 0]; 
 
 

hohmann.m 
function [dv, t_trans]=hohmann(MU, r, v, r_target) 
 
% Function ip_hohmann takes the current (sun-centered inertial) position 
%    and velocity vectors, verifies an initial circular orbit, and then 
%    calculates the delta-V required at that instant to enter a 
%    minimum-energy (Hohmann) transfer to a given radius (scalar).  The 
%    function also returns the time of transfer, which is half the period 
%    of the transfer orbit. 
 
% MU is the gravitational parameter of the central body (m^3/s^2) 
% r is the radius vector to the spacecraft (sun-centered) 
% v is the velocity vector of the spacecraft (sun-centered) 
% r_target is the orbital radius of the target planet 
 
h = cross(r,v);       % angular momentum vector 
h_mag = norm(h); 
p = h_mag*h_mag/MU;     % orbit parameter 
a = -1/((norm(v)^2)/MU-2/norm(r));     % semimajor axis 
e = sqrt(1-p/a); 
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if ( e > .01) 
    fprintf('Error :: IC :: Initial orbit is not circular!\r') 
    fprintf(['Orbital eccentricity is ' num2str(e) '!\r']) 
end 
 
r_mag = norm(r); 
 
a_trans = (r_mag + r_target)/2; 
v_trans_i = sqrt(MU*(2/r_mag - 1/a_trans)); 
 
dv_trans = v_trans_i - norm(v); 
dv = dv_trans*v/norm(v); 
 
t_trans=2*pi*sqrt((a_trans^3)/MU)/2; 
 
 
 

p_conic.m 
function [eta, dv, t_soi] = p_conic(MU1, MU2, v_inf, r, v, rps) 
 
% inputs: 
%   MU1: MU for the primary body, i.e. escaping from Earth orbit 
%   MU2: MU for the contending body in the SOI problem, typically the sun 
%   v_inf: the scalar velocity required at r_inf to enter the desired 
%      helicentric transfer.  Found by solving heliocentric problem. 
%   r: the radius vector to the spacecraft 
%   v: the velocity vector of the spacecraft 
%   rps: the distance between the two SOI bodies, i.e. the Earth and Sun 
 
% returns: 
%   eta: the angle between the velocity vector of primary body and radius vector to s/c 
%   dv: the scalar change in velocity required to get the desired v_inf 
%   t_soi: the time required to reach the sphere of influence (SOI) 
 
rc = norm(r); 
vc = norm(v); 
 
v1 = sqrt(v_inf^2 + 2*MU1/rc);    % required velocity at the parking orbit radius 
 
energy = (v_inf^2)/2; 
h = rc*v1; 
ei = sqrt(1 + 2*energy*h^2/MU1^2);   % eccentricity of the transfer orbit 
 
 
eta = acos(-1/ei);    % angle between the velocity vector of primary body and radius vector to 
s/c 
dv = v1 - vc;   % the required delta-v 
 
p = 2*rc; 
r_soi=(rps)*(MU1/MU2)^(2/5);    % the radius of the sphere of influence 
 
f = acos((p/r_soi-1)/ei);   % the true anomaly there 
 
H = 2*atanh(sqrt((ei-1)/(ei+1))*tan(.5*f));   % the hyperbolic anomaly there 
 
N = ei*sinh(H) - H;   % kepler's equation for hyperbolas, N ~~ Mean anomaly 
 
 
a = p/(1-ei^2);   % the 'semi-major axis' of the hyperbola (<0!) 
 
t_soi = N/sqrt(MU1/(-a)^3);   % the time to reach the sphere of influence (r = r_inf, v = v_inf) 
 
 
 

r_equation.m 
 
function mass=r_equation(dry_mass, dV) 
 
% !!!The Rocket Equation!!! 
 
% function 'r_equation.m' takes the dry mass of the vehicle and the 
%   required dV to gain the transfer orbit, and computes the mass of 
%   fuel required for injection (given a particular thrusting system) 
% 
% Inputs: 
%   dry_mass [kg] - The mass of the spacecraft w/o fuel 
%   dV [m/s] - The change in velocity required to gain the transfer orbit 
% 
% Outputs: 
%   mass [kg] - The mass of the fuel required 
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% Assume typical bipropellant chemical thruster w/ Isp ~ 350s 
 
Isp = 350; 
g = 9.81; 
 
mass = dry_mass * (1-exp(-(dV/(Isp*g)))); 
 

emff.m 
function [mass_coil] = emff(V, D,R, w, Mass_tot) 
%The code uses the size of the cylinder as the size of the coils,  
%the total dry mass each satellite, the radius of rotation,  
%and the rotation rate to determine the mass of the coils  
%for a three spacecraft collinear array.   
 
r = D/2;            %m, Radius of the cylinder 
l = V/(pi*r^2);     %m, Length of the Cylinder 
Ic_pc = 16250;      %Superconducting coil current density divided by wire density. 
w_rad = w * 2*pi/60;%converting rpm to rad/sec 
 
mass_coil = w_rad/(l*Ic_pc)*sqrt(Mass_tot * (R + r)^5 /(3 * 17 * 10^-7));  
 

cost.m 
%This module determines cost of a mars transfer vehicle based on vehicle 
%weight. 
 
%References: 
% 1. Reynerson, C. "Human Space System Modeling: A tool for designing 
%inexpensive Moon and Mars exploration missions" 
 
% 2. SMAD 
 
function [TotalCost, SpaceSegCost, LVCost, OpSupCost]=cost(mass,TRL,duration) 
 
%mass: is total mass of vehicle in kg 
%TRL: is technology readiness level and should range from 1 to 9. 
%duration: is duration of mission in years 
 
Infl = 1.052; %inflation factor to convert from FY00$ to FY03$ [2] 
 
%Space segment costs 
 
%Space Segment Cost Factor 
Scf = 157e3; % ($/Kg) we use maximum value to obtain conservative estimate [1] 
 
%Program level Cost Factor 
Pcf = Infl * 1.963*(523e6)^0.841; %($) Program level cost estimated from table 20-4 [2] 
 
%RTDECF of 1 means program based on existing hardware,  
%3 means new development program, 2 is somewhere in between [1]  
%Rcf = 2;  
 
%Heritage Cost Factor: assume that a TRL of 9 means 90% heritage,  
%therefore 10% extra needs to be spent in RDTE, [2] pg 798.  
Hcf = 2-TRL/10;  
 
%SpaceSegCost = Scf*Rcf*Hcf*Mass+Pcf; 
SpaceSegCost = Scf*Hcf*mass+Pcf; 
%**************************************************************** 
 
%Launch Vehicle Cost 
 
%Launch Vehicle cost factor 
Lcf = 15.4e3; %($/Kg) [1] 
 
%Insurance cost factor 
Icf = 1.5; %for commercial launches it is 1.33, for govt. we are assuming a bit higher number [1] 
 
LVCost = Lcf*Icf*mass; 
 
%******************************************************************** 
 
%Ground Operations and Support Costs 
 
OpSupCost = 1.5e9*(duration); %($) ISS operational budget is $13 billion for 10 years [1] 
 
 
%************************************************************************** 
 
TotalCost = SpaceSegCost+LVCost+OpSupCost; 
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