Lecture, Reading & PSets:

Chap 2: E-fields -- sources, "kinetics"

- What are <u>E</u> and <u>H</u> fieldsin BioSystems....
- Concepts: (1) QuasiStatics; (2) Charge Relaxation
- Some important & useful applications

<u>Chap 3</u>: Transport & Electrochemical Interactions Effects of Molecular Charge on:

- Donnan Partitioning into tissues, gels, cells, ECM
- <u>Electrostatics</u> ↔ <u>Binding</u> (to ECM / ICM, receptors)
- <u>Osmotic Pressure</u> in tissues/gels
 Term Paper
- <u>Diffusion</u> (D_{eff}): effects of electrostatic interactions

(Come back to this at end: "Integrative Case Studies)

Spatial Configuration and Composition of Charge Modulates Transport into a Mucin Hydrogel Barrier Biophysical J 2013

Leon D. Li,^{†‡§} Thomas Crouzier,[‡] Aniruddh Sarkar,[§] Laura Dunphy,[‡] Jongyoon Han,^{‡§} and Katharina Ribbeck[‡]* [†]Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts; [‡]Departments of Biological Engineering and [§]Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

ABSTRACT: The mucus barrier is a **glycoprotein gel** that coats all wet surfaces in the human body, including the respiratory, gastrointestinal, and urogenital tracts.

- Criteria that govern transport through mucus barrier are unknown.
- Charge distribution of solutes is a critical parameter to modulate transport through mucin-based barriers: implications for drug delivery
- lonic strength within the mucin barrier strongly influences transport specificity

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© Royal Society of Chemistry. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Li, Leon et al. "A microfluidic in vitro system for the quantitative study of the stomach mucus barrier function." Lab on a Chip 12, no. 20 (2012): 4071-4079.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Li, Leon D. et al. "Spatial configuration and composition of charge modulates transport into a mucin hydrogel barrier." Biophysical Journal 105, no. 6 (2013): 1357-1365. **Fig. 1** Microfluidic device enables mucin barrier formation on-chip.

- (a) A mucin sample initially filling both the flow and mucin channels (step 1, top-down view) is shaped into a layer of fixed width between a buffer flow and a microfluidic valve inside the mucin channel (step
 - 2). Fluorescent peptides flushed into the device arrive at the mucin barrier surface and transport into the mucin barrier over time. (step 3)
- (b) Formation and stability of the mucin barrier on-chip is assessed using fluorescently labeled mucins, showing that the mucin barrier surface interface is stable over time.
- (c) Mucins are gradually lost from the mucin barrier over time, likely due to surface fluid shearing. We limit the duration of permeability measurements to 10 min to ensure that a majority of the initial mucin quantity remains inside the mucin barrier during the experiment. n = 3 devices.

4 $N_i = -D_i \nabla c_i$ (1) $= -\nabla N_i + Q_i$ mobile charges (2) e.g., ions (3) $\nabla \cdot \epsilon E = \int_{e}^{TOT} \{\xi, z; Fc\}$ (4) $\nabla x E = 0 \implies E =$ fixed charge in molecular (5) $\nabla \cdot J = - \partial e/\partial t$ matrix $J = \sum_{i=1}^{n} FN_i = \sigma E + () \nabla c_i$ (6) "Complete Description of Electrochemical Coupling & Transport"

6 (1) - 7. N: + Q: mobile charges (2) e.g., ions $\nabla \cdot \epsilon E = \int_{e}^{TOT} = \{ \xi, z; F\}$ (3) $(4) \ \nabla x E = 0$ fixed charge in molecular $\nabla \cdot \mathbf{J} = -\partial \mathbf{e}$ matrix ~0 (5) $J = \sum_{i=1}^{N} FN_i = \sigma E + () \nabla c_i$ (6) "Complete Description of Electrochemical Coupling & Transport"

<u>E</u>ⁱⁿ = dipole + uniform field to match BC at r=R

7

Equilibrium Upteake of Pfizer Mystery Drug: 760 Da; pI ~11 (peptide; basic) ???????

Courtesy of Alan Grodzinsky. Used with permission.

Can drug charge increase penetration and retention of drug into desired tissue (tumor...)

10 Equilibrium $\frac{z_i}{z_i}u_ic_i E$ =0 • (1) $-\nabla N_i + Q_i$ mobile charges (2) e.g., ions $\nabla \cdot \epsilon E = \int_{e}^{TOT} \{ \xi, z; F \}$ (4) $\nabla x E = 0 \implies E = -\nabla$ fixed charge in molecular $\nabla \cdot \mathbf{J} = - \partial \mathbf{r}$ matrix =0 $J = \sum_{i=1}^{n} F_{N_{i}} = \sigma E + () \nabla c_{i}$ "Complete Description of Electrochemical Coupling & Transport"

"Donnan Equilibrium"
(1)
$$M_i = \left[-D_i \nabla c_i + \frac{Z_i}{|Z_i|} u_i c_i E \right] = 0$$

Boltzmann: $c_i = c_{i0} e^{-Z_i F \Phi(x)/RT}$
(for all species) $\left[\left(\frac{\tilde{c}_+}{c_+} \right)^{1/Z_+} = \left(\frac{\tilde{c}_-}{c_-} \right)^{1/Z_-} = \text{const} = e^{-F \Delta \Phi_D/RT} \right]$
(3) $\nabla \cdot \epsilon E = \int_e^{\infty} e^{-\varepsilon} \left[\left\{ z_i + \overline{c}_i + \overline{c}_i \right\} \right] = 0$
Electroneutrality $\bar{\rho}_m(x) + \sum_i z_{i+} F \bar{c}_{i+}(x) + \sum_j z_j - F \bar{c}_{j-}(x) = 0$

(1) Boltzmann (for all species)

(3) <u>Electroneutrality</u> (with approximations): $\overline{\rho}_{m} + F(\overline{C}_{Na} - \overline{C}_{Cl}) = 0$

Can You Use Donnan to Find: Charge of the Drug ??

Pfizer Mystery Drug: "Pf-Pep" 760 Da; pl ~ 11 (5 amino acids; basic)

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Nobel Prize in Chemistry, Oct 9, 2013...... for the

development of multiscale models for complex chemical systems.... The computer simulations combine classical physics, which is able to track a multitude of atoms, and quantum mechanics.... including electrostatic interactions....

CHARMM (Chemistry at HARvard Macromolecular Mechanics) is the name of a widely used set of force fields for molecular dynamics as well as the name for the molecular dynamics simulation and analysis package associated with them. The CHARMM Development Project involves a network of developers throughout the world working with Martin Karplus and his group at Harvard to develop and maintain the CHARMM program.

Photographs of scientists removed due to copyright restrictions.

Does Pfizer "Pf-pep" bind to charge groups inside cartilage (tumor ECM, etc?)

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

$$R_{U} = K_{part} \left(1 + \frac{r^{0}}{K_{d} + c_{F}} \right)$$

Uptake of Pf-pep Measured at pH 7

<u>Non-Equil</u> <u>Transport</u> into and across tissue of "¹²⁵I-Pf-pep" = (Arg-Tyr-Lys-Arg-Thr)

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Transport and equilibrium uptake of a peptide inhibitor of PACE4 into articular cartilage is dominated by electrostatic interactions

results suggest that small positively charged therapeutics will have a higher concentration within cartilage than in the surrounding synovial fluid, a desired property for local delivery; however, such therapeutics may rapidly diffuse out of cartilage unless there is additional specific binding to intra-tissue substrates that can maintain enhanced intra-tissue concentration for local delivery.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Byun, Sangwon et al. "Transport and equilibrium uptake of a peptide inhibitor of PACE4 into articular cartilage is dominated by electrostatic interactions." Archives of Biochemistry and Biophysics 499, no. 1 (2010): 32-39.

A Role for PACE4 in Osteoarthritis Pain: Evidence from Human Genetic Association and Null Mutant Phenotype

Anne-Marie Malfait^{1,*}, Albert B. Seymour², Feng Gao², Micky D. Tortorella³, Marie-Pierre Hellio Le Graverand-Gastineau², Linda S. Wood², Michael Doherty⁴, Sally Doherty⁴, Weiya Zhang⁴, Nigel K. Arden⁵, Frances L. Vaughn⁶, Paul L. Leaverton⁶, Tim D. Spector⁷, Deborah J. Hart⁷, Rose A. Maciewicz⁸, Kenneth R. Muir⁹, Rosalina Das¹, Robert E. Sorge¹⁰, Susanna G. Sotocinal¹⁰, Ara Schorscher-Petcu¹⁰, Ana M. Valdes⁷, and Jeffrey S. Mogil¹⁰ ¹Rush University Medical Center, Chicago IL

²Pfizer Worldwide Research and Development, Cambridge MA

³Guangzhou Institute for Biomedical Health, Guangzhou China

⁴University of Nottingham, UK

⁵University of Oxford UK

⁶The Arthritis Research Institute of America, Clearwater FL

⁷King's College London UK

⁸AstraZeneca, Charnwood R&D, Loughborough, UK

PACE4 = a "pro-protein convertase"....activates matrix metalloproteases and ADAMTS-family proteases

⁹Health Sciences Research Institute, Warwick Medical School, University of Warwick UK

¹⁰Dept of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal QC Canada

25 Non-Equilibrium (C D. Vc. • (1) $= -\nabla \cdot N_i + Q_i$ mobile charges (2) e.g., ions (3) $\nabla \cdot \epsilon E = \rho = \{ \xi : \xi : Fc; \}$ (4) $\nabla x E = 0 \implies E = -\nabla \overline{\Phi}$ fixed charge in molecular (5) $\nabla \cdot J = - \frac{\partial e}{\partial t} = 0$ matrix $J = \sum_{i=1}^{n} FN_i = \sigma E + () \nabla c_i$ (6) "Complete Description of Electrochemical Coupling & Transport"

Spatial Configuration and Composition of Charge Modulates Transport into a Mucin Hydrogel Barrier Biophysical J 2013

Leon D. Li,^{†‡§} Thomas Crouzier,[‡] Aniruddh Sarkar,[§] Laura Dunphy,[‡] Jongyoon Han,^{‡§} and Katharina Ribbeck[‡]* [†]Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts; [‡]Departments of Biological Engineering and [§]Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

ABSTRACT: The mucus barrier is a **<u>glycoprotein gel</u>** that coats all wet surfaces in the human body, including the respiratory, gastrointestinal, and urogenital tracts.

- Criteria that govern transport through mucus barrier are unknown.
- Charge distribution of solutes is a critical parameter to modulate transport through mucin-based barriers: implications for drug delivery
- lonic strength within the mucin barrier strongly influences transport specificity

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© Royal Society of Chemistry. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Li, Leon et al. "A microfluidic in vitro system for the quantitative study of the stomach mucus barrier function." Lab on a Chip 12, no. 20 (2012): 4071-4079.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Li, Leon D. et al. "Spatial configuration and composition of charge modulates transport into a mucin hydrogel barrier." Biophysical Journal 105, no. 6 (2013): 1357-1365. **Fig. 1** Microfluidic device enables mucin barrier formation on-chip.

- (a) A mucin sample initially filling both the flow and mucin channels (step 1, top-down view) is shaped into a layer of fixed width between a buffer flow and a microfluidic valve inside the mucin channel (step
 - 2). Fluorescent peptides flushed into the device arrive at the mucin barrier surface and transport into the mucin barrier over time. (step 3)
- (b) Formation and stability of the mucin barrier on-chip is assessed using fluorescently labeled mucins, showing that the mucin barrier surface interface is stable over time.
- (c) Mucins are gradually lost from the mucin barrier over time, likely due to surface fluid shearing. We limit the duration of permeability measurements to 10 min to ensure that a majority of the initial mucin quantity remains inside the mucin barrier during the experiment. n = 3 devices.

Peptide Solutes containing 20 amino acids:

- K = lysine (10, +)
- E = glutamic acid (10, -)
- A = alanine (10, neutral)

```
Fluorescein tag 🗘
net charge = -1
```


0.5% mucin in 20 mM NaCl / 20mM HEPES; peptides at 4 μ M

29

Source: Li, Leon D. et al. "Spatial configuration and composition of charge modulates transport into a mucin hydrogel barrier." Biophysical Journal 105, no. 6 (2013): 1357-1365.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Li, Leon D. et al. "Spatial configuration and composition of charge modulates transport into a mucin hydrogel barrier." Biophysical Journal 105, no. 6 (2013): 1357-1365.

5 mM 20 mM 200 mM

Effects of lonic Strength: shields electrostatic binding interactions

The ionic strength of the mucin barrier can regulate its selective properties.

 Increasing ionic strength within the mucin barrier significantly increases penetration and transport of the cationic (9-fold increase in accumulation from 5 to 200 mM ionic strength), but only marginally increases transport of the anionic peptide

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Li, Leon D. et al. "Spatial configuration and composition of charge modulates transport into a mucin hydrogel barrier." Biophysical Journal 105, no. 6 (2013): 1357-1365. 20.430J / 2.795J / 6.561J / 10.539J Fields, Forces, and Flows in Biological Systems $\mathsf{Fall}\ 2015$

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.