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PROFESSOR: You get your quizzes back on Monday. Maybe you've had some time to think about them and

reflect on your answers and the problems that were posed, maybe how they compared to the

quiz that-- sample quiz that was put online. I think it was pretty fair exam overall. It looked very

similar, actually, to the exam that we've given in the past, but we tried to-- tried not to put any

sort of chemical engineering problems on top of the numerics, which tends to lead to

confusion basically. Spent a lot of time reading and trying to understand what the underlying

physical problem is instead of just testing the numerical methods.

Are there any questions about the quiz now that you've gotten it back? You've seen your

answers, things that were unclear that were asked on there? Now is a good time for reflection

if there are. No. I heard this last homework assignment was really long, so sorry about that. I

didn't write this one.

[LAUGHS]

I'm not going to Take credit for it. It's hard to judge sometimes how long these things take. A

lot of it has to do with how facile you are with coding up some of the problems. So conceptually

they can be simple, but the coding can be quite difficult, so it's hard to estimate. I think this

week's, which should be posted and is on the topic of DAE, should be easier. It's only got two

problems instead of three. You're likely going to be able to leverage some of the code from

your solution last week for this week. So I don't think it should be quite so challenging.

There is a last part to the first problem that seems to always give first-year graduate students

trouble. Somehow you guys don't know how to write down energy balances on reactors. So

you might ask pointed questions about this at your office hours, so you don't spend time trying

to solve the wrong equations. This happens. I think many of you maybe were taught

incorrectly or just forgot at some point how to write these things down. So the office hour is a

good point to bring that up, and that way you don't spend a lot of time troubling yourself with

the wrong system of equations. Any questions? Yes.



AUDIENCE: [INAUDIBLE]

PROFESSOR: What's that? I'd-- well, to be fair, almost all the lectures for the rest of the class are going to be

taught by Professor Green. I'll step in and do some review for two sessions, review before the

second quiz and review before the final. Since he's leading the lectures, he'll be responsible

for largely generating the homework assignments. I'll try to help out with that as best I can, but

this will be the last formal lecture you get from me this term. Other questions? Well, that's very,

very sweet of you. Thank you so much. Least there wasn't any hushed yes!

Today's lecture is our last one on DAE, so we're only going to do two. You're going to see

today that differential algebraic equations are pretty complicated actually. And when they get

sufficiently complicated, you really need to reach out to existing codes that are designed to

solve particular classes of differential algebraic equations. So for you, it's more important to be

able to identify in the models you formulate when these complications arise and what are the

essential ingredients of the model that can be put into one of these solvers that you get a

result that isn't nonsense.

And that's what we're going to do today. There's going to be lots of examples to work through.

So make sure you're sitting next to somebody you like because I'm going to ask you to try to

think about these things and discuss things as we go through. Let me review where these

complications come from.

So last time we talked briefly about semi-explicit and fully-implicit differential algebraic

equations. I told you in principle, you could simulate these things with backwards difference

formulas in solving nonlinear equations at each time step and just marching forward. Did this

in your homework for ODE IVP So you can do the same thing for differential algebraic

equations. But there was a catch to that, and I illustrated that at the very end. So maybe your

brain was fried at the end, and you missed this. It's good to recap.

So I showed you an example of a stirred tank where you had some-- you had transport of

some solute into the stirred tank, and then you're pulling it out at a different concentration. And

we're trying to track the dynamics of the system, the concentration in and the concentration

out, and we imagined a problem in which we measured and the concentration in and we tried

to predict the concentration out. So we had a system of differential and algebraic equations to

solve. And I showed you that if I used the backward Euler method, the lowest order backwards

difference formula that I can-- of the canonical class of these things that I can craft, where I



approximate the derivative of an unknown with a relative error or an error proportional to the

time step delta t, that carrying out one time step with this backward differentiation formula

would determine c1 in principle exactly-- if I knew gamma exactly, I would know c1 exactly.

And it would determine c2 to within order delta t-squared. It's the local truncation error here

was order delta t-squared. So you just substitute this formula in, and you ask does this error

term change at all. At some point, I wind up multiplying by delta t, and so I go from order delta

t to order delta t-squared It's the numerical error that gets carried around in this calculation.

I just switch the model a little bit. It seems like a irrelevant change, but it turns out to be

incredibly significant. So now I imagine a different problem in which I'm measuring c2 the

outlet, and I want to predict c1 the inlet. I still have a system of DAEs that I have to solve, and

if I applied the backwards Euler method, well, c2 is automatically determined by this algebraic

equation. So I know that exactly. I got to go up to this first equation and solve it for c1, and

when I do, I have to have an approximation for the derivative. And the derivative is

proportional to delta t-- carries an error around with it that's proportional to delta t.

So I know c1 to within order delta t, not order delta t-squared like in the previous model. So

there's something fundamentally different about these two circumstances. And all I did was go

from c1 to c2 in this algebraic equation. So that's peculiar, and that should make you really

suspicious about your ability to solve these problems accurately.

And here was the third example I gave you. So I said imagine this system of DAEs instead. So

here's the differential equation. Here's an algebraic equation. Apply the backward Euler

method. Well, c3 is determined automatically by this algebraic equation. I know it exactly. C2 is

related to the derivative of c3, so I need to approximate it with my backward Euler derivative.

And that picks up an error, order delta t. C1 is equal to the derivative of c2, so I need an

approximation for c2. The derivative of c2 that's the backwards Euler approximation. That has

an error that's proportional to order delta t. But c2 itself also has an error proportional to order

delta t. And order delta t divided by delta t is order 1.

So I get c3. I get c2. I even know what c1 is. I solve this problem with my backwards difference

formula, and I have no resolution of c1, no clue what that value is. So this is some complicated

control scheme that I've set up, and I need to know the value of c1 to figure out how to

operate this process. I'm lost. This is never going to work.

So these three problems have fundamental differences between them. And I'm going to show



you how to predict when these differences are going to occur, how to name them. So the

stirred tank example 1, it carried a local truncation error, one time step order delta-t squared.

Stirred tank example 2 carried a local truncation error. It's order delta-t. This third DAE

example had a local truncation error that's order 1. No change in delta-t will improve my

solution to that problem. It's independent of how I choose to do my time setting, which, of

course, is ridiculous.

So here's another problem. And I'd like you to try to do this. We'll see how far you can get

through it. You don't have to get all the way through it, but see how far you can get through

this problem. So can you apply the backward Euler method to this system of DAEs and try to

predict how the air propagates.

[INTERPOSING VOICES]

OK, I don't want to break up the conversation too much, but tell me what you're finding as you

try to do this. Yes.

AUDIENCE: We found that c3 has to be 0.

PROFESSOR: OK. How did you find that c3 has to be 0?

AUDIENCE: Stick in this [INAUDIBLE] that's what the difference is of the [INAUDIBLE]

PROFESSOR: Yes.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Right.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Right.

AUDIENCE: [INAUDIBLE]

PROFESSOR: OK, so this is very clever, and this has to do with how the model itself is formulated. So you did

manipulations with the fundamental equations that I wrote down to determine that c3 had to be

0. That's good. We can do that. We can look at the equations. We can figure how to eliminate

variables and find out-- c3 in this case always has to be 0. That may or may not be obvious,



but one way to do it is take this constraint equation and take its derivative. This has to hold at

every point in time, so its derivative must hold at every point in time. Substitute these other two

equations in, c1 dot plus c2 dot eliminates c1 and c2, and all that will be left is c3 has to be 0.

So if I manipulate these equations, I know c3 has to be 0. Let's suppose I don't manipulate the

equations, though. Let's suppose I just put in the backward Euler approximation over here for

the derivative, and I evaluate c1, c2 and c3 at the current time and ask what is c1, c2, and c3

at the current time in terms of what it was at the previous time And you get an answer that

looks like this. So there's a simple system of equations that one has to solve. It's a three-by-

three system, and it's easy to eliminate. I didn't really expect you-- actually expected this

answer to come up because you guys are all very clever, so you try to make things easy

beforehand.

But it's-- there's a problem here. If I try to just do the backwards difference formula with the

equations as they're written, I'll find out that when I solve this thing that c1 will be c1 minus c2

at the previous time step over 2 plus an order delta t-squared error. C2 will take on the

opposite sign plus an order delta t-squared error. C3 will be minus c1 plus c2 over 2 delta t

plus an order delta t error. And actually if I were to apply successive approximations, different-

- if I step-- take many steps in a row with this backward Euler method, there's nothing to

guarantee that these constraints are satisfied exactly.

I can have numerical error in my solution of this algebraic equation. So it isn't necessarily true

that in my numerical solution c1 plus c2 is equal to 0. I can show you right here if I add c1 to

c2. Well, these two are the same. They'll cancel, but am I guaranteed that these errors will

cancel, too? Or will there be a small numerical error that propagates?

So model formulation is key. This problem is like stirred tank problem 2. One of our solutions

lost in order of accuracy in the local truncation error. It's not delta t-squared. It's order delta t.

And what you want it to do, which is not necessarily a bad thing, was to try to use this

constraint to somehow eliminate equations and simplify things. That can be helpful, but it can

also be true that if I use this constraint to simplify equations and eliminate things, my numerical

solutions may no longer satisfy the constraint at all. They may drift away from that algebraic

equation. Does that makes sense? I'm not controlling the error with respect to that equation

anymore.

So how do you give a name to this kind of behavior? And the thing one talks about is the



differential index of a DAE system. So let's look at the stirred tank example 1, and let's ask this

question. How many time derivatives are needed to convert to a system of independent ODEs

having differentials of all the unknowns. So there are two unknowns in this system. One is c1,

and the other c2. Actually have one equation, which contains a differential of c2. How many

derivatives of these equations with time do I need to take in order to get an equivalent ODE

system?

And it's just one. If I take the derivative of equation 2, I'll get a differential equation for c1. Now,

I have a differential equation for c1 and a differential equation for c2. DAEs of this type, where

I only have to take the time derivative once of the algebraic constraints, are called index 1

DAEs. We saw that when we applied the backwards difference formula to stirred tank example

1, the local truncation error was the same as what we would get in an ODE IVP system.

So index 1-- DAEs are easy to solve. They behave like ODE IVPs. You determine whether it's

index 1 or not by asking how many derivatives do I have to take in order to get a system of

independent ODEs. So I put this together with this, I have two independent ODEs. I could

solve these, subject to some set of initial conditions, and the solution might be the same as the

solution to the DAE.

Let's do stirred tank example 2 now. So here we go. They look very similar, but now c2

appears in the algebraic equation instead of c1. So let's take a derivative of the algebraic

equation, and I get a differential equation for c2. But I already had a differential equation for

c2. I want a differential equation for c1. So what do I do? While I know dc2 dt from up here. So

let's substitute that in and solve for c1. So a substitute equation 1 in here. I solve for c1. Now,

let's take another derivative. Call this equation 3. Derivative of equation 3 now gives me a

differential equation for c1. It's also in terms of dc2 dt. If I want-- I don't have to-- but if I want

to, I can substitute for that again to just get dc1 dt in terms of c1 and c2. But it took two

derivatives to generate a system of independent ODEs from the DAEs. And this is called index

2.

So it's a different character from index 1. We saw what happens. We tend to lose an order of

accuracy at index 2. Somehow index 2 problems are more sensitive than index 1 problems.

Here's another example. So DAE sample 3 is going to proceed the same way. So first we need

a differential equation. Which one's missing here? We don't have differential equation for c1,

and that's what we're hunting for. So let's take a derivative of the third equation, the algebraic



equation. We get c3 dot is gamma dot. And we already have an equation for c3 dot. That was

2. So substitute 2 in. So now we got c2 is gamma dot, but we're really looking for something in

terms of c1, so let's take the derivative again. We've got c2 [? dot ?] is gamma dot dot. Doesn't

help us much, but c2 dot we know is equal to c1. So we substitute one more time and take a

third derivative. Now, we have a differential equation for c1. And we have differential equations

for c2 and c3.

We can take this is the differential equation for c3. This is the differential equation for c2. This

is the differential equation for c1. Some subset of these can be chosen, and we can replace

this algebraic equation with a differential equation. This is an index 3 DAE. It's not always a

good idea to replace the DAE system with these derivatives.

I can write down-- I can have a particular function that's equal to 0 and higher-order

derivatives of that function are also equal to 0. But the solution to those differential equations

are not necessarily equal to that function. There are lots of functions that might have this same

property that its derivative-- certain number of derivatives of it are equal to 0. So there have to

be extra initial conditions or constraints on the solution that confine me to the manifold of

solutions that reflects the DAEs. We'll talk about consistent initialization later on. And that's

going to fix this problem. So it's not always a good idea to do this, but it's one way of

understanding, given this model, what sort of sensitivity is it can exhibit. We try to calculate its

differential index. Yes?

AUDIENCE: So [INAUDIBLE]

PROFESSOR: Yes. Yes.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Well, we have to be careful. We need to choose a set that are independent of the others. OK.

So like these three are clearly going to be independent, and it's going to be OK. It's going to

be a problem if I choose this one and these two. They're not going to be independent of each

other. So we have to select independent ones from the set. It may not be obvious what

independent means in general.

AUDIENCE: [INAUDIBLE]

PROFESSOR: 1, 2, 6 could also work, yes. Yes. So in general-- not in general. Let's talk about the differential

index of a semi-explicit DAE system. Remember semi-explicit meant that the differential



variables can be written as x dot or dx dt is equal to some function of x and y. Y are the

algebraic states, and they satisfy a separate equation, g of x and y and t is equal to 0. Semi-

explicit form.

So with a semi-explicit DAE, the differential index is defined as the minimum number of

differentiations required to convert the DAE to a system of independent ODEs. What does that

mean? Means let's take the algebraic equations and let's take a time derivative of them. That

will give us a new function. Call it g1. It's going to be a function of the differential state, the

algebraic state, and the time derivative of the algebraic state. It could also be a function of the

time derivative of the differential state, but we know that in terms of f, which is a function of x

and y.

So let's not try putting x dot in there for convenience. Let's just write out like this. In principle,

we can do this. Let's take two derivatives of it. It will be the same way. It'll give us some

function g2, which is a function of the differential state, the algebraic state, and the time

derivative of the algebraic state. Let's take as many of these as we need. It will give us a

system of equations that we can eventually solve for the time derivatives of all the algebraic

states and convert this DAE to a system of ODEs. And the question is how many of these

derivatives do I have to take? Index 1, I need to take one. Index 2, I need both sets of

equations in order to get something that I can actually solve for dy dt. Index 3, I get to take

three derivatives and higher.

OK, so here's an example. Let's see if we can work through this. So we have a DAE system.

Can you calculate the differential index of this system? Go ahead.

Not 0. Not 0. ODE IVP is-- are DAEs of index 0. They require no derivatives to generate a

system of ordinary differential equations. What do you think?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Index 2 you say. How do you come to index 2? Why is it index 2? How'd you do it?

AUDIENCE: [INAUDIBLE]

PROFESSOR: OK, differentiate the algebraic equation.

AUDIENCE: Stick it in [INAUDIBLE] 4. You get c3 for 0. Then you have to differentiate [INAUDIBLE]



PROFESSOR: Good so differentiate this equation. Substitute for c1 dot and c2 dot. C1 minus c1 will be 0 c2

minus c2 will be 0. So you have 2c3 equals 0. That's still an algebraic equation. We need one

more derivative to get a differential equation for the only algebraic state we have, c3. So one

more derivative will tell us dc3 dt is 0. So two derivatives to get differential equations. It's an 2

to DAE. Sam?

SAM: What if you can get c3 equals 0 and just eliminate it then wouldn't you write an equivalent

some simple equations, but that would be [INAUDIBLE]?

PROFESSOR: You could. So we could write an equivalent system of equations that says instead of this

equation, report c3 equals 0. That's model formulation. Here we've given-- we're given a

model, and we're asked what index it is. We could formulate a different model, and the model

will have a different index. If I were to replace this equation with c3 equals 0, what would the

index of the DAE system be instead? Index 1 instead. I already told you index 2 is harder to

solve than index 1, so if you can formulate an index 1 DAE, you should probably do it. But it

may not be obvious whether you have or haven't. So it's an issue of model formulation. It's a

great question.

Does that distinction-- is that clear? Or is it a little-- am I not making it clear how this works?

Unresponsive. OK. It's OK. Let's-- there's a generic index 1 example that we can talk about

actually.

So let's take a look at a semi-explicit DAE system. So we have x dot is f of xy and t and 0 is g

of xy and t. Let's take the time derivative of the algebraic equation. So the total derivative of g

with respect to t is the Jacobian of g with respect to x times dx dt plus the Jacobian of g with

respect to y times dy dt plus the derivative of g-- partial derivative of g with respect to t. And

now let's solve. Let's push the dy dt term to the other side of the equation, and let's substitute

for dx dt. We know dx dt is f, so you get this equation here. If the Jacobian is full rank-- if dg dy

is full rank, then I can invert this matrix, and I automatically get my system of ODEs for the

algebraic states.

What's problematic about this equation when dg dy is not full rank? That should be a partial.

That's sloppy. I was doing this at 1:00 last night, so that's why that's there. What's the-- what's

problematic about this root finding problem here if dg dy or the Jacobian of g with respect to y

is not full rank? You recall? If--



AUDIENCE: [INAUDIBLE]

PROFESSOR: Yes, you won't be able to compute the inverse to get your dy dt's. That's true. Remember this

Jacobian-- if it's not full rank, it's determinant is 0. There is no inverse of this thing. We talked

once about the systems of nonlinear equations and locally unique solutions, the so-called

inverse function theorem. We can only guarantee there is a locally unique solution when I can

invert this thing. That if I got in really close to the solution, it looked like a linear system of

equations. That linear system of equations had a unique solution associated within. And

everything was good. We were happy.

So index 1 DAEs have that property. If I wanted to solve this equation for y, there will be a

locally unique solution for y. Higher index DAEs don't have that property. We know that's a sort

of unhappy generic circumstance to be in if we have to solve this equation. It can be hard to

find those roots using, say, Newton-Raphson because the Jacobian [? e ?] would need to

become singular during the root finding procedure. This is connected intimately to what we did

for systems of nonlinear equations. So for an index 1 DAE, you can show its index 1 because

this Jacobian is invertible.

Let's do some more examples on differential index. This seems to be the most important thing.

If I have a model, what's its index because its index is going to tell me how sensitive it is to

small perturbations. So here's a model. It's the same as the model you saw before, but now

it's two mixing tanks. So here comes an inlet flow q1 carrying concentration c1. Out comes the

same flow q1 carrying concentration c2. The mixer has volume v1. And then I blend this with

some more of whatever the solute is at a flow rate of q2 and a concentration c3. And those

both go into this tank, and they come out concentration c4, flow rate q1 plus q2, and this has

volume v2.

Does that look good? Well-posed model? OK, so here's your material balances on the mixers.

And I'm going to give you different algebraic constraints. So this is a problem now where we

say measure c1 and c3. And we want to try to predict c2 and c4. Can you figure out the

differential index of this DAE system? Feel free to talk to each other. It's OK.

OK, the differential index is 1. This one's the easy one right? Just take one derivative of the

algebraic equations. Now, I've got dc2 dt, dc4 dt, dc1 dt, dc3 dt. Differential index of 1 is easy

to solve as an ODE IVP. This is the natural problem, too. It's useful to think about the inputs

c1, c3 and asking about what the outputs are. Physically, this problem seems easier in nature.



OK let's change it now. Same problem. But let's change the algebraic constraints. Now, the

algebraic constraint is I measure c3 and c4, And I want to predict c1 and c2. What's the

differential index here?

Yes.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Sure.

AUDIENCE: Why was this a differential index of 1 if you have to take a derivative for c1 and this equation?

PROFESSOR: Oh, good question. I'm going to push the slide back, and I apologize for this. And I'll go back

for it. So the question was why was this differential index one if I had to take a derivative of

both this equation and that equation. So the way to think about this conceptually is I took a

derivative of the algebraic equations, the set of algebraic equations. It was one time derivative

of a vector valued function. I can see where the ambiguity is there. So it's important to be

clear. I took one time derivative over the equations that prescribe the algebraic states.

That's the distinction. So this is index 1 because I needed one time derivative of this type, dg

dt of the entire set. Here we go. We're on this one. Prescribe c3. Prescribe c4. What is the

differential index now? What do you think? We got an answer?

[INTERPOSING VOICES]

I hear 2. I hear 3. I saw 3 like this. Almost mistook it for a 2, but that's 3. Yes. It's 3. Let's see if

we can work through why it's 3.

So I take a derivative of the algebraic equations, one derivative. And after taking that

derivative, I'll get a differential equation for one of the algebraic states. So c3 is taking care of.

Now, I'm in the hunt for c1. So I have-- after that first derivative, I have an equation dc4 dt is

gamma 2. And I know dc4 dt, so I drop that in, and I get an algebraic equation relating the

derivative of gamma 2 to c2, c3, and c4.

This new algebraic equation. This is like the g1 that I prescribed in the generic scene. I take a

derivative of it again because I'm in the hunt for c1. So I take the derivative of this new

equation, and I'll get a derivative of c2, a derivative of c3, and a derivative of c4. And I know all

those. I know the derivative of c2. I know the derivative of c4. And I know the derivative of c3



from the previous level in the hierarchy. I figured that out already. So it's two derivatives. Still

hasn't gotten me a time derivative of c1. But when I make those substitutions, I'll get an

algebraic equation in terms of c1. And I can take one more derivative, and that will give me a

dc1 dt. And I'll have an od for c1, c2, c3, and c4. So its differential index 3.

It makes sense sort of. I'm taking a measurement of an output way down the line here. And

I'm trying to predict what the input was in the first place. It's easy to imagine that there's a

huge amount of sensitivity in that calculation. Here's another one. What's the differential index

here? I'm now prescribing c1 and c2, and I want you to tell me c3 and c4.

[INTERPOSING VOICES]

Oh, good. Somebody noticed early on. So you say it's not possible. Right. Why isn't it

possible?

AUDIENCE: You take derivatives of both of those--

PROFESSOR: Yes.

AUDIENCE: [INAUDIBLE] you can't isolate c3--

PROFESSOR: Right. We'll never be able to isolate a derivative of c3 here. There's actually there's something

wrong physically with this problem. Yes, somehow I'm supposed to measure c1 and c2 and

use that to predict c3 and c4. I don't know c4, and c3 is an input. I don't know it either. How do

I figure out an input when I don't know the output? It's impossible. So this model is flawed. We

can formulate any model we want, pick any set of these variables to prescribe algebraically,

but not all of them are going to admit solutions or make sense. There's no number of

derivatives that's going to give us a closed system of ODEs.

This again comes back to the point that really DAEs is all about model formulation. There are

lots of good numerical methods. They work like the numerical methods for ODE IVPs. What's

important is getting consistent models down, models that, for example, have solutions. You

might feed this to a DAE solver and get nonsense because I can almost freely prescribe what

c3 is, and I'll get some answer for c4. Any c3 can give me an answer here. So who knows

whether this numerical solver is sensitive or not to this particular pathology in the problem

we've written down.

We got to speed up just a little bit, and I'm sorry for that. So we looked at index 1. That was



stirred tank 1. Index 2, that was stirred tank 2. Index 3, that was stirred tank 3. And one thing

we saw when we looked at them was this index 1 solution. It had pieces that were proportional

to this forcing function gamma, this prescribed function in our system of equations and

proportional to its derivative. So if gamma is jumping around, well, c1 will jump around. C2 is

going to be smoothed out version of gamma because it depends on its integral. It's not very

sensitive, kind of like an ODE IVP. Doesn't really show any more sensitivity than an ODE IVP

does.

The dynamics are different for index 2, though. When we look at the solution of the index 2

DAE, we found c2 goes like gamma, but c1 has to go like gamma dot. So that's pretty sensitive

if you're making a measurement, and there's noise in the measurement. How do you even

know what this derivative is? So c1 is wildly bouncing around. Our prediction of what c1 is is--

it's not going to be very good.

Our solution of DAE example 3 when it told us c1 was related to the second derivative of the

forcing function, c2 to the first and c3 was proportional to the forcing function. So this is hugely

sensitive to changes in the forcing function. So the higher the index goes, the greater the

sensitivity to perturbations in the system.

Here's another simple example. You have all that data, actually, in your paper, so I won't ask

you to do this one given our time constraints. But here's-- mechanical systems that have

constraints are often indexed 3 DAEs it turns out. You can show this one is an index 3 DAE.

This is the case of a pendulum swinging back and forth. So it's a-- change in position is its

velocity. Its acceleration balances gravity, and there's some arm that holds the pendulum in

place. We can imagine that that arm has some tension in it. It acts like a spring with a spring

constant that changes in time in order to hold the pendulum at a fixed distance from its center.

So two differential equations, one algebraic equation. This is a differential algebraic equation.

You can imagine lots of mechanical systems work in exactly this way. They can only move

along prescribed paths. They're constrained in how far they can stretch or go. I don't know. If

you're trying to design a robot or something, DAEs are pretty important, and they're all of

index 3 type it turns out.

So differential variables here are x and v, and the algebraic variable is the spring constant, k,

which has got to adjust dynamically in time in order to-- got to get away from the speaker--

adjust dynamically in time in order to provide just the right stiffness to keep this going around



on a circular orbit. So when-- let's suppose I start with my pendulum down, and it's not moving,

then this has to be just stiff enough to balance gravity. The pendulum is 90 degrees, and it's

not moving. I don't need any stiffness. K and just be 0. There's no forces to balance. The

pendulum is swinging around, and I have to be stiff enough to balance gravity where I am and

also counteract any sort of centripetal [? acceleration. ?] So this k has got to be wildly

fluctuating. If I was trying to control that k somehow to give this system these particular

dynamics, you might imagine it's very difficult to do.

So there's your differential variables. Here's your algebraic variable. You take a derivative of

this equation, you'll get a constraint that tells you the velocity is orthogonal to the position. Of

course it is. I'm on a circular trajectory. You take a derivative of this equation now, this

algebraic equation. You'll get another constraint that gives you some relationship between k, x,

and v but not a differential equation for k. Take another derivative of this algebraic equation,

and you'll get a differential equation for k. So in principle, I could formulate a system of ODEs

with dk dt, dx dt, dv dt will be equivalent to this. It took three derivatives to do this, though. So

it's an incredibly sensitive system. It's index 3 in nature.

So if I transform to this equivalent set of ODEs, the problem-- we discussed this earlier-- is that

the solutions may drift away from the initial set of constraints. The solutions also need the right

sort of initial conditions. Here I know that at time 0, c3 better be gamma 0. I know that in the

actual solution to this problem, c3 dot was gamma dot. So at time 0, c2 better be gamma dot

of 0. And at time 0, c1 better be gamma dot dot of 0. And if it's not, then there's going to be

some step jump or some strange behavior in the solution to this ODE system. So I have to

choose the right sort of initial conditions. If those initial conditions aren't chosen correctly, then

I'm not going to get the right solution. I won't be constrained to the manifold of solutions that's

given by the original DAE.

So here's some things you need to know. Index 1, semi-explicit DAEs can be safely handled in

MATLAB. So ode15s, ode23t, they have the ability to take an input of mass matrix. We

discussed mass matrix last time. And a right hand side to the system of equations in f of x and

t and solve it just like all the other solvers, all the other ODE IVP solvers in MATLAB. If it's not

index 1, MATLAB can catch it. So it'll try to look at the Jacobian of f with respect to the

variables and the mass matrix and to infer from that what the differential index is. And it will tell

you often times-- I think depends which package you're using. But if you're using certain

packages, it'll tell you. It's not index 1oe-- DAE. We can't handle this. The methods built into it



aren't suitable.

For generic DAEs, there are specific DAE solvers. So something like SUNDIALS or DAEPACK-

- this is Professor Barton's software actually-- that are designed to handle DAEs up to some

certain index instead. They're built to reliably solve these problems. So we have robots with

constraints on them. We solve all sorts of problems for chemical process systems that are of

higher index. And the way we do it is using specific numerical methods. They're based on the

same sorts of schemes, backwards difference formulas, but careful analysis of the equations,

which are in general unstructured, the software doesn't know beforehand what those

equations look like, but a careful analysis of them in order to figure out how to minimize

numerical errors and stay on the correct solution manifold.

As input to these, though, we have to give initial conditions. So that's going to be the last thing

that we talk about here. And those initial conditions have to be prescribed what we call

consistently, or we can get numerical errors, or the software can just quit and throw an error,

or it can run off on some other solution manifold that doesn't look anything like the solution

we're after. The pendulum is an interesting example to think about. So you might say, well,

what do I want to know about this pendulum. Maybe I want to know where it started initially

and what its velocity initially was. Can I prescribe the initial position of the pendulum arbitrarily?

What do you think yes or no?

AUDIENCE: No.

PROFESSOR: No. Why not? Why no?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Good, yes. We know it's got a fixed arm length. Can't pick any position. That's not going to

work. It's got to satisfy that algebraic constraint. Can I specify its velocity arbitrarily? What you

think? Can I give it any initial velocity that mass at the end of the pendulum?

AUDIENCE: No.

PROFESSOR: No. Why not?

AUDIENCE: [INAUDIBLE]

PROFESSOR: What's that?



AUDIENCE: [INAUDIBLE]

PROFESSOR: Well, explain that to me, though, because I had equations for the velocity and for that

acceleration and then an equation that told me that the length of this moment arm had a

certain length associated with it. So why does that constrain the velocity? You're right. It does.

I'm not saying you're wrong. You're right, but why? Those initial three equations don't tell me

anything about the initial velocity was supposed to be.

We know something about the trajectory this is supposed to sweep out, though. It's supposed

to sweep out a circular trajectory. And the velocity in that circular trajectory is always going to

be orthogonal to the moment time. And that equation actually-- it appeared. It appeared when

we took a derivative of the constraint. So this was a hidden constraint. It's secret. You didn't

know it was there until you took a derivative, and you tried to go and figure out what index this

was. Then you discovered velocity and position or orthogonal to each other. My initial

condition should respect that. How can they not? The initial conditions have to be a solution to

the equations as well.

So now can the initial stiffness be specified arbitrarily? No. There was also an algebraic

equation that popped up at some point right here when I took the second derivative, which

tells me how the stiffness has to be related to position and velocities. It's also hidden inside the

structure of this DAE. So this-- again goes to model formulation, what are the initial conditions

that I have to prescribe? If I prescribe the right ones, I'll get a solution that matches the

dynamics of the problem I was actually interested in. If I prescribe them incorrectly, who knows

what's going to result? We can't really predict. Depends on the solver we're working with.

Here's a formal way to think of it. So usually in an initial value problem, usually we want to

know what's-- for these first order difference-- differential equations, what's the initial value of

the state, and what's the initial value of its derivative. That completely specifies what's going

on at the beginning. One way to think about these problems is I've got this equation that I want

to solve. I could think in some sense that x and x dot are independent of each other. I could

always write this is something like an equation for f of x and z. And then I could add some

extra information that tells me actually x dot is the same as z.

So initially, I would like to know the values of x and z, that z is x dot. So I'd like to know initially

the values of x dot and x. And tell me where I start, and these need to be consistent with the

initial value problem that I specified. If I'm doing an index 0, an ODE IVP, at least be consistent



with this. So if you tell me x naught, that I should put x into this equation, then that should tell

me what x dot is. If you tell me x dot, then I should solve my governing equation for x naught.

You could tell me some equation that relates x naught and x dot initially, and now I got to solve

this equation in conjunction with my governing equation to determine these-- this set of values.

I'd like to know both of these things initially.

The fully-implicit DAE, I really have two n unknowns here. I don't know x, and I don't know x

dot. And I've only got n equations for those. So apparently there's n degrees of freedom to

specify here. I need n more equations to say what those initial conditions are. And these

hidden constraints I point out actually reduce the number of degrees of freedom. The fact that

these are not index 0 problems but have a finite index will introduce extra constraints that

reduce the number of degrees of freedom or the number of other equations I can use to

specify those initial conditions. Does that make sense? Let me give you some examples, and

then I'll let you go.

So if I have a problem that has separate differential states and algebraic states, this is like f of

x dot x and y and t equal 0, the set of things that I need to specify-- I need the initial derivative

of the differential state, the initial value of the differential state, and the initial value of the

algebraic state. I'd actually need to know the initial value of the derivative of the algebraic state

here because I don't need that to satisfy this initial equation.

Let's look at a couple of examples. So here's stirred tank example 1. I converted to a system

of ODEs by taking the derivative of equation 2 here. So here's my two ODEs. I got to look back

at my initial equations and see how do they constrain the initial conditions. So equation 2 tells

me that c1 initially better be gamma initially. Otherwise, my initial condition doesn't satisfy the

governing equations of the model that I wrote down. Equation 1 tells me that the derivative of

c2 initially better be related to the derivative of c1 and the derivative of n-- I'm sorry to the

value of c1 and the value of c2 initially.

This third equation that I came up with, it doesn't constrain. It's a derivative of one of the

original algebraic variables, so it doesn't constrain that original set of-- I need to know the

initial condition on the differential variables, the derivative of the differential variables, and the

algebraic variables. This only tells me something about the derivative of this algebraic

variables. This equation doesn't give me any other constraints. So I just got a free variable that

I can specify. One more equation. It can be whatever I want.



So maybe I say c2 of 0c0, or maybe I say there's some relationship between c1 of 0 and c2 0.

Or maybe I say that c2 of 0 and c2 prime of 0 are related in some way. Whatever I specify, I

have a system of three equations for three unknowns, c1 of 0, c2 dot of 0, and c2 of 0. I need

to have a unique solution to that. Otherwise, there's going to be a problem solving for it in

time, the system of equations. So I have to choose this one consistent with these other ones,

but beyond that I'm OK.

Here's stirred tank example 2. So I take a derivative of equation 2, and that gives me a

differential equation for dc2 dt. Actually, I already had one of those, so I substitute for dc2 dt,

and I take another derivative to get a differential equation for c1. And let's ask about the initial

conditions. So the initial algebraic equation, it constrained dc2-- it constrained c2. It said c2 of

0 has to be gamma 0. The initial differential equation told me that c1 of 0 had to be equal to c2

of 0 plus v over q, c2 dot of 0. Remember, I need three equations to specify c2 of 0, c1 of 0,

c2 dot of 0.

I actually can't specify c2 dot of 0 freely because in the process of deriving this differential

equation here so that I had dc1 dt and dc2 dt, I introduced a constraint on the derivatives of

c2. And this tells me that c2 dot of 0 has to be gamma dot of 0. There are no free variables to

specify. There's three equations. Two of them come from the initial system of DAEs, and the

third one is related to this extra equation that popped up as we tried to define the index. It's an

implicit constraint on the problem. Does that make sense? I can't specify these things freely.

They're specified by the signal that I measured gamma.

There are two examples here that you should be able to work through. One is an index 2

example, and one is an index 1 example. We're not going to have time to go over them. Sorry

for that. But they work the same way. So convert to a system of ODEs, ask what initial

conditions will satisfy the initial constraints and were there any other-- were there any other

constraining equations that popped up? So if you work through this example, you'll find out

there was a hidden strength that either the initial derivatives of c1 and c2 sum together have to

be 0 or equivalently the initial value of c3 had to be equal to 0. You can take this constraint in

either place. Maybe you want to take both of them to make sure that it's always satisfied, that

there is no numerical error that drives you off of this constraint. It's OK to have these things

over constrained. It's just not OK to have them under constrained.

And you'll find out that while there were five things I could pick, the derivatives, and the values

of c1 and c2, and then the algebraic variable c3 initially. So there are only four constraints-- for



equations here for the initial conditions. I get to pick one more. I can get it however I want. Just

has to be consistent with these.

There's one more example. Again, should work through these on your own. But you do the

same thing. Convert to a system of ODEs. You'll find out that when you do this, you'll get a

differential equation for c3. It didn't introduce any new constraints on c1 dot, c2 dot, or c1, c2,

and c3. So you just need to satisfy-- your initial conditions have to satisfy the initial equations,

and you can put in two more conditions, whatever you want them to be. Add five unknowns

and only three equations for the initial conditions. And that's it. So thank you very much.


