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information about our license and MIT OpenCourseWare in general is available at ocw.mit.edu. All right. I am
going to start with Friday's lecture notes because there was a significant amount on them that I had not finished
up yet. We had finally gotten to the point where we were talking about what does a wave function mean, what is
the physical significance of it and how does it actually represent the presence of an electron? And what we saw
was that the physically significant representation of the wave function, if you have some wave function Psi labeled
by three quantum numbers, n, l and m. And, of course, it is a function of r, theta and phi. The physically significant
quantity was this wave function squared. That wave function squared, that was interpreted as a probability density.
The wave function squared has units. It has units of inverse volume. It is a density. It is a probability per unit
volume. Now, as an aside, because someone asked me, I should tell you that the more comprehensive definition
of the probability density is Psi, not squared, but Psi times Psi star, where Psi star is the complex conjugate.
Because it turns out that some wave functions are imaginary functions. And so, if you took an imaginary function
and squared it, then you would still get an imaginary function after it. And then it is hard to interpret an imaginary
function as a probability density. And so the more comprehensive definition is Psi times Psi star, where Psi star is
the complex conjugate of Psi. And, when you multiply Psi by Psi star, if Psi is a complex function, well, then you get
a real function. This is the more comprehensive definition of the probability density, Psi times Psi star. We won't
use that. I just wanted to let you know about it. So, probability density. Not only do we want to know something
about the probability density. We also want to know something about the probability of finding the electron some
distance away from the nucleus. And, to do that, what we were talking about was this quantity, this radial
distribution, the radial probability distribution. And what that is, is the probability of finding an electron in a spherical
shell of radius r and distance or thickness dr. For example, if this gray portion here represented the probability
density of the 1s wave function in our dot density diagram. Remember, we squared the wave function, got the
probability density and then represented it with a dot density diagram, where the density of the dots was
proportional to the value of the wave function squared. And, in the case of the 1s wave function, we saw that the
probability density was largest right at r equals 0, and that is exponentially decayed in all directions uniformly. That
is what that gray part represents. But now, this blue, here, is my spherical shell. It has a radius r, and it has a
thickness, here, dr. And the radial probability distribution is asking, what is the probability of finding the electron in
this spherical shell? And that spherical shell has a thickness dr. Another way to ask that is the probability of finding
the electron between r and r was dr. That is what we wanted to know, and that is what the radial probability
distribution tells us. Now, how do you get a value out of that? How do you actually calculate the radial probability?
Well, to do that, what we have to know is this volume, here, of the spherical shell. The volume of this spherical
shell is just the surface area of that spherical shell, 4 pi r squared, and the volume is times this thickness, this
thickness dr. It is a very thin shell. It is an infinitesimally thin shell of thickness dr. Well, if we know that volume,
then what we can do is take our probability density, Psi squared, which has units of probability per unit volume.
And we are multiplying it, here, by our unit volume. The unit volumes cancel, and we are left with a probability. So,
that is our probability of finding that electron in a shell of radius r and a thickness dr. Let's look at the result of
calculating the radial probability distribution for the 1s wave function. What did I do? I took Psi squared for the 1s
wave function at some value of r, then I multiplied it by 4 pi r squared dr, and I did that for many different values of
r and plotted the result here. That is what that radial probability is as a function of r. Well, the first thing you see is
that the most probable value of r, or the value of r where the electron has the highest probability of being is at this
value, a nought. The most probable value of r is this value, a nought. a nought is what we call the Bohr radius.
And today, in a moment or so, I will tell you why it is called the Bohr radius. It has a numerical value of 0.529
angstroms. And so it is most likely that the electron is about a half an angstrom away from the nucleus, making,
then, the diameter of the hydrogen atom, on the average, a little bit over one angstrom. That is how we think
about the size of a hydrogen atom, is to take this most probable value of r and double it to get the diameter. The
most probable value of r, or the most probable distance of the electron from the nucleus, is half an angstrom
away. The most probable distance of the electron from the nucleus is not r equals 0 because the radial probability
here is zero at r equals 0. That seems a little strange because the other day we plotted the probability density for
the 1s wave function. And, when we did that, here is Psi(1, 0, 0) squared versus r, what we saw was that the
probability density was some maximum value at r equals 0 and that it exponentially decayed with increasing r. And
that is the case. Probability density for the s wave functions is a maximum at r equals 0. But the radial probability
here is actually zero at r equals 0. Why? Look at how we defined that radial probability, here. It is Psi squared
times this volume element. Our volume element is this spherical shell. And, at r equals 0, the spherical shell goes
to a volume of zero. So, our radial probability here is equal to zero at r equals 0. That is really important, that you
understand that this radial probability here is always going to be zero at r equals 0 for all of the wave functions that
we are going to look at. And we will talk about this a little bit more, the fact that the electron is about a half an
angstrom away from the nucleus. But before I do that, I also just want to point out that in your textbook, and
sometimes in the notes, that sometimes that radial probability is actually written as the following. It is written as the
r squared, the distance variable, times the radial part of the wave function. That is the radial part squared. We
talked about the radial and the angular part last time. And the radial part is labeled only by two quantum numbers,
n and l. And so, for the 1s, that is n equals 1, l equals 0. Where does this come from? Well, let me just emphasize
or explain where this comes from. This radial probability distribution here, we said for the s wave functions, was
Psi squared. You could take Psi squared, the probability density, and multiply it by this unit volume or the volume
of the shell, 4 pi r squared dr. Let's write that out again, but write it out now so that we write out Psi squared in
terms of the radial part and the angular part. Remember, we said last time, for the hydrogen atom wave functions,
that Psi is always a product of a factor only an r, which was the radial part, and a factor only in theta and phi,



that Psi is always a product of a factor only an r, which was the radial part, and a factor only in theta and phi,
which are the angular parts. Now, what you also have to remember in looking at this is that the angular part for the
1s wave functions, 2s, 3s, all s wave functions, was equal to 1 over 4 pi to the 1/2. If you square that, you are
going to get 1 over 4 pi. Therefore, the 4pi's here are going to cancel for the 1s wave functions. And what you are
going to have left is this r squared times just the radial part dr. That is why the y-axis in your book is sometimes
labeled this way for the radial probability distribution. But this is also important because if you were calculating the
radial distribution function for something other than an s wave function. The way you would do it is to take just the
radial part of that wave function times r squared, or just the radial part of that wave function and evaluate it at that
value of r times r squared dr. You could not, for the other wave functions, take psi squared times 4 pi r squared dr.
And that is because the angular part for the other wave functions that are not spherically symmetric is not the
square root of 1 over 4 pi. This is a broader definition for what the radial probability distribution function is. It just
works out, in the case for the s wave functions, these 4pi's cancel. And so you can write the radial probability for
the s wave functions like that. So, those are just some definitions. I want to talk some more about this radial
probability distribution function, here, for the 1s wave function. I want to talk about it and also explain why a nought
is called the Bohr radius. The reason for that is the following. The nucleus was discovered in 1911, the electron
was known before that, and SchrË†dinger did not write down his wave equation until 1926. And, in between that,
1911 to 1926, the scientific community was really working very hard to try to understand the structure of the atom.
And we saw how the classical ideas, as predicted, would live a whopping 10^-10 seconds. And one of the people
who were working on that problem was Niels Bohr. And, in 1919, Niels Bohr of course realized that classical
physics fails this kind of planetary model for the atom where you put the nucleus in the center and the electron is
going around that nucleus with some fixed orbit. We will call it r. Well, he knew that it was not going to work, that
those classical ideas predicted that this would plummet into the nucleus in 10^-10 seconds. But, he said,
obviously, that does not happen, so let me just forget classical physics at the moment. Then, what he did was to
impose some quantization on this classical model for the hydrogen atom. And the reason he got this idea of
quantization is because he already knew the hydrogen atom emission spectrum. He knew that in the hydrogen
atom emission spectrum that light of only certain frequencies was emitted. That is, there was some idea that there
was something about this hydrogen atom that is quantized. He said, well, let me just ignore classical physics for a
moment. Let me give this a circular orbit. But let me quantize something about this hydrogen atom. And, in
particular, what he went and did was quantized the angular momentum of that electron. He kind of just pasted the
quantization onto a classical model for the atom, because he is trying to work toward explaining what the
observations were. When he pasted that quantization onto this classic model, he was able to calculate a value of r.
And that value of r is what we call the Bohr radius, a nought, and has the value 0.529 angstroms. That came out
of it. And if you calculate for the radial probability distribution function for this model, which is called the Bohr atom,
would be one where that radial probability is 1 right here at r equals a nought. In Bohr's model, the electron had a
well-defined, precise orbit. The value of r at which it went around the nucleus was given by a nought. He knew
exactly where the electron was in his model. This kind of model, which is this classical model, really, is what we
call deterministic. It is deterministic because we know exactly where the particle, in this case the electron, is. I want
you to contrast it with the quantum mechanical result from the SchrË†dinger equation. What you see, in the
quantum mechanical result, is that we don't really know where the electron is, so to speak. The best we can tell
you is a probability of finding the electron at some value r to r plus dr. That is the best we can do because
quantum mechanics is non-deterministic. There is a limit to which we can know the position of a particle. That limit
is given by something called the uncertainty principle. The uncertainty principle is not something we are going to
discuss, but it tells us that there is a limit to which we can know both the position and the momentum of a particle.
And that is the basis for why, here, we have a probability distribution and knowing sort of where the electron is. We
don't exactly know where the electron is, here. This is the classical model on which Bohr just kind of pasted the
quantization of the angular momentum of the electron onto it. In the case of the SchrË†dinger equation, the
quantization drops out when you solve the differential equation. It comes out of the equation just naturally. We did
not paste it onto it. We did not make an ad hoc kind of representation. That is the big difference here between
quantum mechanics and classical mechanics. In quantum mechanics, it can only tell you about a probability. It
cannot tell you exactly where the particle is going to be. Questions on that? Okay. Anyway, this value a nought,
that is why it is called the Bohr radius. And then it turns out, quantum mechanically, that this value of r, the most
probable value of r is, in fact, exactly a nought. In a sense, Bohr was pretty lucky. And this is kind of an accident
that he got a nought out of this, and it has to do with the actual form of the Coulomb interaction. But, of course,
this doesn't work for anything else, other than a hydrogen atom. Whereas, the SchrË†dinger equation, as we are
going to see in a moment, is applicable to all the atoms that we know about. So that is the radial probability
distribution function for the 1s atom, for the 1s state. We want to take a look at the radial probability distribution for
2s and for 3s. Let me plot those. And you can actually put these lights on here. That is okay. I am going to use this
board for a moment. Here is the radial probability distribution function. I can write it as little r times R(2,0) squared
of r, or RPD. This is for 2s versus r. And when I do that I get a function that looks like this. And, if I evaluate it here,
what is this value of r at which the probability is a maximum? Well, this most probable value of r is 6 a nought.
Look at that. The most probable value of r for 1s was a nought. In the case of the 2s state here, the electron, the
most probable value is 6 a nought, six times as far from the nucleus. If you have a hydrogen atom in the first
excited state, in a sense that hydrogen atom is bigger. It is bigger in the sense that the probability of you finding
the electron at a larger distance away from the nucleus is larger. And that, in general, is the case. The radial
probability distribution, here, also reflects the radial node that we talked about last time. That radial node is r
equals a nought. Radial node is the value of r that makes your wave function go to zero. Notice, again, that this
radial probability distribution function right here is zero at r equals 0. This is not a node. This is not a radial node.
This is a consequence, right here, of our definition for the radial probability. Our volume element has gone to zero.
r equals 0 is never a radial node in any wave function. What about 3s? Well, let's plot 3s. Here is 3s. This is the



r equals 0 is never a radial node in any wave function. What about 3s? Well, let's plot 3s. Here is 3s. This is the
radial probability distribution. I take Psi for 3s and square it, multiply by 4 pi r squared dr, and do so for all the
values of r, and I am going to get something that looks like this. Now this most probable value of r here, where the
3s wave function is equal to 11.468 a nought. For the second excited state of a hydrogen atom, that electron, on
the average, is 11.5 times farther out from the nucleus than it is in the case of the 1s state right here. Again, for
that second excited state, that hydrogen atom is bigger in the sense that the probability of it being farther away
from the nucleus is larger. That radial probability distribution of the 3s also reflects the two radial nodes in the 3s
wave function. The radial nodes are at 1.9 a nought, here, and 7.1 a nought. Again, the value here at r equals 0 is
not a radial node. Now, as you look at this, it is tempting to ask the following question. You might want to ask, if the
electron can be at these values of r, and it can be at these values of r, and it can be at these values of r, how does
the electron actually get from here to here to here if right at r equals 1.9 a nought and 7.1 a nought the probability
is equal to zero? Well, you might say maybe this probability isn't exactly zero. It is something small. But I am telling
you that it is zero, goose egg, zilch, zippo, nada, cipher, nix, nought. Anybody else have another name? Nil. It is
nothing. It is zero. How do you answer that question? Well, it turns out, of course, that it isn't an appropriate
question. And the reason it is not is because that question is asked in the framework of classical mechanics. When
you ask, how does a particle get from one place to another, you are asking about a trajectory. You are asking
about a path. Particles over here, over here, over here, how does it get from one place to another? And, in
quantum mechanics, we don't have the concept of trajectories. Instead, what we have to think of is the electron as
a wave. And we already know that a wave can have amplitude simultaneously at many different positions. And so
it has simultaneous amplitude or probability here, here, and here, all at the same time. We cannot talk about
trajectories anymore. And that, again, ties into the uncertainty principle, our inability to know exactly the position
and the momentum of a particle at any given instance. The best we can tell you is a probability. We have to
change the way we think about electrons. You cannot cast them in the framework of your everyday world. This is
part of our world, but you have to go do a specific type of experiment to see this part of the world. That is why it
seems so strange to you, because it is not part of your everyday experience. But this world works with different
rules that you really do have to accept that it just works differently. Questions? Now, I am going to stop talking
about the s wave functions and move on to talk about the p wave functions. With the s wave functions, we talked
about the significance of the wave function, probability density, radial probability distribution. We talked about what
a radial node was. Now it is time to move onto the p wave functions. And the p wave functions, of course, are not
spherically symmetric. And to represent them, we are going to do our dot density diagram again. We are going to
take the wave function and square it to get the probability density and then plot that probability density as a
density of dots. We the dots are most dense, well, that means the highest probability density. Here is the result for
the pz wave function. It is pz because you can see the highest probability, here, is along the z-axis. It is symmetric
along the z-axis. Here is the probability density for the px wave function. You can see that the probability density is
greatest along the x-axis. It is symmetric along the x-axis. And, if you look really carefully, you can see that there is
no probability density in the y,z-plane for the px wave function. And, over here, if you look carefully, you can see
that there is no probability density in the x,y-plane for the pz wave function. And here is a py wave function, the
probability density of it. The probability density is concentrated along the y-axis. It is symmetric along the y-axis.
And, if you look very carefully, there is no probability density, here, in the x,z-plane. Well, the fact that there is no
probability density, here, in the x,y-plane, in the case of pz, indicates that we have an angular node. An angular
node at theta equal 90 degrees. An angular node is the same thing as a radial node in the sense that it is the
value of the angle that makes the wave function be equal to zero. Here is the wave function for pz. You can see
that when theta is equal to zero, this wave function is going to be equal to zero. An angular node is the value of
theta or phi that makes the wave function be zero. And the consequence, then, is that we have a nodal plane,
because everywhere on the x,y-plane, theta is equal to 90 degrees. For the px wave function, the value of the
angle that gives you that nodal plane is phi equals 90. That means everywhere in the y,z-plane is phi equal to 90.
In the case of py, when phi is equal to zero, well, that is everywhere in the x,z-plane. Everywhere in the x,z-plane,
phi is equal to zero. So, that is the angular nodes. In general, and this is something you do have to know, an
orbital has n minus 1 total nodes. And what I mean by total nodes is angular plus radial nodes. The number of
angular nodes is given by this quantity, l. The quantum number l that labels your wave function always gives you
the number of angular nodes. Therefore, if n minus 1 is the total and l is the number of angular, well then, the
number of radial nodes is n minus 1 minus l. This is something that you do have to know. If I give you a wave
function and ask you how many radial and angular nodes it has, you need to be able to calculate that, and vice
versa. Sometimes I will tell you a function has three radial nodes and six or seven angular nodes or something,
what is the wave function? So, we go both ways. Well, I also want to take a look at the radial probability distribution
functions for the p wave functions. We looked at it for the s wave functions already. I actually want to contrast the
radial probability distribution, say, for 2p, here it is, with that of 2s that we looked at a moment ago. Remember,
how do you get the radial probability distribution function here for 2p? It is the radial part of the 2p wave function
times r squared dr. It gives me the probability of finding the electron a distance between r and r plus dr. Again,
what you see is that at r equals 0, that is zero. That is not a radial node. But what I really want to point out here is
that the most probable value of r, for the 2p wave function, is actually smaller than it is for the 2s wave function.
That is, it is more likely for the electron in a 2p state to be a little closer in to the nucleus than it is for the 2s state.
In general, as you increase the angular momentum quantum number, the most probable value of r gets smaller
for the same value of n. Similarly, here is the 3s radial probability distribution function that we looked at. Here is a
radial probability distribution for 3p. Now, with the 3p, you can see the value of the radial node. You can see the
radial probability distribution reflects a radial node, here. And here is the radial probability distribution function for
3d. We did not look at the probability density of 3d. You will do that with Professor Cummins when you talk about
transition metals. But here, I just drew in the radial probability distribution for 3d. But the point again that I want to
make is here is the most probable value of r for 3s, here it is for 3p, here it is for 3d, again, the most probable



make is here is the most probable value of r for 3s, here it is for 3p, here it is for 3d, again, the most probable
value for 3d is smaller than it is for 3p, than it is for 3s. Again, as you increase the angular momentum quantum
number, that most probable value gets smaller. However, ironically, if you actually look at the probability of the
electron being very, very close to the nucleus, that probability is only significant for the s wave functions. Look at
the 3s wave function. Here, you see that you really do have some probability very close to the nucleus. You don't
see that in the 3p wave function. You certainly don't see that in the 3d wave function. Again, in the 2s wave
function, you have some significant probability of the electron being really close to the nucleus in 2s, but you don't
in 2p. That is important. And it seems in contradiction to the fact that on the average, the most probable value of r
gets smaller as l gets larger. These two facts that look contradictory are important. They dictate the behavior of
atoms. These two facts seem like kind of loose threads at the moment in the sense that you are probably
wondering why I am telling you what I am telling you. But we are going to use that information in a few days, and
you will see really the significance of this plot. And this plot will be an important one for you to refer back to. Yes?
Probably. I am not exactly sure of the picture you drew in high school, but yes. If the electron in general is further
out from the nucleus, that is a higher energy state. The electron is less strongly bound, as we are going to see in
the multi-electron atoms here. Oh, no. For the hydrogen no. Let me explain that. For the hydrogen atom, the
energies are only dictated by the n quantum number, so 3s, 3p, 3d all have the same energies. Where the
energies become degenerate is with a multi-electron atom. And we are going to talk about that and how that
reflects here, these wave functions in the next day. That is all I am going to say about the hydrogen atom. Now it
is time to move on, to helium. And, of course, the SchrË†dinger equation predicts the binding energies of the
electrons to the nucleus in a helium atom also very well. But, of course, it is a much more complicated
SchrË†dinger equation. And I am not even going to write out the Hamiltonian in this case, but I want to show you
the wave function here. See the wave function? The wave function is a function of six variables. It is a function of
two r's, two distances from the nucleus, one for electron one, one for electron two, two theta's and two phi's. We
have six variables for the wave function. And the consequence of this is that our solutions for the binding energies
for the electrons in helium or any other atoms are not going to be nice analytical forms. We are no longer going to
have e sub n equal minus the Rydberg constant over n squared. If you actually solve for those energies, and you
have to do it numerically, you are just going to get a list of numbers, a table of numbers, but not a nice analytical
form. If you solve for the wave function, you are not going to get a nice analytical form, like we got for hydrogen.
Instead, what you will get is a value for the amplitude of Psi as a function of r, theta and phi. But if you get actually
much above three electrons, it turns out that even numerically, you cannot solve the SchrË†dinger equation,
exactly. You have to use approximations. And we are going to look at the most basic approximation that is used
that works, amazingly. It works well enough for us to have a framework in which to understand the reactions of
these atoms. And what is that approximation? Well, that approximation is called the one-electron wave
approximation or the one-electron orbital approximation. What does that mean? Well, that means this. I am going
to take my wave function here for the helium atom, which strictly is a wave function that is a function of six
variables, and I am going to separate it. I am going to let electron one have its own wave function and electron two
have its own wave function. That is an approximation. In addition, what I am going to do is let the wave function for
electron one have a hydrogen-like wave function. I am going to say that it has the 1s wave function, or the Psi(1,
0, 0) wave function of a hydrogen atom. And I am going to let electron two have the Psi(1, 0, 0) wave function of a
hydrogen atom. Or, I am going to write it as 1s of 1, for electron one, times 1s of 2, for electron two. Or, another
shorthand, I am going to write it as 1s. squared. And, if I continued on, here, it is for lithium. Lithium, the wave
function strictly has nine coordinates, but I am going to let every one of those electrons, in the one electron wave
approximation, have its own wave function. And I am going to let electron one have a wave function that looks like
a hydrogen atom wavefunction. The 1s wave function. The same thing with electron two. And then I am going to
let electron three have the 2s wave function of the hydrogen atom. And in simplified notation, that is just 1s
squared 2s. And here is beryllium, 16 variables, but I am going to let every electron have its own wave function.
And I am going to give electron one the 1s wave function, electron two, the 1s, electron three, the 2s, electron
four, the 2s. I can also write that, as you have already done, 1s 2 2s 2. And I can keep going. And these electron
configurations that you have been writing down in high school, that is what they are, electron configurations, well,
they are nothing more than our shorthand notation for the electron wave functions within this one-electron wave
approximation. That is what those were, that you were writing down. Those were a shorthand notation for the
wave functions in SchrË†dinger's equation within this one-electron wave approximation. Now, one thing you do
notice is that I did not, in the case of boron here, let all five electrons be in the 1s state, or let all five electrons be
represented by a 1s hydrogen atom wave function. I didn't because of a quantity that you already know about,
called spin. You already know that if you are going to put electrons in the 1s state here that one electron has to go
in with spin up and the other spin down. And the 2s, spin up and spin down, etc. What is the phenomenon called
spin? Well, spin is entirely a quantum mechanical phenomenon. There is no correct classical analogy to spin. Spin
is intrinsic angular momentum. It is angular momentum that is just part of a particle, such as an electron. The spin
quantum numbers actually come from solving the relativistic SchrË†dinger equation, which we did not even write
down. When you solve the relativistic SchrË†dinger equation, out drops a fourth quantum number. That fourth
quantum number we are going to call m sub s. And we find that m sub s has two allowed values. One of those
values is one-half and the other is minus one-half. Here, we have a case where the quantum number is not an
integer. It is one-half and it is minus one-half. Now, if it helps you to think about the electron spinning around its
own axis, like I depict here, well, if that is the case, then the angular momentum quantum number is
perpendicular, here ,to this plane in which it is rotating. And you might want to call that spin up. And, of course, if it
is spinning in the other direction, well, then the angular momentum vector is pointed in the opposite direction. You
might want to call this spin down. If it helps for you to think about this, okay, but remember that this is not correct.
This is a classical analogy that we are trying to draw here. We are trying to say that this electron is rotating around
its own axis. That is not true. This angular momentum is just an intrinsic part, the intrinsic nature of a particular



its own axis. That is not true. This angular momentum is just an intrinsic part, the intrinsic nature of a particular
such as an electron. Next time, I will tell you about Uhlenbeck and Goudsmith. See you Wednesday.


