MIT OpenCourseWare <u>http://ocw.mit.edu</u>

5.62 Physical Chemistry II Spring 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

5.62 Lecture #5: Molecular Partition Function: Replace E(assembly) by **g**(molecule)

<u>Readings</u>: Hill, pp. 59-70; Maczek, pp. 16-19; Metiu pp. 49-55

<u>Overview</u>: We've learned to calculate thermodynamic (macroscopic) properties of a system from the partition function. However, the partition function, as it is presently written, depends on the energy levels available to the *entire many-particle system*. We still need to input an understanding of the energy levels of a single molecule (microscopic) into a description of the energy levels of the entire many-particle system (= assembly). Today we will do this, using statistics (combinatorics).

<u>Goal</u>: Reformulate Q as a function of the <u>energies</u>, ε_i , of states of **individual** molecules rather than the <u>energies</u> E_i of an assembly of molecules.

<u>Procedure</u>: Change labeling of states from " α -type" (assembly centered) description to an occupation number, n_i, (molecule centered) n-type description.

 α -type assembly description (list of the state of each molecule in assembly)

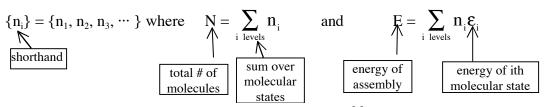
$m_{1x}m_{1y}m_{1z} \\$	$m_{2x}m_{2y}m_{2z}$	$m_{3x}m_{3y}m_{3z}$	$m_{4x}m_{4y}m_{4z}$	$m_{5x}m_{5y}m_{5z}$
1 1 1	2 1 1	1 1 1	1 2 2	2 1 1
molecule 1 state #1 energy ε_1	molecule 2 state #2 energy ε_2	molecule 3 state #1 energy ε_1	molecule 4 state #3 energy ε_3	molecule 5 state #2 energy ε_2

To construct an <u>n-type description</u> (list of number of systems in each allowed molecule state: less information) of the same assembly state:

Define $n_i \equiv$ occupation number = number of molecules in ith molecular state. For example (2, 2, 1) means:

- $n_1 = 2$ molecules in state #1 with energy ε_1
- $n_2 = 2$ molecules in state #2 with energy ε_2
- $n_3 = 1$ molecule in state #3 with energy ε_3

Thus, an α -type state could be re-expressed in terms of a set of individual particle energy level occupation numbers (called a "configuration"):



This is a change of focus from labels that identify $\approx 10^{23}$ individual molecules to labels that identify molecular states and the number of molecules in each of those states.

Note that different (α -type) assembly states can have the same (n-type) occupation numbers. For example, switch the occupied energy states between molecules 1 and 2.

Expand definition of <u>degeneracy</u> to include occupation numbers:

 $\Omega(\{n_i\}) \equiv$ degeneracy = number of (α -type) assembly states with the same set $\{n_i\}$ of occupation numbers (or total E)

Rewrite Q ...

 $Q(N,V,T) = \sum_{j} e^{-E_{j}/kT}$

sum over possible (α -type) states of assembly

$$= \sum_{\{n_i\}} \Omega(\{n_i\}) e^{-E(\{n_i\})/kT}$$

sum over all sets of occupation numbers $\{n_i\}$ such that $\sum_i n_i = N$

COMBINATORICS

Determining Ω for a given set of $\{n_i\}$:

How many ways are there to arrange molecules such that occupation numbers are given by $\{n_i\}$? This is Ω . Another way to ask the question ... How many ways are there to put N molecules into a set of molecular states with n_1 in state #1, n_2 in state #2, etc.

<u>state #</u>	<u>energy</u>	<u># molecules</u>
1	$\boldsymbol{\epsilon}_1$	\mathbf{n}_1
2	ϵ_2	n ₂
3	ϵ_3	n ₃
:	÷	:
i	$\boldsymbol{\epsilon}_{i}$	n _i
:	:	:

This is a simple combinatorial problem. We put all N molecules in sequence and put the first n_1 in state #1, the next n_2 in state #2, etc. Then the number of ways of arranging molecules into states is just the number of sequences, which is just N! = $N(N-1)(N-2)(N-3) \cdots (2)(1)$, because there are N places in the sequence to put the first molecule, (N-1) places to put the second, etc.

However, this overcounts because the order of molecules chosen for molecular state #1 is not important. That is, all ways of renumbering molecules in state #1 are equivalent. There are $(n_i!)$ of them. A similar factor of $(n_i!)$ needs to be used to correct for overcounting in each state.

For distinguishable molecules, the # of ways of putting N molecules in a set of states such that the first state gets n_1 molecules, the second state gets n_2 molecules, etc. is ...

$$\Omega(\{n_i\}) = \frac{N!}{n_1! n_2! n_3! \cdots n_i! \cdots} = \frac{N!}{\prod_i n_i!}$$

a multinomial coefficient

What is a multinomial coefficient?

In the expansion of $(a + b + c)^N$

the term $a^{n_1}b^{n_2}c^{n_3}$ is multiplied by the coefficient $\frac{N!}{n_1!n_2!n_3!}$

where
$$\sum_{i} n_{i} = N$$

 $(a + b + c + d)^{3} = a^{3} + 3a^{2}b + 6abc + \cdots$
 $\frac{N!}{n_{1}!n_{2}!n_{3}!n_{4}!} = \frac{3!}{3!0!0!0!} = \frac{3!}{2!1!0!0!} = \frac{3!}{1!1!1!0!}$

Note: 0! = 1

Rewrite Q in Terms of the New Expression for Ω

$$Q(N, V, T) = \sum_{\{n_i\}} \Omega(\{n_i\}) e^{-E(\{n_i\})/kT}$$
$$= \sum_{\{n_i\}} \frac{N!}{\prod_j n_j!} e^{-\sum_j n_j \varepsilon_j / kT}$$

This is a sum over all sets of occupation

numbers, and
$$E(\{n_i\}) = \sum_j n_j \varepsilon_j$$
.

Reformulate the expression for Q

$$Q(N,V,T) = \sum_{\{n_i\}} \frac{N!}{\prod_j n_j!} e^{-\sum_i n_i \varepsilon_i / kT} \quad \text{where } E(\{n_i\}) = \sum_i n_i \varepsilon_i < 1$$
of molecules in state i

Reduce this to a function of the sum over states of a single molecule:

$$= \sum_{\{n_i\}} \left(\frac{N!}{\prod_j n_j!} \right) \left[\prod_i (e^{-\varepsilon_i/kT})^{n_i} \right]$$

note that $e^{-\epsilon_i/kT}$ is raised to the n_i-th power

Now impose multinomial trick

$$= \left(e^{-\varepsilon_1/kT} + e^{-\varepsilon_2/kT} + e^{-\varepsilon_3/kT} \dots\right)^{N}$$
$$= \left(\sum_{i} e^{-\varepsilon_i/kT}\right)^{N}$$

sum over states of a single molecule

Define: $q = \sum e^{-\epsilon_i/kT}$ **MOLECULAR** $\varepsilon_i = molecular$ PARTITION energy of **FUNCTION** state i sum over states of a single molecule $= [q(V,T)]^{N}$ Q(N,V,T)Single N-molecule Canonical Molecule Partition Canonical Function Partition Function

FOR INDEPENDENT, DISTINGUISHABLE PARTICLES!