5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture #5: Alkali and Many e⁻ Atomic Spectra

What am I doing spending all of this time on ATOMS?

One of the goals of spectroscopy is to recover what is unique about the system by using what is universal and general as a road map.

Form and flavor of electronic structure models.

* patterns for assignment of spectra

- * predictions of unobserved states and properties
- * ways to estimate size and shape of orbitals
- * quantitative reconstruction of $V_{\ell}(r)$ from spectrum
- * zero-order pictures for describing dynamics.

$$\Psi(\mathbf{Q}, t) = \sum_{i} a_{i}(t) \psi_{i}^{0}(\mathbf{Q})$$
$$\psi_{i} \leftrightarrow \Sigma \alpha_{i} \psi_{i}^{0}$$

time evolving non-eigenstate expressed in terms of basis states, ψ_i^o

eigenstate expressed in terms of basis states, $\psi^{\rm o}_i$

Construct interesting $\Psi(Q, 0)$ and predict its time evolution.

How do we know n, ℓ , and Z for $1e^{-}$ spectrum?

pattern $\begin{cases} * \text{ convergence } \Re Z^2/n^2 \\ * \text{ fine structure } Z^4/[n^3 (\ell + 1)(\ell + 1/2)\ell] \\ * \text{ hyperfine? } \\ * \text{ selection rules for electric dipole transition } \\ * \text{ exactly repeated intervals in two series } \end{cases}$

Alkalis $SCF \rightarrow$ mathematical definition of $1e^-$ orbitals Scaling generalized

$$Z \rightarrow Z_{n\ell}^{eff}$$

$$n \rightarrow n^* = n - \delta_{\ell}$$

interpretive
intuitive
diagnostic
systematic probe

core, valence, Rydberg core-penetrating, non-penetrating

Ontogeny recapitulates phylogeny [Mulliken]

What happens when you throw an e^- at a closed shell ion?

- intuition

- Quantum mechanical wavepacket calculation.

Real curve is more attractive than Z = 1 curve

outer part of $R_{n\ell}$ same as Z = 1 at that value of E that corresponds to n^*

Shell model

 $Z_{n\ell}^{eff}$ core orbitals - XPS spectrum core part of valence orbitals core part of penetrating Rydberg orbitals and hyperfine

 $n^{*} = n - \delta_{\ell} \qquad \begin{array}{c} * \text{ outer part of valence orbitals} \\ * \text{ outer part of penetrating orbitals} \\ * \text{ all of non-penetrating orbitals} \end{array} \begin{array}{c} Z = Z_{\text{CORE}} \\ OR \\ Z_{\text{ION}} \\ (\text{integer}) \end{array}$

ontogeny recapitulates phylogeny

→ Rydberg Series * Replicated inner lobes * $n^{*-3/2}$ amplitude scale factor $e^- \leftrightarrow$ core energy exchange

e⁻ scattered off core

 $\pi \delta_{\ell}$ phase shift (with respect to H⁺ + e⁻) inter-channel interactions, due to $1/r_{ij}$, with core excited states

simple picture follows in order to understand δ_ℓ systematics and $\psi_{n^*\ell}$ recapitulation.

What do we know about this kind of potential?

Are all eigenfunctions pictorially related? How do E levels tell us about form of V(r)? Why is δ_{ℓ} n-independent?

Boundary condition: $R_{n\ell}(r) \rightarrow 0$ at $r \rightarrow \infty$ (so phase at outer turning point, $r_>$, must be just right to prevent blow-up at $r \rightarrow \infty$)

Outside "core", $Z_{n\ell}^{eff}(r) \rightarrow Z_{CORE}$ (integer) thus all $R_{n\ell}(r)$ have identical asymptotic form (except for the possibility of a phase shift), because the $V_{\ell}(r) \rightarrow -Z_{CORE}/r$.

Inside "core" — all of the extra phase accumulates because $Z_{n\ell}^{eff}(r) > Z_{CORE}$. All $\psi_{n^*\ell}$ in a specific Rydberg series (channel) exit core with same phase. Must splice (universal) Coulomb long range wavefunction onto (ℓ -specific) core wavefunction.

Fall, 2008

Quantum Defect Theory

throw e^- at M^+ ion set of δ_ℓ 's tells us about $Z^{\text{eff}}(r)$ from extra phase accumulated inside core region. different ℓ 's tell us different depths of penetration — partial wave analysis. [complementary inside-core information from spin-orbit and hfs $\leftrightarrow Z^{\text{eff}}$]

What if e⁻ hits a core e⁻ and scatters it out?

Perturbation of Rydberg series member n^2L by a core excited state? Usually it costs too much to promote a core e^- . Except for $3d^{10}4s^1$ (Cu, Ag, Au) (but not for a Rydberg series converging to an electronically excited state of the ion.)

Doubly excited states - Rydberg series built on a core hole.

e.g. Na $[1s^2 2s^2 2p^5]3s n^*\ell$ ²P CORE ^{2,4} $\ell + 1$ ℓ $\ell - 1$ are the possible states

Spectrum gets very complicated at high E!

Autoionization: eject $e^$ matrix elements of $1/r_{ii}$ between ionization continuation and doubly excited state.

Crucial differences between hydrogenic and alkali-like spectra

- * loss of degeneracy between $n^2L_{j=\ell+1/2}$ and $n^2(L+1)_j$ (different shielding/core-penetration of s,p, d, f...)
- * loss of simple analytic f(quantum numbers) for all radial properties. Retain empirically corrected scaling relationships. Retain ability to estimate sizes.
 (n-independence of δ's means that a quantitative theory exists)
- * possibility of core-excited states (core no longer ¹S closed shell)
 possibility of core e⁻↔valence e⁻ energy transfer "autoionization", "superexcited" states,
 "resonances"
- * retain one doublet state for each closed-shell core plus single-electron $n\ell$ electronic configuration.

What happens when there is more than one e⁻ outside of closed shells — amazing complexity!