
1.00/1.001
Introduction to Computers and Engineering Problem Solving

Quiz II Review

April 11 2012

1

Quiz II

• Friday April 13

• 3:05-4:25pm (80 min)

• Room: 50-340 (Walker)

• Open book/notes, No computer

• Style/length/difficulty: similar to past quizzes

2

What we have learned so far

• Everything from quiz I

• Recursion

• Inheritance

– Subclasses

– Abstract classes/methods

– Interfaces

3

What we have learned so far

• Swing

– Layout Managers

– Events

– Model-View-Controller

– Graphics

– Transformations

4

Recursion

• Divide and conquer or divide and combine
problem solving approach

1. Define the base case

2. Divide big problem into smaller problems

3. Recursively solve the smaller problems

4. Combine the solutions to the smaller
problems

5

Recursion
• Fibonacci Sequence:

• Formula: Fib(n)=Fib(n-1)+Fib(n-2)

Image removed due to copyright restrictions. See: http://www.codeproject.
com/KB/cpp/Recursion_Prmr_CPP_01/10-Binary_Recursion.gif

6

http://www.codeproject.com/KB/cpp/Recursion_Prmr_CPP_01/10-Binary_Recursion.gif
http://www.codeproject.com/KB/cpp/Recursion_Prmr_CPP_01/10-Binary_Recursion.gif

Finding max of array
Assume we can only find max of 2 numbers at a time. Suppose we want to

find the max of a set of numbers, say 8 of them.

 35 74 32 92 53 28 50 62

Our recursive max method calls itself:

max(0,3) max(4,7)

max(2,3)max(0,1)

max(0,7)

74 92 53 62

92

92

62

max(6,7)max(4,5)

Image by MIT OpenCourseWare.

7

Code for maximum method
public class MaxRecurse {
 public static void main(String[] args) {
 int[] a= {35, 74, 32, 92, 53, 28, 50, 62};
 System.out.println("Max: " + max(0, 7, a));
 }

 public static int combine(int a, int b) {
 if (a >= b) return a;
 else return b;
 }

 public static int max(int i, int j, int[] arr) {
 if ((j - i) <= 1) { // Small enough
 if (arr[j] >= arr[i])
 return arr[j];
 else
 return arr[i]; }
 else // Divide and combine
 return (combine(max(i, (i+j)/2, arr),
 max((i+j)/2+1, j, arr)));
 }
} 8

Inheritance: Access
– Private:

• Access only by class’s methods

– Protected

• Access by:

– Class’s methods

– Methods of inheriting classes, called subclasses or
derived classes

– Classes in same package

– Package (No modifier):

• Access by methods of classes in same package

– Public:

• Access to all classes everywhere

9

Inheritance: Access

http://docs.oracle.com/javase/tutorial/java/javaO
O/accesscontrol.html

10

http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

Inheritance: Abstract

• May have data members like any class

• May have some implemented (concrete)
methods

• May have some unimplemented (abstract)
methods

– Name says what method does

– No information on how method works

11

Inheritance: Abstract

• Cannot instantiate (create object with new)
abstract class

– Why? because some methods may be abstract

• Concrete subclasses must implement all
abstract methods (Override)

• Use abstract classes for organization, to
provide some default behavior

12

Inheritance: Interfaces

• Interface lists methods that implementing
class must include

– Like a checklist for classes

• Set of method declarations

– NO implemented methods

– NO instance data members (must be final
static)

• Defines a list of possible behaviors

13

Inheritance

• Abstract Classes have

– Static and instance data
members

– Concrete and/or abstract
methods

– Single inheritance
(via extends)

– Constructor

• Interfaces have

– Static final data
members (constant)

– All methods abstract

– “Multiple Inheritance”
(via implements)

– No constructor

instanceof operator checks if an object is an instance of
a specified class or interface:
 variablename instanceof Type

14

• Java’s Graphical User Interface (GUI)

• Import javax.swing.* and java.awt.*

Container (ContentPane)

Contains a JTextField and a
JPanel, organized in FlowLayout.

JFrame
Has a
ContentPane

JPanel

Contains 5 JButtons
organized in BorderLayout

JTextField

Swing

© Oracle. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

15

http://ocw.mit.edu/fairuse

Swing: Layouts

BorderLayout
GridLayout(5, 4)

Grid Layout with 5 rows, 4 cols

• Default Layout
– BorderLayout for Jframe’s contentpane

– FlowLayout for JPanel

© Oracle. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

16

http://ocw.mit.edu/fairuse

Swing: Events

Event sources

Event listeners

Source-listener relationships

Events are triggered by JComponents.
Example: a JButton triggers an ActionEvent when the user clicks it

An object implementing a listener interface can listen to events.
Each listener interface has (a) method(s) that react to events.
Example: an object implementing the ActionListener interface has an
 ActionPerformed method that reacts to ActionEvents triggered by
JButtons.

Event listeners are registered at event sources
Example: aJButton.addActionListener(aListenerObject)

17

Swing: Events

• Listener object is anything that is of type
ActionListener!

public class InnerTest extends JPanel {

 public class InnerButtonListener implements ActionListener{

 public void actionPerformed(ActionEvent e) { /*commands*/ }

 }

 public InnerTest(){

 ... // More commands not shown

 Jbutton b1 = new Jbutton(“Button 1”)

 b1.addActionListener(new InnerButtonListener());

 }

}

18

Swing: Events

• Anonymous Inner Class

public class PrinterPanel extends JPanel{

 JButton b;

 public PrinterPanel(){

 b = new JButton("Click to Print")

 add(b);

 b.addActionListener(

 new ActionListener(){

 public void actionPerformed(ActionEvent e){

 System.out.println("Swing");

 }

 }

);

 }

}

Action Event
© Oracle. All rights reserved.
This content is excluded from
our Creative Commons license.
For more information,
see http://ocw.mit.edu/fairuse.

19

http://ocw.mit.edu/fairuse

Layout/Event Exercise

• Construct below Jframe

• When any button is clicked, the button’s text is printed

© Oracle. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

20

http://ocw.mit.edu/fairuse

Swing: Model View Controller

• Model: computational
– Only knows how to compute the solution

– Doesn’t know how to draw

– Doesn’t know about events, or the GUI at all

• View: purely display of results
– Only knows how to draw

– Doesn’t know how to compute the solution

– Doesn’t know about events

• Controller: manages events
– Manages startup (construction), object creation, events, repaints,

label refreshes, exit, …

– Doesn’t know how to draw

– Doesn’t know how to compute

 21

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

