
1

1.00 Lecture 12

Recursion

Reading for next time: Big Java: sections 10.1-10.4

Recursion

•  Recursion is a divide-and-conquer (or divide-and-
combine) approach to solving problems:

 method recurse(arguments)
 if (smallEnough(arguments)) // Termination
 return answer
 else // Divide
 identity= combine(someFunc(arguments),

 recurse(smallerArguments))
 return identity // Combine

•  If you can write a problem as the combination of
smaller problems, you can implement it as a
recursive algorithm in Java

2

Finding maximum of array

Assume we can only find max of 2 numbers at a time. Suppose
we want to find the max of a set of numbers, say 8 of them.
 35 74 32 92 53 28 50 62

Our recursive max method calls itself:
 max(0,7)

 max(0,3) max(4,7)

Finding maximum of array

Assume we can only find max of 2 numbers at a time. Suppose
we want to find the max of a set of numbers, say 8 of them.
 35 74 32 92 53 28 50 62

Our recursive max method calls itself:
 max(0,7)

 max(0,3) max(4,7)

max(0,1) max(2,3)

3

Finding maximum of array

Assume we can only find max of 2 numbers at a time. Suppose
we want to find the max of a set of numbers, say 8 of them.
 35 74 32 92 53 28 50 62

Our recursive max method calls itself:
 max(0,7)

 max(0,3) 92 max(4,7)

max(0,1) max(2,3)

 74 92

 Exercise: fill out the rest of the method calls

Code for maximum method
c class MaxRecurse { ppubli

 public static void main(String[] args) {
 int[] a= {35, 74, 32, 92, 53, 28, 50, 62};
 System.out.println("Max: " + max(0, 7, a));
 }

 public static int combine(int a, int b) {
 if (a >= b) return a;
 else return b;
 }

 public static int max(int i, int j, int[] arr) {
 if ((j - i) <= 1) { // Small enough
 if (arr[j] >= arr[i])
 return arr[j];
 else
 return arr[i]; }
 else // Divide and combine
 return (combine(max(i, (i+j)/2, arr),
 max((i+j)/2+1, j, arr)));
 }
}

4

Maximum code with more output
blic class MaxRecurse2 {

public static void main(String[] args) {

 int[] a= {35, 74, 32, 92, 53, 28, 50, 62};

 System.out.println("Main Max:" + max(0, 7, a)); }

public static int combine(int a, int b) {

 if (a>=b) return a;

 else return b; }

public static int max(int i, int j, int[] arr) {

 System.out.println("Max(" + i + "," + j + ")");

 if ((j - i) <= 1) {

 if (arr[j] >= arr[i]) { // Small enough

 System.out.println(" " + arr[j]);

 return arr[j]; }

 else {

 System.out.println(" " + arr[i]);

 return arr[i]; } }

 else { // Divide, combin

 int aa= (combine(max(i, (i+j)/2, arr),

 max((i+j)/2+1, j, arr)));

 System.out.println("Max(" +i + "," +j + ")= "+ aa);

 return aa;

ppu

 e

 } } }

Exponentiation

  Exponentiation, done simply , is inefficient
–  Raising x to y power can take y multiplications:

•  E.g., x7 = x * x * x * x * x * x * x
–  Successive squaring is much more efficient, but

requires some care in its implementation
–  For example: x48 = ((((x * x * x)2) 2) 2) 2 uses 6

multiplications instead of 48
  Informally, simple exponentiation is O(n)
–  Squaring is O(lg n), because raising a number to the nth

power take about lg n operations (base 2)
•  Lg(48)= Log2(48)= about 6
•  25 = 32; 26 = 64

–  To find x1,000,000,000 , squaring takes 30 operations while
the simple method takes 1,000,000,000

•

•

5

Exponentiation cont.
•  Odd exponents take a little more effort:

–  x7 = x * (x*x*x)2 uses 4 operations instead of 7

–  x9 = x * (x*x)2)2 uses 4 operations instead of 9
•  We can generalize these observations and

design an algorithm that uses squaring to
exponentiate quickly

•  Writing this with iteration and keeping track of
odd and even exponents can be tricky

•  It is very naturally written as a recursive
algorithm
–  We write a series of 3 identities and then implement

them as a Java method

Exponentiation, cont.

Three identities:
–  x1= x (small enough)
–  x2n= xn * xn (reduces problem)

–  x2n+1= x* x2n (reduces problem)

• 

6

Exercise

•  Write pseudocode for exponentiation
–  Write your pseudocode on paper or in Eclipse
–  Use the standard pattern:
–  You can write the identities as expressions; you don t have

to use a Combine method
•  Combine is usually just * or + or Math.max()�

method recurse(arguments)

 if (smallEnough(arguments)) // Termination
 return answer
 else // Divide
 identity= combine(someFunc(arguments),

 recurse(smallerArguments))
 return identity // Combine

How the recursion works
x= 5, y= 9

expResult(5, 9)

 5 * expResult (5, 8) = 1953125

 square(expResult(5, 4)) = 390625

 square(expResult(5, 2)) = 625

 square(expResult(5, 1)) = 25

 expResult(5, 1) =5

7

Exponentiation Exercise
/// Download Exponentiation class and complete it

import javax.swing.*;

public class Exponentiation {
 public static void main(String[] args) {
 long z;
 String input= JOptionPane.showInputDialog("Enter x");
 long x= Long.parseLong(input);
 input= JOptionPane.showInputDialog("Enter y");
 long y= Long.parseLong(input);
 z= expResult(x, y);
 System.out.println(x + " to " + y + " power is: " + z);
 }

// You can use BigInteger to handle large numbers. A bit clumsy.
// With longs, result overflows above 525. Max long value= 263 - 1

Exponentiation Exercise, p.2

public static long expResult(long x, long y) {

 long result;

 // Write code when y is small enough

 // Write code when we need to divide the problem furth

 // Add System.out.println as desired to trace results

 return result;

 }

}

er

8

Recursion and iteration

•  It takes some thought to write the exponentiation
iteratively
–  Try it if you have time and are interested

•  It s sometimes easier to see a correct recursive
implementation
–  Recursion is often closer to the underlying mathematics

•  There is a mechanical means to convert recursion
to iteration, used by compilers and algorithm
designers. It s complex, and is used to improve
efficiency
–  Overhead of method calls is sometimes noticeable, and

converting recursion to iteration can speed up
execution

Exercise 1
•  An example sequence is defined as:

–  q0 = 0
–  qn = (1 + qn-1)1/3

•  Write a recursive method to compute q
n

•  Download Sequence1
–  Main is written for you

•  Write method q() in class Sequence1. q() is a method in
Sequence1, just like main()

–  The recursive method signature is written also
–  The body of the recursive method follows the template:

•  If small enough, determine value directly
•  Otherwise, divide and combine

–  Use Math.pow(base,exponent) to take the cube root
•  Remember to make the exponent 1.0/3.0, not 1/3

•  Save/compile and run or debug it
–  Try n= 10, or n= 20

9

Download Code 1
iimport javax.swing.*;

public class Sequence1 {

 public static void main(String[] args) {

 String input= JOptionPane.showInputDialog("Enter n"

 int n= Integer.parseInt(input);

 for (int i= 0; i <= n; i++)

 System.out.println("i: "+ i + " q: " + q(i));

 System.exit(0);

 }

 public static double q(int n) {

 // Write your code here

 }

// Sample output:

 n: 0 answer: 0.0

 n: 1 answer: 1.0

 n: 2 answer: 1.2599210498948732

 n: 3 answer: 1.3122938366832888

);

Exercise 2
•  A second sequence is defined as:

–  q0 = 0
–  q1 = 0
–  q2 = 1
–  qn = qn-3 + qn-2 for n >= 3

•  Write a recursive method to compute q
n

•  Download Sequence2
–  Main is written for you

•  Write method q() in class Sequence2. q() is a method in
Sequence2, just like main()

–  The recursive method signature is written also
–  The body of the recursive method follows the template:

•  If small enough, determine value directly
•  Otherwise, divide and combine

•  Save/compile and run or debug it
–  Try n= 10, or n= 20

10

iimport javax.s

Download Code 2
wing.*;

public class Sequence2 {

 public static void main(String[] args) {

 String input= JOptionPane.showInputDialog("Enter n");

 int n= Integer.parseInt(input);

 for (int i= 0; i <= n; i++) // Call it for all i<=n

 System.out.println("i: "+ i + " q: " + q(i));

 System.exit(0);

 }

 public static int q(int n) {

 // Write your code here

 }

}

// Sample solution

i: 0 q: 0

i: 1 q: 0

i: 2 q: 1

i: 3 q: 0

i: 4 q: 1

Exercise 3
•  A pair of sequences is defined as:

–  x0 = 1; xn = xn/2 + yn/3
–  y0 = 2; yn = xn/3 * yn/2 + 2 (Note the *, not +)

•  Write two recursive methods to compute xn and yn
–  Subscripts n/2 and n/3 use integer division

•  Download Sequence3
–  Main is written for you

•  Methods x() and y() are methods in class Sequence3, just
like main().

–  The bodies of the recursive methods follow the template:
•  If small enough, determine value directly
•  Otherwise, divide and combine

•  Save/compile and run or debug it
–  Try n= 10, or n= 20

11

iimport javax.s

Download Code 3
wing.*;

public class Sequence3 {

 public static void main(String[] args) {

 String input= JOptionPane.showInputDialog("Enter n");

 int n= Integer.parseInt(input);

 System.out.println("i x y");

 for (int i= 1; i <= n; i++)

 System.out.println(i + " " + x(i) + " " + y(i));

 System.exit(0);

 }

 // Write your methods for x(i) and y(i) here

}

// Sample solution

i x y

1 3 4

2 5 6

3 7 14

4 9 20

5 9 20

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

