1.033/1.57 H#2: Stress & Strength

Due: October 6, 2003

 $\begin{array}{l} \mathbf{MIT} - 1.033/1.57 \\ \mathbf{Fall} \ 2003 \\ \mathbf{Instructor:} \ \mathbf{Franz-Josef} \ \mathbf{ULM} \end{array}$

Instrumented Nano-Indentation: Instrumented nano-indentation is a new technique in materials science and engineering to determine material strengths at very fine scales. The test consists in a penetration of a needle-type indenter in a continuous material system (see experimental setup in figure (a) below). The force required to penetrate is then related to the strength of the material – by means of mechanical modeling.

In this exercise, we propose to develop a simplified triaxial stress-strength model of the nanoindentation test. To simplify the problem, we consider that the indenter is a rigid cylinder of radius r_0 , situated on the surface of a horizontal half-space composed of a homogeneous material, as sketched in figure (b) below. A vertical force F is exerted on the cylinder in the direction of the cylinder axis Oz, until it penetrates into the half-space. The value of the force F at this moment is noted max F, and the material property that is reported from the test is known as micro-hardness:

$$H = \frac{\max F}{A}$$

where A is the contact area of the indenter with the material. We suppose that the contact of the cylinder with the half-space (at $z = 0; r \le r_0$) is without friction. Aim of this exercise is to relate the micro-hardness measurement to the strength properties of the material composing the half-space.

Throughout this exercise we will assume quasi-static conditions (inertia effects neglected), and we will neglect body forces.

Nano-Indentation test: (a) Experimental Setup; (b) Simplified Mechanical Model.

- 1. Statically Admissible Stress Field: For purpose of analysis, we separate the halfspace Ω in two subdomains, noted respectively Ω_1 and Ω_2 . In these domains, we consider the following stress fields:
 - in Ω_1 defined by z > 0 and $r < r_0$:

$$\sigma'_{rr} = q'; \quad \sigma'_{\theta\theta} = q''; \quad \sigma'_{zz} = \sigma \text{ (other } \sigma'_{ij} = 0)$$

- in Ω_2 defined by z > 0 and $r > r_0$:

$$\sigma'_{rr} = -q(r_0/r)^2; \quad \sigma'_{\theta\theta} = q(r_0/r)^2 \text{ (other } \sigma'_{ij} = 0)$$

- (a) Specify precisely ALL conditions which statically admissible stress fields in Ω_1 and Ω_2 need to satisfy.
- (b) Determine the constants q', q'', q and σ , so that the stress field σ' is statically admissible in $\Omega = \Omega_1 \cup \Omega_2$.
- (c) In the Mohr Plane $(\sigma \times \tau)$, give a graphical representation of the stress field σ' for Ω_1 and Ω_2 , by considering that $F > q\pi r_0^2$. In both Mohr Plane and material plane, determine the surface and the corresponding stress vector, where the shear stress is maximum in Ω .
- 2. Mohr-Coulomb Strength Criterion: The material we consider is a Mohr-Coulomb material, for which the strength domain is defined by:

$$f(\boldsymbol{\sigma}) = |\tau| + \sigma \tan \varphi - c \le 0$$

where $|\tau| = \sqrt{\mathbf{T}^2 - \sigma^2}$, $\sigma = \mathbf{n} \cdot \boldsymbol{\sigma} \cdot \mathbf{n}$; $\tan \varphi$ is the friction coefficient, and c is the cohesion. Alternatively, the Mohr-Coulomb criterion can be written in terms of the principal stresses $\sigma_I \ge \sigma_{II} \ge \sigma_{III}$:

$$f(\boldsymbol{\sigma}) = \sigma_I (1 + \sin \varphi) - \sigma_{III} (1 - \sin \varphi) - 2c \cos \varphi \le 0$$

- (a) Display the Mohr-Coulomb criterion in the Mohr Plane $(\sigma \times \tau)$;
- (b) Determine the relation between micro-hardness H and the strength material properties of the Mohr-Coulomb criterion.
- (c) In the material plane, represent the orientation of the critical material surfaces, on which the Mohr-Coulomb criterion is reached.
- 3. Refined Approach: By considering that the stress field in Ω₂ was constant, determine a second relation between the micro-hardness H and the Mohr-Coulomb model parameters. Which of the two solutions is closer to the 'real' maximum micro-hardness value at failure of the Mohr-Coulomb material system. Say why (HINT: Sketch your response in the Mohr-Plane)?