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Elasticity Bounds of Microflexural Structures (MEMS TYPE) Microelectromechan-
ical systems (MEMS) are miniature electromechanical sensor and actuator that are used as ac-
celerometers, micro-pumps, micro-turbines, and optical switches. The majority of MEMS devices 
are based on the movement of cantilever beams or thin membranes. MEMS are often made 
of thin layers of polysilicon, amorphous silicon, silica, oxides or polyimides, and the material is 
deposited in layers on some substratum (see figure (a) below). We want to give a lower bound 
and an upper bound for the apparent elasticity modulus of such microflexural structures. 

To this end, we consider a cantilever beam of length L along the x−axis and of height h and 
width b, as shown in figure (b) below. At x = 0, the section (centered around O) is in  contact  
without friction with a fixed rigid plate. At the other end, at x = L, the section (centered around 
O′) fixed on a frictionless rigid plate is subjected to a rotation of intensity ϑ � 1 around the 
z−axis, such that: 

at x = L : ξd = [O′
M × ϑez ] · ex = −ϑyx 

The surface of the beam is stress free. In a very first approximation, we consider that the het-
erogeneous matter constituting the beam is a linear isotropic elastic material defined by Young’s 
Modulus E(x) and Poisson’s ratio ν(x). 
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Problem set: Microflexural system: (a) Layered deposition manufacturing; (b) Cantilever

structure.
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1.	 Equivalent Homogeneous Sample: Let Eapp be the apparent elastic modulus of the 
equivalent homogeneous sample. We consider a uniaxial stress field of the form, 

in Ω : σ = σ(y)ex ⊗ ex 

(a)	 Determine σ(y), using the isotropic linear elastic material law (E = Eapp = const), 
and show that the bending moment at x = L obeys to the section-type constitutive 
law: 

ϑ 
Mz = EappIz 

L

where Iz is the bending inertia moment around the z−axis.


(b)	 Determine the corresponding displacement solution ξ. 

(c)	 Specify briefly why  (ξ, σ) is the solution of the equivalent homogeneous bending 
problem. 

2.	 Heterogeneous Sample: We now consider the heterogeneous bending sample (i.e., 
E = E(x), ν  = ν(x)). 

(a)	 Target Solution: Let  (ξ, σ) be the (exact) displacement and stress solution in the 
heterogeneous sample subjected to the rotation at x = L. For this solution, show 
that the elastic energy stored per unit length in the beam reads: 

W (ξ) W ∗(σ) 1 ϑ 
= = Mz (x = L)

L L 2 L 

(b)	 Lower Bound: Inspired by the elastic homogeneous solution developed above, we 
consider for the heterogeneous sample, an approximated stress field of the form: 

in Ω : σ′ = σ′ 
y 
ex ⊗ ex

L 

Determine a lower bound of the apparent E-modulus of the heterogeneous sample. 

(c)	 Upper Bound: Inspired by the elastic homogeneous solution developed above, we 
consider for the heterogeneous sample a displacement field of the form: 

�	 � ϑx ϑ 
2in Ω : ξ′ = −ϑy ex + x 2 + α(y 2 

− z ) ey + α yzez
L 2L L 

Determine an upper bound of the apparent E-modulus of the heterogeneous sample. 

3.	 Application to a Two-Layer Beam: We consider that the beam is composed of two 
layers of thickness h1 and h2 = h − h1. E1 and E2 are the elasticity moduli of layer 1 and 
layer 2, respectively. The Poisson’s ratio in both layers is assumed the same. Determine 
the lower and upper bound of the apparent elasticity modulus Eapp of the bending beam. 
Display the results as a function of the relative thickness c = h1/h for a value of E1/E2 = 2  
(corresponding, e.g. to a Quartz -layer SiO2 of E1 = 380 GPa obtained by thermal oxidation 
of a silicon substratum of E2 = 190 GPa). Show that one of the two bounds corresponds 
precisely to the considered geometrical situation. 
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