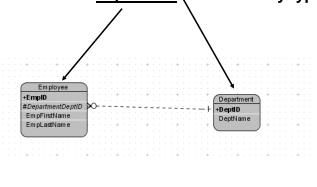
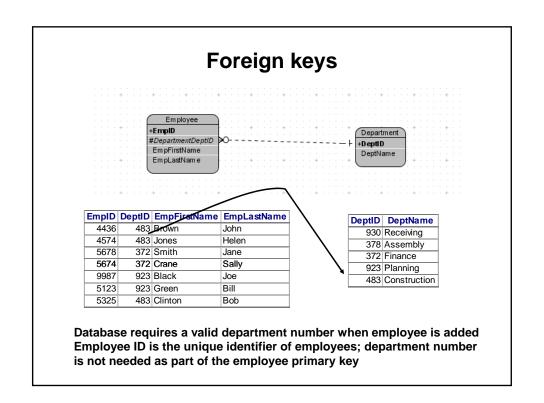
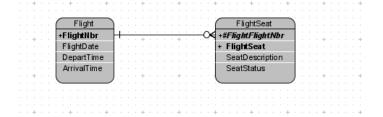
1.204 Lecture 2


Data models, concluded Normalization


Keys

- Primary key: one or more attributes that uniquely identify a record
 - Name or identifying number, often system generated
 - Composite keys are made up of two fields
 - E.g., aircraft manufacturer and model number


Foreign keys

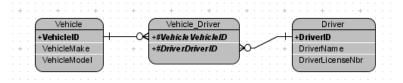
 Primary key of the <u>independent</u> or parent entity type is maintained as a non-key attribute in the <u>dependent</u> or child entity type

Composite foreign keys

Independent/parent

Dependent/child (must contain, as a foreign key, the primary key of the independent entity)

Assume a charter airline: every flight has a different number What has to change if this is a scheduled carrier?

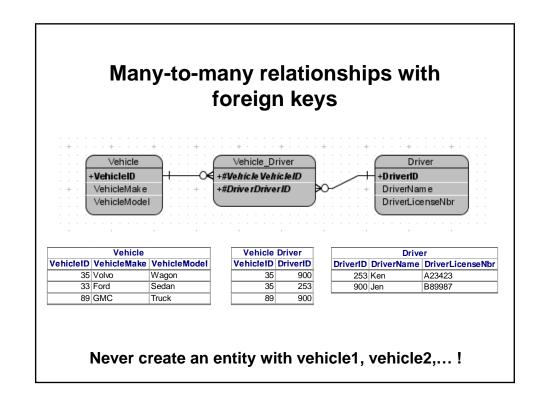

Flight				
FlightNbr	FlightDate	DepartTime	ArrivalTime	
243	9/24/00	9:00am	11:00am	
253	9/24/00	10:00am	12:30pm	
52	9/24/00	11:00am	2:00pm	

FlightSeat				
FlightNbr	SeatNbr	SeatStatus	SeatDescription	
243	8A	Confirmed	Window	
243	7D	Reserved	Aisle	
243	14E	Open	Center	
253	1F	Open	Window	
253	43A	Confirmed	Window	

Flight number must be part of the flight seat primary key; this is different than employee and department, where department is not required.

Foreign keys (many-many relationships)

· Primary key of parent is used in primary key of child



Independent

Dependent

Independent

Vehicle can be driven by many drivers; driver can drive many vehicles

Five normal forms: preventing errors

- 1: All occurrences of an entity must contain the same number of attributes.
 - No lists, no repeated attributes.
- 2: All non- primary key fields must be a function of the primary key.
- 3: All non- primary key fields must not be a function of other non- primary key fields.
- 4: A row must not contain two or more independent multi-valued facts about an entity.
- 5: A record cannot be reconstructed from several smaller record types. (Informal)

Examples based on William Kent, "A Simple Guide to Five Normal Forms in Relational Database Theory", Communications of the ACM 26(2), Feb. 1983

First normal form

- · All rows must be fixed length
 - Does not allow variable length lists.
 - Does not allow repeated fields, e.g., vehicle1, vehicle2, vehicle3...
 - However many columns you allow, you will always need one more...
 - Use a many-many relationship instead, always. See vehicle-driver example

Second normal form

Part	Warehouse	Quantity	WarehouseAddress
42	Boston	2000	24 Main St
333	Boston	1000	24 Main St
390	New York	3000	99 Broad St

- All non-key fields must be a function of the full key
 - Example that violates second normal form:
 - · Key is Part + Warehouse
 - Someone found it convenient to add Address, to make a report easier
 - WarehouseAddress is a fact about Warehouse, not about Part
 - Problems:
 - Warehouse address is repeated in every row that refers to a part stored in a warehouse
 - If warehouse address changes, every row referring to a part stored in that warehouse must be updated
 - Data might become inconsistent, with different records showing different addresses for the same warehouse
 - If at some time there were no parts stored in the warehouse, there may be no record in which to keep the warehouse's address.

Second normal form

- Solution
 - Two entity types: Inventory, and Warehouse
 - Advantage: solves problems from last slide
 - Disadvantage: If application needs address of each warehouse stocking a part, it must access two tables instead of one. This used to be a problem but rarely is now.

Part	Warehouse	Quantity
42	Boston	2000
333	Boston	1000
390	New York	3000

Warehouse	WarehouseAddress	
Boston	24 Main St	
New York	99 Broad St	

Third normal form

Employee	Department	DepartmentLocation
234	Finance	Boston
223	Finance	Boston
399	Operations	Washington

- Non-key fields cannot be a function of other nonkey fields
 - Example that violates third normal form
 - · Key is employee
 - Someone found it convenient to add department location for a report
 - Department location is a function of department, which is not a key
 - Problems:
 - Department location is repeated in every employee record
 - If department location changes, every record with it must be changed
 - Data might become inconsistent
 - If a department has no employees, there may be nowhere to store its location

Third normal form

Solution

- Two entity types: Employee and department

Employee	Department
234	Finance
223	Finance
399	Operations

Department	DepartmentLocation
Finance	Boston
Operations	Washington

TV: "The truth, the whole truth, and nothing but the truth" DB: "The key, the whole key, and nothing but the key"

Fourth normal form

Employee	Skill	Language
Brown	cook	English
Smith	type	German

- A row should not contain two or more independent <u>multi-valued</u> facts about an entity.
 - Example that violates fourth normal form:
 - An employee may have several skills and languages
 - Problems
 - Uncertainty in how to maintain the rows. Several approaches are possible and different consultants, analysts or programmers may (will) take different approaches, as shown on next slide

Fourth normal form problems

Employee	Skill	Language
Brown	cook	
Brown	type	
Brown		French
Brown		German
Brown		Greek

- Blank fields ambiguous. Blank skill could mean:
 - · Person has no skill
 - · Attribute doesn't apply to this employee
 - · Data is unknown
 - · Data may be found in another record (as in this case)
- Programmers will use all these assumptions over time, as will data entry staff, analysts, consultants and users
 - Disjoint format is used on this slide. Effectively same as 2 entity types.

Fourth normal form problems, cont.

Employee	Skill	Language
Brown	cook	French
Brown	cook	German
Brown	cook	Greek
Brown	type	French
Brown	type	German
Brown	type	Greek

- Cross product format. Problems:
 - Repetitions: updates must be done to multiple records and there can be inconsistencies
 - Insertion of a new skill may involve looking for a record with a blank skill, inserting a new record with possibly a blank language or skill, or inserting a new record pairing the skill with some or all of the languages.
 - Deletion is worse: It means blanking a skill in one or more records, and then checking you don't have 2 records with the same language and no skill, or it may mean deleting one or more records, making sure you don't delete the last mention of a language that should not be deleted

Fourth normal form solution

- Solution: Two entity types
 - Employee-skill and employee-language

Employee	Skill
Brown	cook
Brown	type

Employee	Language
Smith	French
Smith	German
Smith	Greek

- Note that skills and languages may be related, in which case the starting example was ok:
 - If Smith can only cook French food, and can type in French and Greek, then skill and language are not multiple independent facts about the employee, and we have not violated fourth normal form.
- Examples you're likely to see:
 - Person on 2 projects, in 2 departments
 - Part from 2 vendors, used in 4 assemblies

Fifth normal form

- A record cannot be reconstructed from several smaller record types.
- Example:
 - Agents represent companies
 - Companies make products
 - Agents sell products
- Most general case (allows any combination):

Agent	Company	Product
Smith	Ford	car
Smith	GM	truck

- Smith does not sell Ford trucks nor GM cars
- If these are the business rules, a single entity is fine
- But...

Fifth normal form

- In most real cases a problem occurs
 - If an agent sells a certain product and she represents the company, then she sells that product for that company.

Agent	Company	Product
Smith	Ford	car
Smith	Ford	truck
Smith	GM	car
Smith	GM	truck
Jones	Ford	car

(Repetition of facts)

 We can reconstruct all true facts from 3 tables instead of the single table:

Agent	Company
Smith	Ford
Smith	GM
Jones	Ford

_	
Agent	Product
Smith	car
Smith	truck
Jones	car

Company	Product
Ford	car
Ford	truck
GM	car
GM	truck

(No repetition of facts)

Fifth normal form

- Problems with the single table form
 - Facts are recorded multiple times. E.g., the fact that Smith sells cars is recorded twice. If Smith stops selling cars, there are 2 rows to update and one will be missed.
 - Size of this table increases multiplicatively, while the normalized tables increase additively. With big operations, this is a big difference.
 - 100,000 x 100,000 is a lot bigger than 100,000 + 100,000
- It's much easier to write the business rules from 5th normal
 - Rules are more explicit
 - Supply chains usually have all sorts of 5th normal issues

Fifth normal form, concluded

An example with a subtle set of conditions

Agent Company Product

Smith Ford car
Smith Ford truck
Smith GM car
Smith GM truck
Jones Ford car
Jones Ford truck
Brown Ford car
Brown GM car

Can you quickly deduce the business rules from this table?

Non-normal

Fifth normal S

Agent	Company
Smith	Ford
Smith	GM
Jones	Ford
Brown	Ford
Brown	GM
Brown	Toyota

Brown Toyota Brown Toyota

Company	Product
Ford	car
Ford	truck
GM	car
GM	truck
Toyota	car
Toyota	bus

Agent	Product
Smith	car
Smith	truck
Jones	car
Jones	truck
Brown	car
Brown	bus

- Jones sells cars and GM makes cars, but Jones does not represent GM
- Brown represents Ford and Ford makes trucks, but Brown does not sell trucks

bus

• Brown represents Ford and Brown sells buses, but Ford does not make buses

Summary

- Real systems have subtle system rules
 - Care in data modeling and system rules is needed to achieve good data quality
 - This is an interactive, conversational process, done with lots of people
 - Care in data normalization is needed to preserve data quality
 - Normalization ensures that each fact is stored in one and only one place (with rare exceptions). If a fact is stored in two or more places, they can and will become inconsistent, and then you won't know the fact at all.
 - This is a technical process, done in the back room with some technical people

1.204 Computer Algorithms in Systems Engineering Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.