1.204 Lecture 5

Algorithms: analysis, complexity

alq	orithms			
0				
Algorithm	Worst case	Typical case		
Simple greedy	O(n)	O(n)		
Sorting	O(n ²)	O(n lg n)		
Shortest paths	O(2 ⁿ)	O(n)		
Linear programming	O(2 ⁿ)	O(n)		
Dynamic programming	O(2 ⁿ)	O(2 ⁿ)		
Branch-and-bound	O(2 ⁿ)	O(2 ⁿ)		

Linear programming simplex is $O(2^n)$, though these cases are pathological Linear programming interior point is $O(Ln^{3.5})$, where L= bits in coefficients Shortest path label correcting algorithm is $O(2^n)$, though these cases are pathological Shortest path label setting algorithm is $O(a \lg n)$, where a= number of arcs. Slow in practice.

Running times on 1 GHz computer								
	•				•			
n	O(n)	O(n lg n)	O(n²)	O(n°)	O (n ¹⁰)	O(2")		
10	.01 µs	.03 µs	.10 µs	1 µs	10 s	1 µs		
50	.05 µs	.28 µs	2.5 µs	125 µs	3.1 y	13 d		
100	.10 µs	.66 µs	10 µs	1 ms	3171 y	10 ¹³ y		
1,000	1 µs	10 µs	1 ms	1 s	10 ¹³ y	10 ²⁸³ y		
10,000	10 µs	130 µs	100 ms	16.7 min	10 ²³ y			
100,000	100 µs	1.7 ms	10 s	11.6 d	10 ³³ y			
1.000.000	1 ms	20 ms	16.7 min	31.7 y	10 ⁴³ y			

Assumes one clock step per operation, which is optimistic

```
Complexity analysis: recursive sum
public class SumCountRec {
   static int count;
   public static double rSum(double[] a, int n) {
        count++;
        if (n <= 0) {
                 count++;
                 return 0.0;
        }
        else {
                 count++;
                 return rSum(a, n-1) + a[n-1];
        }
   }
   public static void main(String[] args) {
        count = 0;
        double[] a = { 1, 2, 3, 4, 5};
System.out.println("Sum is " + rSum(a, a.length));
System.out.println("Count is " + count);
   3
} // We can convert any iterative program to recursive
```



```
Timing: sequential search
public class SimpleSearch {
   public static int seqSearch(int[] a, int x, int n) {
        int i= n;
        a[0] = x;
        while (a[i] != x)
               i--;
        return i;
   }
   public static void main(String[] args) {
        // Slot 0 is a placeholder; search value copied there
        int[] a = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
System.out.println("SeqSearch location is " +
                 seqSearch(a, 7, a.length-1));
        System.out.println("SeqSearch location is " +
                 seqSearch(a, 11, a.length-1));
   }
} // This algorithm is O(n): avg n/2 for steps successful
   // search, and n steps for unsuccessful search
```


Summary

- Algorithm complexity varies greatly, from O(1) to O(2ⁿ)
- Many algorithms can be chosen to solve a given problem
 - Some fit the problem formulation tightly, some less so
 - Some are faster, some are slower
 - Some are optimal, some approximate
- Complexity is known for most algorithms we're likely to use
 - Analyze variations (or new algorithms) you create
 - Many algorithms of interest are O(2ⁿ):
 - Use or formulate special cases for your problem
 - Limit problem size (decomposition, aggregation, approximation)
 - Implement good code
 - If necessary, reformulate your problem (you often can):
 - Reverse inputs and outputs
 - Change decision variables
 - Develop analytic results to limit computational space to be searched

1.204 Computer Algorithms in Systems Engineering Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.