
1.204 Lecture 5


Algorithms: analysis, complexity


Algorithms 

•	 Alggorithm: 
–	 Finite set of instructions that solves a given problem. 
–	 Characteristics: 

•	 Input.  Zero or more quantities are supplied. 
•	 Output. At least one quantity is computed. 
•	 Definiteness.  Each instruction is computable. 
•	 Finiteness.  The algorithm terminates with the answer or by telling 

us no answer exists. 
•	 We will study common algorithms in engineering design 

d d i  kiand decisiion-making 
–	 We focus on problem modeling and algorithm usage 
–	 Variations in problem formulation lead to greatly different 

algorithms 
•	 E.g., capital budgeting can be greedy (simple) or mixed integer 

programming (complex) 
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Algorithms: forms of analysis 

•	 How to devise an alggorithm 
•	 How to validate the algorithm is correct 

–	 Correctness proofs 
•	 How to analyze running time and space of algorithm 

–	 Complexity analysis: asymptotic, empirical, others 
•	 How to choose or modify an algorithm to solve a problem 
•	 How to implement and test an algorithm in a program 

–	 KKeep program codde shhort andd  correspondd clloselly to allgorithi hm 
steps 

Analysis of algorithms 

•	 Time compplexityy  of a ggiven alggorithm 
–	 How does time depend on problem size? 
–	 Does time depend on problem instance or details? 
–	 Is this the fastest algorithm? 
–	 How much does speed matter for this problem? 

•	 Space complexity 
–	 How much memory is required for a given problem size? 

•	 Assumptions on computer word size, processor 
–	 Fi d d/ i iFixed word/register size 
–	 Single or multi (grid, hypercube) processor 

•	 Solution quality 
–	 Exact or approximate/bounded 
–	 Guaranteed optimal or heuristic 
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Methods of complexity analysis 

•	 Asymptotic analysis 
–	 Create recurrence relation and solve 

•	 This relates problem size of original problem to number and size of 
sub-problems solved 

–	 Different performance measures are of interest 
•	 Worst case (often easiest to analyze; need one ‘bad’ example) 
•	 Best case (often easy for same reason) 
•	 Data-specific case (usually difficult, but most useful) 

•	 Write implementation of algorithm (on paper) 
–	 Create table (on paper) of frequency and cost of steps 
–	 Sum upp the stepps;; relate them to pproblem size 

•	 Implement algorithm in Java 
–	 Count steps executed with counter variables, or use timer 
–	 Vary problem size and analyze the performance 

•	 These methods are all used 
–	 They vary in accuracy, generality, usefulness and ‘correctness’ 
–	 Similar approaches for probabilistic algorithms, parallel, etc. 

Asymptotic notation: upper bound O(..) 

•	 f(n)= O(g((g( ))  n)) if and only if( ) 	 y  
–	 f(n) ≤ c * g(n) 
–	 where c > 0 
–	 for all n > n0 

•	 Example: 
–	 f(n)= 6n + 4√n 
–	 g(n)= n 
–	 c= 10 (not unique) 
–	 f(f(n))= c ** g((n)) whhen n= 11 0 

–	 f(n) < g(n) when n > 1 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  

n 

–	 Thus, f(n)= O(n) 

•	 O(..) is worst case (upper bound) notation for an algorithm’s 
complexity (running time) 
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Asymptotic notation: lower bound Ω(..) 

•	 f(n)= Ω(g((g(n)) if and onlyy if( )  )) 
–	 f(n) ≥ c * g(n) 
–	 where c > 0 
–	 for all n > n0 

•	 Example: 
–	 f(n)= 6n + 4√n 
–	 g(n)= n 
–	 c= 6 (again, not unique) 
–	 f(f(n))= c ** g((n)) whhen n= 00 
–	 f(n) > g(n) when n > 0 n 

–	 Thus, f(n)= Ω(n) 

•	 Ω(..) is best case (lower bound) notation for an algorithm’s 
complexity (running time) 
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Asymptotic notation 

•	 Worst case or upper bound: O(..)Worst case or upper bound: O(..) 
–	 f(n)= O(g(n)) if f(n) ≤ c* g(n) 

•	 Best case or lower bound: Ω(..) 
–	 f(n)= Ω(g(n)) if f(n) ≥ c* g(n) 

•	 Composite bound: Θ(..) 
–	 f(n)= Θ(g(n)) if c1* g(n) ≤ f(n) ≤ c2* g(n) 

• AAverage or ttypiicall case nottatiti  on iis lless fformall 
–	 We generally say “average case is O(n)”, for example 

4 



5

Example performance of some common 
algorithms

Algorithm Worst case Typical case
Simple greedy O(n) O(n)
Sorting O(n2) O(n lg n)
Shortest paths O(2n) O(n)
Linear programming O(2n) O(n)
Dynamic programming O(2n) O(2n)Dynamic programming O(2 ) O(2 )
Branch-and-bound O(2n) O(2n)

Linear programming simplex is O(2n), though these cases are pathological
Linear programming interior point is O(Ln3.5), where L= bits in coefficients
Shortest path label correcting algorithm is O(2n), though these cases are pathological
Shortest path label setting algorithm is O(a lg n), where a= number of arcs. Slow in practice.

Running times on 1 GHz computer

O( ) O( l ) O(n2) O(n3) O(n10) O(2n)n O(n) O(n lg n) O(n ) O(n ) O(n ) O(2 )
10 .01 μs .03 μs .10 μs 1 μs 10 s 1 μs
50 .05 μs .28 μs 2.5 μs 125 μs 3.1 y 13 d

100 .10 μs .66 μs 10 μs 1 ms 3171 y 1013 y
1,000 1 μs 10 μs 1 ms 1 s 1013 y 10283 y

10,000 10 μs 130 μs 100 ms 16.7 min 1023 y
100 000 100 μs 1 7 ms 10 s 11 6 d 1033 y100,000 100 μs 1.7 ms 10 s 11.6 d 10 y

1,000,000 1 ms 20 ms 16.7 min 31.7 y 1043 y

Assumes one clock step per operation, which is optimistic
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Complexity analysis: recursive sum 

public class SumCountRec { 
static int count; 

public static double rSum(double[] a, int n) {

unt++;
count++; 

if (n <= 0) {

count++;

return 0.0;


} 
else { 

count++; 
return rSum(a, n-1) + a[n-1]; 

}

}
} 

public static void main(String[] args) { 
count = 0; 
double[] a = { 1, 2, 3, 4, 5}; 
System.out.println("Sum is " + rSum(a, a.length)); 
System.out.println("Count is " + count); 

} 
} // We can convert any iterative program to recursive 

Complexity analysis: recurrence relations 

•	 For recursive sum: 
–	 T(n)= 2 if n= 0 
–	 T(n)= 2 + T(n-1) if n> 0 

•	 To solve for T(n) 
–	 T(n)= 2 + T(n-1)


= 2 + 2 + T(n-2)

= 2*2 + T(n-2)

= n*2 + T(0) 
n 2  + T(0)

= 2n + 2


Thus, T(n) = Θ(n)

•	 Solving recurrence relations is a typical way to obtain 

asymptotic complexity results for algorithms 
–	 There is a master method that offers a cookbook approach to 

recurrence 
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• Max nodes on level i= 2i 

• Max nodes in tree of depth k= 2k+1-1 

Binary tree: O(lg n) 
Level 

• This is full tree of deppth k 
• Each item in left subtree is smaller than parent 
• Each item in right subtree is larger than parent 
• It thus takes one step per level to search for an item 
• In a tree of n nodes, how may steps does it take to find an item? 

• Answer: O (lg n) 
• Approximately 2k nodes in k levels 

• Remember that logarithmic is the “inverse” of exponential 

Quicksort: O (n lg n)


Quicksort(aQuicksort(a, 00, 6)
6) 
Original 36 71 46 76 41 61 56 

i  i  j  j  pivot  
1st swap 36 41 46 76 

j
71 61 56 

i  i j  
2nd swap 36 41 46 56 71 61 76 

quicksort(a,0,2) quicksort(a,4,6) 
final position 
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Complexity analysis: count steps on paper 
public class MatrixCount { 

static int count; 

public static double[][] add( double[][] a, double[][] b) { 
int m= a.length; 
int n= a[0].length; 
double[][] c = new double[m][n]; 
for (int i = 0; i < m; i++) { 

count++; //`for i‘:    Θ(m) 
for (int j = 0; j < n; j++) { 

count++; //`for j‘:    Θ(mn) 
c[i][j] = a[i][j] + b[i][j]; 
count++; // assgt  : Θ(mn) 

} 
count++; // loop init: Θ(1) 

}} 
count++; // loop init: Θ(1) 
return c; 

} // Total(max): Θ(mn) 
public static void main(String[] args) { 

count = 0; 
double[][] a = { {1, 2}, {3, 4} }; 
double[][] b = { {1, 2}, {3, 4} }; 
double[][] c = add(a, b); 
System.out.println("Count is: "+ count); } } 

Complexity: exponentiation, steps on paper 
public class Expon { 

public static int count; 
public static long exponentiate(long x, long n) { 

count= 0; 
long answer = 1; 
while (n > 0) {while (n > 0) { 
while (n % 2 == 0) { 
n /= 2; // Since n is halved, 
x *= x; // loop called Θ(log n) times 
count++; 

} 
n--; // Executed at most once per loop 
answer *= x; 
count++; 

} 
return answer; 

} 

public static void main(String[] args) { 
long myX = 5; 
for (long myN= 1; myN <= 25; myN++) { 
System.out.println(exponentiate(myX, myN)+ “ “+ count); 

} 
} 
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Timing: sequential search 

public class SimpleSearch { 
public static int seqSearch(int[] a, int x, int n) {


int i= n;

a[0] = x;

while (a[i] != x)


i--;

return i;


}


public static void main(String[] args) { 
// Slot 0 is a placeholder; search value copied there 
int[] a = {0 int[] a = {0, 11, 22, 33, 44, 55, 6, 77, 88, 99, 10}; 6  10}; 
System.out.println("SeqSearch location is " + 

seqSearch(a, 7, a.length-1)); 
System.out.println("SeqSearch location is " + 

seqSearch(a, 11, a.length-1)); 
} 

} // This algorithm is O(n): avg n/2 for steps successful 
// search, and n steps for unsuccessful search 

Java timing 

•	 Java has method System.nanoTime(). This is the Java has method System.nanoTime(). This is the 
best we can do. From Javadoc: 
–	 This method can only be used to measure elapsed time 

and is not related to any other notion of system or wall-
clock time. 

–	 The value returned represents nanoseconds since some 
fixed but arbitrary time (perhaps in the future, so values 
may be negative)may be negative). 

–	 This method provides nanosecond precision, but not 
necessarily nanosecond accuracy. 

–	 No guarantees are made about how frequently values 
change. 
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A poor timing program 
public class SearchTime1 { 

public static void timeSearch() {

int a[] = new int[1001];

int n[] = new int[21];

for (int j = 1; j <= 1000; j++)


[j]  ja[j] = j; 
for (int j = 1; j <= 10; j++) {


n[j] = 10 * (j - 1);

n[j + 10] = 100 * j;


}

System.out.println("  n  time");

for (int j = 1; j <= 20; j++) {


long h = System.nanoTime();

SimpleSearch.seqSearch(a, 0, n[j]);

long h1 = System.nanoTime();
long h1 System.nanoTime();

long t = h1 - h;

System.out.println("   " + n[j] + "  " + t);


} 
System.out.println("Times are in nanoseconds"); 

} 

public static void main(String[] args) { 
timeSearch(); 

} } 

SearchTime1 sample output 
n   time 

0    1572954

10   2013

20   2237

3030   2520 time
  2520

40   3288

50   3871

60   3439

70   6520

80   5774

90   6260


100       4615 

200       7587 

300       9999 0 
0 200 400 600 800 1000 1200 

400      12696 n 

500      15607 

600      29191 

700      18299 

800      21851 

900       5026 

1000      5399 

5000 

10000 

15000 

20000 

25000 

30000 

time 
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public class SearchTime2 { An adequate timing program 
public static void timeSearch() { // Repetition factors 

int[] r = { 0, 20000000, 20000000, 15000000, 10000000, 
10000000, 10000000, 5000000, 5000000, 5000000, 5000000, 
5000000, 5000000, 5000000, 5000000, 5000000, 5000000, 
2500000, 2500000, 2500000, 2500000 }; 

int a[] = new int[1001];

int n[] = new int[21];

for (int j  1; j <  1000; j++)
for (int j = 1; j <= 1000; j++)


a[j] = j;

for (int j = 1; j <= 10; j++) {


n[j] = 10 * (j - 1);

n[j + 10] = 100 * j;  }


System.out.println("    n t1       t\n"); 
for (int j = 1; j <= 20; j++) {


long h = System.nanoTime();

for (int i = 1; i <= r[j]; i++) {


p ( , SimpleSearch.seqqSearch(a, 0,, n[j]);[j]); }} 
long h1 = System.nanoTime(); 
long t1 = h1 - h; 
double t = t1; 
t /= r[j]; 
System.out.println("  " + n[j] + "  " + t1 + "  " + t); } 

System.out.println("Times are in nanoseconds");

}

public static void main(String[] args) {


timeSearch(); } } 

SearchTime2 sample output 
n time 
0   18.06976 
10   48.875175 
20   69.04334 

time 

30   96.90906 
40   131.7094 
50   146.09915 
60   141.81258 
70   160.09126 
80   232.35527 
90   307.9214 
100      340.1613 
200    200      590 4388 590.4388 
300      941.6273 
400     1305.8167 
500     1416.4121 
600     1574.6318 
700     2004.8795 
800     2525.205 
900     2734.0051 
1000    3634.6343 

0 
0 200 400 600 800 1000 1200 

n 

4000 

3500 

3000 

2500 

2000 

1500 

1000 

500 

time 

11 



•

Summary 

• Algorithm complexity varies greatly, from O(1) to O(2n) 
• Many algorithms can be chosen to solve a given problemMany algorithms can be chosen to solve a given problem 

– Some fit the problem formulation tightly, some less so 
– Some are faster, some are slower 
– Some are optimal, some approximate 

• Complexity is known for most algorithms we’re likely to use 
– Analyze variations (or new algorithms) you create 
– Many algorithms of interest are O(2n): 

•	 Use or formulate special cases for your problem 
•	 Limit problem size (decomposition, aggregation, approximation) 
•	 Implement good code 

– If necessary, reformulate your problem (you often can): 
•	 Reverse inputs and outputs 
•	 Change decision variables 
•	 Develop analytic results to limit computational space to be 

searched 
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