1.89, Environmental Microbiology Prof. Martin Polz Lecture 18

Microbial Population Interactions

- Definition of population: coexisting individuals of the same species.
- Interactions within populations
 Alle e⁻'s principle → at any given time both ⊕ and ⊖ interactions play a role in structuring populations.

• (+) interactions:

Example:

- exoenzymes (break down polymers)
- o infectious dose
- local adjustment of pH or Redox

Adaptation:

- o colony formation
- quorum sensing (density triggers specific traits)
- - o competition for resources
 - o accumulation of toxic substances

Interactions with other populations

 Commensalism: vitamins, co-factors, etc. are often required by bacteria isolated from the environment. eg: D. ethenogens need Vitamin B₁₂ (which is produced by methanogens)

"Cometabolism" = transformation of a substrate without gain of energy. Product can then be utilized by other bacteria.

• Synergism: both organisms benefit (eg: anaerobic environment)

 \rightarrow "cross-feeding"

Compound A $\xrightarrow{\text{population 1}}_{(\text{utilizes A)}}$ Compound B $\xrightarrow{\text{population 2}}$ Mineralization

 \rightarrow detoxification

 Symbiosis (mutualism): 2 types of organisms interacting in a mutually dependent way; they need each other to survive; symbionts are <u>obligate</u>

Example:

- a) <u>lichens</u> (very drought resistant; primary colonizers) = algae or cyanobacteria + fungi
- b) protozoa (termite gut, cow stomachs): bacterial endo and ecto symbionts (Bacteria grow on/in protozoa)

Types of metabolisms: photosynthetic bacteria, methanogens, S-oxidizers

• Competition: 2 organisms share/have the same limiting resource

 \rightarrow can lead to competitive exclusion

 \rightarrow difficult to assess in environment

 \rightarrow for bacteria, competition is studied using chemostats.

In a chemostat, the rate of supply of medium (or limiting nutrients) determines the growth rate:

$$D = \frac{f}{V}$$

$$D - \text{dilution rate} \\ f - \text{flow rate} \\ V - \text{volume}$$

$$\frac{dB}{dt} = \mu B - \frac{f}{V}B = \mu B - DB$$
at SS, $\frac{dB}{dt} = 0$ and $\mu = D$

$$\downarrow$$

$$growth = \text{dilution} \\ rate = 0$$
shows who will win the competition

• Predation: death Rates are equally important to growth rates

Predators of bacteria: viruses, protozoa

Theory: Latka-Volterra

