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Abstract 

We rotate a cylinder about its vertical axis: the cylinder has a circular drain hole in 

the center of its bottom. Water enters at a constant rate through a diffuser on its outer 

wall and exits through the drain; a steady state is set up in which the flow down the 

central drain exactly balances the inflow from the outer edge. The water flows inwards 

from the diffuser conserving angular momentum and, in so doing, acquires a swirling 

motion which exhibits a number of important principles of rotating fluid dynamics -

conservation of angular momentum, geostrophic (and cyclostrophic) balance. 

1 Introduction 

We are all familiar with the swirl and gurgling sound of water flowing down a drain. Here we 

set up a laboratory illustration of this phenomenon and study it in rotating and non-rotating 

conditions. 

We rotate a cylinder about its vertical axis: the cylinder has a circular drain hole in the 

center of its bottom - see Fig.1. Water enters at a constant rate through a diffuser on its 

outer wall and exits through the drain; a steady state is set up in which the flow down the 

central drain exactly balances the inflow from the outer edge. The water flows inwards from 

the diffuser conserving angular momentum and, in so doing, acquires a swirling motion, as 

sketched in Fig.2. The swirling motion can become very vigorous if the cylinder is rotated 

even at only moderate speeds, because the angular momentum of the cylinder is concentrated 

by inward flowing rings of fluid. 

The swirling flow exhibits a number of important principles of rotating fluid dynamics 

- conservation of angular momentum, geostrophic (and cyclostrophic) balance, all of which 

will be studied in detail in this chapter and made use of in our subsequent discussions. The 

experiment also gives us an opportunity to think about frames of reference. 
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Figure 1: Sketch of radial inflow apparatus. A diffuser with a 30 cm inside diameter is constructed 
of wire screen (and filled with stones approximately 1cm in size), is placed in a larger tank. Water 
is then fed evenly in to the bottom of the diffuser. The diffuser is effective at producing an axially-
symmetric, inward flow at the screen. Below the tank there is a large catch basin, partially filled 
with water and containing a submersible pump whose purpose is to return the water to the diffuser 
in the upper tank. The whole apparatus is then placed on a turntable. 

The experiment described here was designed by Jack Whitehead of the Woods Hole 

Oceanographic Institution. For more details refer to Whitehead, J.A and Potter, D.L (1977) 

Axisymmetric critical withdrawal of a rotating fluid. Dynamics of Atmospheres and Oceans, 

2, 1-18. 

2 The apparatus and observed flow patterns 

We take a cylindrical tank with a drain hole in the center of the bottom - see Fig.1. A diffuser 

is effective at producing a symmetrical inflow toward the drain. The entire apparatus is 

mounted on a turntable and viewed from the laboratory frame and, using a camera mounted 

above co-rotating with the apparatus, from the rotating frame. The table is turned in an 

anticlockwise direction (in the same direction as the spinning Earth). The path of fluid 

parcels is tracked by dropping paper dots on the free surface. 

When the apparatus is not rotating, water flows radially inward from the diffuser to the 

drain in the middle, as sketched in Fig.2 (lhs). The free surface is observed to be rather flat. 

When the apparatus is rotated, however, the water acquires a swirling motion: fluid parcels 

spiral inward as sketched in Fig.2 (rhs). Even at modest rotation rates of Ω = 1 radian per 

second (corresponding to a rotation period of around 6 seconds) 1, the  effect of rotation is 

1Note that if Ω is the rate of rotation of the tank in radians per second, then the period of rotation is 
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Figure 2: Flow patterns (left) in the absence of rotation and (right) when the apparatus is rotating 
in an anticlockwise direction. 

Figure 3: The free surface  of  the  radial inflow experiment viewed in the laboratory frame, in 
the case when the apparatus is rapidly rotating. The curved surface provides a pressure gradient 
force directed inwards that is balanced by an outward centrifugal force due to the anticlockwise 
circulation of the spiraling flow. 

marked and parcels complete many circuits before finally exiting through the drain hole. In 

the presence of rotation the free surface becomes markedly curved, high at the periphery 

and plunging downwards toward the hole in the center, as shown in the photograph - see the 

photograph in Fig.3. 

3 Experiments and measurements 

The main object of our experiment is to measure, and interpret in terms of angular momen-

tum principles, the velocity field, vθ(r), and its connection to the pressure field given by the 

height  of  the free surface  H(r). 

Set the tank rotating at a rate of ∼ 10 rpm (revolutions per minute), turn on the pump 

and record the flow rate, Q. The task is then to measure the surface flow and free surface 

τ tank = 2Ω 
π . Thus  if  τ tank = 2πs, then  Ω = 1. 
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profiles and compare them with predictions based on the theory in Section 4. Try various 

rotation rates and flow rates. 

1.	Velocity. Measure the velocity of particles (black paper dots) moving with the flow 

in the free surface of the fluid. This can be done by recording a sequence of images 

using the overhead camera and making use of the particle tracking software on the 

laboratory computers. This will return the coordinates of individual particles as a 

function of time (frame number). Compute both the azimuthal and radial velocity. 

Check whether the azimuthal speed of the dots, vθ(r), is consistent with angular mo-

mentum conservation, Eq.(11) below. 

Compute the Rossby number given by Eq.(8). How does it compare to the theoretical 

prediction, Eq.(12)? 

2.	 The height field. Measure the depth, H, of the water at the radius r1 and estimate 

H at other radii. Use your measurements of radial velocity, vr, and radial volume flux, 

Q, to infer  H(r) using Eq.(13). 

Are the  gradients of the  free  surface sufficient to balance the centrifugal acceleration 

in Eq.(3)? 

4 Theory  

4.1 Dynamical balances 

In the limit in which the tank is rotated rapidly, parcels of fluid circulate around many 

times before falling out through the drain hole; the pressure gradient force directed radially 

inwards (set up by the free surface tilt) is balanced by a centrifugal force directed radially 

outwards. 

If Vθ is  the azimuthal  velocity  in  the absolute frame  (the  frame of the  laboratory) and  vθ 

is the azimuthal speed relative to the tank (measured using the camera co-rotating with the 

apparatus) then (see Fig. 4): 

Vθ = vθ + Ωr	 (1) 

where Ω is the rate of rotation of the tank in radians per second. Note that Ωr is the 

azimuthal speed of a particle fixed to the tank at radius r from the axis of rotation. 

We now consider the balance of forces in the vertical and radial directions, expressed first 

in terms of the absolute velocity Vθ and then in terms of the relative velocity vθ. 
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Figure 4: The velocity of a fluid parcel viewed in the rotating frame of reference: vrot = (vθ, vr). 

4.1.1 Vertical force balance 

We suppose that hydrostatic balance pertains in the vertical:∂p + ρg = 0  where ρ is the 
∂z 

density, g is the acceleration due to gravity and z is a vertical coordinate. Integrating 

in the vertical and supposing that the pressure vanishes at the free surface (actually p = 

atmospheric pressure at the surface, which here can be taken as zero), we find that (ρ and 

g are constant): 

p = ρg (H − z) (2) 

where H(r) is the height of the free surface and we suppose that z = 0 (increasing upwards) 

on the base of the tank. 

4.1.2 Radial force balance in the non-rotating frame 

If  the pitch  of  the spiral traced  out by  fluid particles is tight (i.e. in the limit that vr << 1,
vθ 

appropriate when Ω is sufficiently large2) then the centrifugal force directed radially outwards 

acting on a particle of fluid is balanced by the pressure gradient force directed inwards 

associated with the tilt of the free surface. This radial force balance can be written in the 

non-rotating frame thus: 

Vθ 
2 1 ∂p 
= . 

r ρ ∂r 

Using Eq.(2), the radial pressure gradient force in the above can be directly related to the 

gradient of the free surface enabling the force balance to be written: 

2Note that this assumption is relaxed in the appendix. 
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V
2θ ∂H

= g (3)


r ∂r 

4.1.3 Radial force balance in the rotating frame 

Using Eq.(1), we can express the centrifugal acceleration in Eq.(3) in terms of velocities in 

the rotating frame thus: 

V 2
θ (v + Ωr)2 2

θ v
   = = θ + 2Ωv
r r r θ + Ω2r (4) 

Hence 
v2θ
  2 ∂H

+ 2Ωvθ + Ω r = g (5)


r
 ∂r

 

The above c an b e simplified by writing Ω2r = ∂  
∂r

³
Ω2r2 

 2 and defining a quantity h:

Ω2r2 

´
h = H − , (6)


2g 

the height of the free surface measured relative to that of the reference parabolic surface 
 Ω2r2

2g 

(see notes on ‘parabolic surface’). Then Eq.(5) can be written in term of h thus: 

2 ∂h
vθ − 2Ωvθ:  Gradient  wind  (7)  = g 
r ∂r 

Eq.(3) and Eq.(7) are completely equivalent statements of the balance of forces. The 

distinction between them is that the former is expressed in terms of Vθ, the  latter  in  terms  

of vθ.  Note that Eq.(7) has  the same form  as  Eq.(3) except an  extra  term,  −2Ωvθ, appears  

on the rhs of Eq.(7) - this is called the ‘Coriolis acceleration’. It has appeared because we 

have chosen to express our force balance in terms of relative, rather than absolute velocities. 
2 

<< 1, the  v

Let us compare the magnitude of the vθ 
r and 2Ωvθ terms in Eq.(7). Their ratio is the 

‘Rossby number’: 

Ro = 
|vθ|
2Ωr 

(8) 

2 
θIf Ro r term can be neglected in (7). In this limit, Coriolis and pressure gradient 

terms balance one another. 

∂h 
2Ωvθ = g : geostrophic balance (9) 

∂r 

Equation (9) is a simple form of the ‘geostrophic equation’ relating velocities in the 

rotating frame to the horizontal pressure gradient in the limit of small Ro. So, how large 
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is Ro in our experiment? 

momentum conservation. 

We can estimate its size by computing vθ based on angular  

4.2 Angular momentum 

Fluid entering the tank at the outer wall will have angular momentum because the apparatus 

is rotating. As parcels of fluid flow inwards they will conserve this angular momentum (pro-

vided that they are not rubbing against the bottom or the side). Conservation of angular 

momentum states that: 

Vθ r = constant = Ωr1
2 (10) 

Here r1 is the inner radius of the diffuser in Fig.(1) and Vθ is the azimuthal velocity in the 

laboratory (inertial) frame given by Eq.(1). Combining Eqs.(10) and (1) we find: 

(r1
2 − r2) 

vθ = Ω (11) 
r 

and hence, from our definition of Ro, Eq.(8): 

1 ³ r1 ́
 2 

Ro = − 1. (12) 
2 r 

Thus Ro = 1 at r = √r1 ; Ro < 1 if r >  √r1 (the region of geostrophic balance) and Ro > 1 if 
3 3 

r <  √r1 (the region of cyclostrophic balance - a tornado region!). We see that in the outer 
3 

regions of the flow the inward radial pressure gradient is balanced by outward Coriolis forces 

(small Ro): the flow is in geostrophic balance here. But as parcels spiral in to the drain 
2 
θthey pass through a region where Ro becomes increasingly large and v
r in Eq.(7) becomes 

a dominant term. Cyclostrophic balance is the one in which the centrifugal term dominates 

the Coriolis term in Eq.(7): 

vθ 
2 ∂h 
= g : cyclostrophic balance 

r ∂r 

4.3 The mass balance 

If the volume source coming radially inwards through the diffuser has strength Q, then  

conservation of volume tells us that: 

2πrHVr = Q (13) 

where Vr(r) is the radial velocity at radius r. 
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5 Appendix 

Eq.(3) is an approximate statement of radial force balance in the limit that the pitch of the 

spiral traced out by fluid particles is tight (i.e. in the limit that vr << 1). If this is not true 
vθ 

then we must include radial accelerations and use the following more accurate statement of 

radial momentum equation: 

∂Vr Vθ 
2 ∂H 

Vr − = −g (14) 
∂r r ∂r 

radial accn centrifugal accn pressure gradient 

Here Vr is the radial component of velocity. 

5.0.1 Solutions 

Using Eqs.(10) and (13), Eq.(14) can be written: 

4∂ 
µ 

Q2 ¶ 
Ω2r1 ∂H − = −g

∂r 8π2r2H2 r3 ∂r 

which, on integration, can be written: 

r
gH +

8π2
Q

r2

2 

H2 
+ 

Ω

2

2

r2
1
4 

= constant (15) 

where H1 is the depth of the water at radius r1. Eq.(15)  is  a  cubic  for  H which can be solved. 
∂Vr θUse your velocity measurements of estimate how large is the term Vr ∂r relative to 

V

r 

2 

in 

Eq.(14) in your experiment. 

Use (13) to show that if 
Q 

<< 1 (16) 
2πHΩr1

2 

then the force balance Eq.(14) reduces to Eq.(3). Can you see that Eq.(16) is just the 

condition that vr << 1? 
vθ 


