
     

CHAPTER 4     
FLOW  IN  CHANNELS 

 

 
INTRODUCTION   

1  Flows in conduits or channels are of interest in science, 
engineering, and everyday life.  Flows in closed conduits or channels, like 
pipes or air ducts, are entirely in contact with rigid boundaries.  Most 
closed conduits in engineering applications are either circular or rectangular 
in cross section.  Open-channel flows, on the other hand, are those whose 
boundaries are not entirely a solid and rigid material; the other part of the 
boundary of such flows may be another fluid, or nothing at all.  Important 
open-channel flows are rivers, tidal currents, irrigation canals, or sheets of 
water running across the ground surface after a rain. 

2  In both closed conduits and open channels, the shape and area of 
the cross section of the flow can change along the stream; such flows are 
said to be nonuniform.  Flows are those that do not change in geometry or 
flow characteristics from cross section to cross section are said to be 
uniform.  Remember that flows can be either steady (not changing with 
time) or unsteady (changing with time). In this chapter we will look at 
laminar and turbulent flows in conduits and channels.  The emphasis in this 
chapter is on steady uniform flow in straight channels.  That’s a 
simplification of flows in the natural world, in rivers and in the ocean, but it 
will reveal many fundamental aspects of those more complicated flows.  
The material in this chapter is applicable to a much broader class of flows, 
in pipes and conduits, as well; such matters are covered in standard 
textbooks on fluid dynamics. 

3  This chapter focuses on two of the most important aspects of 
channel flow:  boundary resistance to flow, and the velocity structure of  
the flow.  The discussion is built around two reference cases:  steady 
uniform flow in a circular pipe, and steady uniform flow down an inclined 
plane.  Flow in a circular pipe is clearly of great practical and engineering 
importance, and it is given lots of space in fluid-dynamics textbooks.  Flow 
down a plane is more relevant to natural Earth-surface settings (sheet floods 
come to mind), and it serves as a good reference for river flows. 

4  The first section looks at laminar flow in a planar open channel, to 
derive expressions for the distributions of shear stress and velocity across 
the cross section.  There are two equivalent ways of doing that:  
specializing the Navier–Stokes equations (which, remember, are a general 
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statement of Newton’s second law as applied to fluid flows) to the given 
kind of flow, or writing Newton’s second law directly for the given kind of 
flow.  We will take the second approach here.  Then in further sections we 
will tackle the much more difficult problem of resistance and velocity in 
turbulent flows in pipes and channels.  That will necessitate a deeper 
examination of the nature of shear stresses in turbulent flow, and a careful 
consideration of the differences between what I will call smooth flow and 
rough flow.  The outcome will be some widely useful techniques as well as 
greatly increased understanding.  The section on velocity distributions is 
intricate and lengthy, and may not seem as directly useful, but it reveals 
some really fundamental concepts. 

 
 

LAMINAR  FLOW  DOWN  AN  INCLINED  PLANE  
5  In this section we apply Newton’s second law to steady and 

uniform flow down an inclined plane.  The strategy is to look at a block of 
the flow, bounded by imaginary planes normal to the bottom, with unit 
cross-stream width and unit streamwise distance (Figure 4-1).  In fluid 
dynamics, such a block of fluid is said to be a “free body”.  Because the 
flow is assumed to be steady and uniform, all of the forces in the 
streamwise direction that are exerted upon the fluid within the free body at 
any given time must add up to be to zero. 

6  I should mention at the outset that for now I will not address how 
the flow is arranged so that the flow is uniform.  If you just pour a sheet of 
water onto the plane along some particular horizontal line on the plane, you 
should not expect that uniform flow will automatically be established 
downslope of that line in the sense that the flow depth is the same at all 
normal-to-flow sections farther down the plane, and in general it is not:  
you would need to adjust the slope of the plane to attain a state of 
uniformity.  This is not a trivial problem, and it should await some more 
detailed material, later in this chapter, on flow resistance.  On the other 
hand, it should make intuitive sense to you that if the plane is very long the 
degree of nonuniformity would be very small whatever the slope:  just 
imagine pouring water from a row of little faucets onto a plane a mile long 
and sloping a few degrees.    

7  Obviously only liquids, not gases, can flow as open-channel flows.  
The freely deformable upper surface of the liquid, called the free surface, is 
open to the air.  We will neglect the minor forces exerted by the overlying 
air on the moving liquid.  Our idealized channel flow is of infinite width, 
with no side boundaries, and it is therefore just a convenient abstraction.  
But a flow in a channel of rectangular cross section with the width of flow 
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much greater than the depth of flow is a good approximation to a flow with 
infinite width. 

8  Take the x direction to be downstream and the y direction to be 
normal to the boundary, with y = 0 at the bottom of the flow (Figure 4-1).  
By the no-slip condition, the velocity is zero at y = 0, so the velocity must 
increase upward in the flow.   It is also clear that the flow is everywhere 
directed straight down the plane.  Think about the forces acting on the fluid 
contained at a given instant in the free body within the rectangular volume 
formed by the free surface, the bottom boundary, and two pairs of 
imaginary planes normal to the bottom and with unit spacing, one pair 
parallel to the flow and spaced a distance B apart, and the other normal to 
the flow and spaced a distance L apart (Figure 4-1).    

 

 
 

Figure 4-1.  Definition sketch for deriving the boundary shear stress in 
steady uniform flow down an inclined plane. 

 

9  Writing Newton’s second law for the balance of forces on this free 
body means equating the downslope driving force, caused by the 
downslope component of the weight of the fluid in the free body, with the 
resistance force exerted by the planar boundary on the lower surface of the 
free body.   The weight of the fluid in the free body is γ BLd, where d is the 
depth of flow.  The downslope component of this weight is γ sinα BLd, 
where α is the slope angle of the plane (Figure 4-2).   
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Figure 4-2.  Forces on a free body of fluid in steady uniform flow down an 
inclined plane. 

 

 

This is balanced by the frictional force τoBL exerted by the bottom 
boundary.  There are also pressure forces acting parallel to the flow 
direction on the upstream and downstream faces of the free body, but 
because by our assumption of uniformity the vertical distribution of these 
pressure forces is the same at every cross section, they balance each other 
out and cause no net force on the free body.  Setting γ sinα BLd equal to 
τoBL and solving for τo, 

 

τo = γ d sinα          (4.1) 
 

so the boundary shear stress is directly proportional to the product of the 
flow depth, the specific weight of the liquid, and the sine of the slope angle.   

10  Before we continue with the development, we will make the 
resistance equation more relevant to the real world by writing a similar 
equation for a channel with rectangular cross section and then for a channel 
with arbitrary (but unvarying) cross section.  To generalize Equation 4.1 to 
a rectangular channel, take the flow width to be b (Figure 4-3) and write the 
force balance for a free body that fills the channel, from wall to wall, in a 
segment of length L along the flow.  Doing the same mathematics as above 
gives the result 
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τo = γ sinα  bd
2 d + b          (4.2) 

 
 

 
Figure 4-3.  Sketch of a rectangular open channel of width b, to aid in the 
definition of the hydraulic radius. 

 

 
Figure 4-4.  The wetted perimeter of a straight open channel flow. 
 
 
11  To generalize Equation 4.1 to a channel of arbitrary cross-section 

shape, assume that the area of the cross section is A and the wetted 
perimeter (the distance along the submerged part of the boundary from 
waterline to waterline) is P (Figure 4-4).  The same balance of forces gives 

 

τo = γ sinα A
P          (4.3) 
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12  Equations 4.1, 4.2, and 4.3 look rather different, but they can 
easily be unified by defining a quantity called the hydraulic radius RH 
formed by dividing the cross-sectional area of the flow by the wetted 
perimeter.  You can verify for yourself that the hydraulic radius of flow in a 
rectangular channel is bd/(2d+b).  It is a little more difficult to see that the 
hydraulic radius of an infinitely wide channel flow is just the flow depth d.  
You can reason that as the width b increases relative to the depth d, the 
term 2d in the denominator 2d+b becomes a smaller and smaller part of the 
denominator, so the hydraulic radius bd/(2d+b) tends toward bd/b, or just 
d, as the width increases relative to the depth.  The right-hand sides of all 
three equations, 4.1, 4.2, and 4.3, become γ sinα RH.  

13  Equation 4.3, or its special cases Equation 4.1 or Equation 4.2, is 
the basic resistance equation for steady uniform flow in an open channel.  
Not many useful results in fluid mechanics are so easily derived!  It is the 
principal way that the boundary shear stress is found in rivers (although to 
use it that way you need to do some surveying to establish the elevation of 
the water surface at two points along the channel, at least hundreds if not 
thousands of meters apart).  Sometimes the three equations are written in 
terms of the slope, tanα, rather than the sine of the slope angle, sinα, 
because for very small α (the usual case), the approximation sinα ≈ tanα is 
a good one.  

14  Now back to the infinitely wide flow down a plane:  now that you 
know how to find the boundary shear stress, what can be said about how 
the shear stress and flow velocity within the flow vary with height above 
the bottom?  One thing you already know for sure:  by the no-slip 
condition, the velocity at the very bottom must be zero.  Another thing you 
can say without further derivation is that the velocity must be at its 
maximum at the free surface.  Why?  Because the downslope driving force 
of gravity is a “body force” that acts throughout the flow, whereas resisting 
friction force acts only at the bottom.  The flow velocity must therefore 
increase monotonically upward in the flow. 

15  We can find the shear stress and velocity at all points up in the 
flow by applying the same force-balancing procedure to a free body of fluid 
similar to that used above but with its lower face formed by an imaginary 
plane a variable distance y above the bottom and parallel to it (Figure 4-5).  
The shear stress τ across the plane is given directly by the force balance: 
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Figure 4-5.  Definition sketch for deriving the distribution of shear stress in 
steady uniform laminar open-channel flow. 

 
 

τ = γ sinα (d-y)         (4.4) 
 

Using Equation 4.1 to eliminate γ sinα from Equation 4.4, we can write τ 
in terms of the boundary shear stress τo: 
 

 
 
Figure 4-6.  The distribution of shear stress in steady uniform laminar open-
channel flow.  (It is noted later in the text that this distribution holds for 
turbulent flow as well.) 
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τ = τo(1-y
d  )         (4.5) 

 

Equation 4.5 shows that τ varies linearly from a maximum of γ sinα at the 
bottom to zero at the surface (Figure 4-6).   

16  Eliminating τ from Equation 4.4 by use of Equation 1.8 gives an 
expression for the velocity gradient du/dy: 

μ du
dy  = γ sinα(d-y) 

  du
dy  = γ sinα

μ  (d-y)          (4.6) 

Equation 4.6 can be integrated to give the velocity distribution from the 
bottom boundary to the free surface: 

u = ∫ du
dy  dy 

   = ∫
γ sinα

μ  (d-y) dy 

   = γ sinα
μ  (d∫dy + ∫ydy)   

   = γ sinα
μ  (yd + 12 y2) + c 

We can evaluate the constant of integration c by use of the boundary 
condition that u = 0 at y = 0; we find that c = 0, so 

 

u =  = γ sinα
μ  (yd + 12 y2)      (4.7) 

 

17  For given values of γ, α, μ, and d, the velocity u thus varies 
parabolically from zero at the bottom boundary to a maximum at the 
surface (Figure 4-7).  On the other hand, from Equation 4.7 the velocity 
gradient du/dy varies linearly from a maximum at the bottom to zero at the 
free surface, because it is directly proportional to the shear stress (Figure 
4-7). 
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Figure 4-7.  The vertical distribution of velocity, shear stress, and velocity 
gradient in steady uniform laminar open-channel flow. 
 
 

18  Here is a reminder about shearing within a flowing fluid, which 
you first encountered back in Chapter 1.  You can think, loosely, in terms 
of layers of the fluid sliding past one another.  A good way of making that 
concrete is to obtain a very thick telephone book and “rack” its pages by 
putting you hands firmly on the front and back covers and sliding them 
parallel to one another in the direction perpendicular to the spine of book.  
In fluids, of course, the shearing is continuous rather than in the form of 
discrete layers. 

 
TURBULENT  FLOW  IN  CHANNELS: 

INITIAL  MATERIAL  
19  The big question at this point is this:  how applicable to real flows 

are the equations for the distribution of shear stress and velocity in steady 
uniform flows in circular pipes and open channels derived in the preceding 
section?  If you made experiments with pipe flows and channel flows at 
very low Reynolds numbers, before the transition to turbulent flow 
(remember, this would necessitate combinations of low velocities, high 
viscosities, and small flow depths and diameters), you would find beautiful 
agreement between theory and observation—something that is always 
satisfying for both the theoretician and the experimentalist.  But for 
turbulent flows, which is the situation in most flows that are of practical 
interest, the story is different.   

20  Figure 4-8 shows a comparison of velocity profiles, in both pipes 
and channels, between laminar and turbulent flows arranged to have the 
same discharge.  It is clear that the turbulent-flow velocity profiles are 
much more nearly uniform over most of the flow but show a much sharper 
change in velocity near the boundary, where by the no-slip condition the 
velocity has to go to zero.  It is easy to understand qualitatively why this is 
so:  the exchange of turbulent eddies—macroscopic masses or parcels of 
fluid—across the surfaces of mean shearing normal to the solid boundaries 
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is much better at ironing out cross-flow velocity differences than is just the 
exchange of molecules over short distances in laminar flow.  But then the 
velocity gradient near the boundary, where the normal-to-boundary motions 
of eddies are inhibited by the presence of the boundary itself, must be even 
sharper than in laminar flow. 

 

 
 

Figure 4-8.  Comparison of laminar and turbulent velocity profiles sin 
steady uniform flow in A) a circular pipe and B) an open-channel flow. 

 

 

21  The story with shear stress is different.  If you look back at the 
derivation of Equation 4.4 for the shear-stress distribution in a channel 
flow, there is nothing in the underlying assumptions that is specific to 
laminar flow, so the results—the linear distribution of shear stress—should 
hold just as well in turbulent flow as in laminar flow.  I will be making use 
of that fact later in this chapter.  

22  You might be tempted to ask why Equation 4.7 breaks down for 
turbulent flow.  The most straightforward answer (although not the most 
important) is, with reference to the channel flow, that we can no longer 
assume that the shear stress across planes in the flow parallel to the bottom 
boundary is given by Equation 1.8, τ = μ ( du/dy), so we can no longer 
eliminate τ and perform the integration as in Equation 4.7.   

23  Now to get down to more important reasons:  part of the reason 
Equation 4.7 is no longer applicable is simply that on account of the 
irregularity of the fluid motion in the turbulent case the surfaces of local 
shear are oriented differently at each point on such a plane, and the rate or 
intensity of shear varies as well.  But there is a more important reason that 
has to do with the basic nature of shear stress in turbulent flow past a solid 
boundary, which I will deal with in the next section.  Suffice it to say here 
that in one important sense the viscosity is effectively much greater in 
turbulent flows, again because of the efficacy with which turbulent eddies 
transport fluid momentum across planes of mean shearing; remember that 
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the basic nature of viscosity itself arises from such momentum exchange on 
the part of the constituent molecules of the fluid.   

24  This inability to obtain a theoretical velocity distribution in 
turbulent flows is just one example of a general problem with such flows:  
it is not possible to solve the equations of motion to obtain exact solutions.  
The reason for this is basically similar to, although more general than, the 
problem with velocity profiles noted above:  we know what equations we 
have to solve but we cannot solve them because of the uncertainty that 
turbulence introduces into the application of these equations.  The great 
number of equations to be found in textbooks and papers on turbulent flow 
are semi-empirical:  the general form of the equation may be suggested by 
physical reasoning, but the numerical constants in the equation, and 
therefore its specific form, must be found from experiments.  And in many 
cases not even the general form of the equation is known, and the curve 
must be obtained entirely by experiment.  This should become abundantly 
clear in the material on resistance and velocity profiles in turbulent flow 
below. 

 
TURBULENT  SHEAR  STRESS   

25  One of the most significant effects of turbulence is the transport of 
such things as heat, momentum, solute, or suspended matter—material or 
properties that can be viewed as carried passively by the fluid—across 
planes parallel to the mean flow by the random motions of fluid masses 
back and forth across these planes.  The mean normal-to-boundary velocity 
across such planes is by definition zero, so the net mass of fluid transferred 
back and forth in this way must balance to zero on the average.  But if the 
material or property passively associated with the fluid is on the average 
unevenly distributed—if its average value varies in a direction normal to 
the mean motion—then the balanced turbulent transfer of fluid across the 
planes causes a diffusive transport or “flow” of this property, usually 
referred to as a flux, in the direction of decreasing average value.  This kind 
of transport is called turbulent diffusion. 

26  To see the turbulent diffusion of some material or property carried 
by the fluid, think about the result of an exchange of two fluid parcels or 
eddies with equal mass across a plane of mean shear parallel to the 
boundary in a turbulent boundary layer (Figure 4-9).  The eddy traveling 
from the side of the plane with higher average value of some property P 
tends to arrive on the other side with a higher value of P than its new 
surroundings, and conversely the eddy traveling from the side with lower 
average value tends to arrive with a lower value than its surroundings.  The 
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exchange thus tends to even out the distribution of P by means of a net 
transport of P in the direction of decreasing average value. 

 

 
 

Figure 4-9.  Transport of a material or a property by turbulent diffusion in a 
turbulent boundary layer. 

 

 

27  An irregular or nonuniform distribution of the property P at the 
scale of individual eddies is to be expected by the very nature of the 
diffusion process.  So not every eddy that crosses the plane of mean shear 
shown in Figure 4-9 from the side with higher average P arrives on the 
other side with a value of P higher than the new surroundings, and 
conversely not every eddy crossing in the other direction arrives with a 
lower value of P.  But the important point is that there is a tendency for this 
to happen because there is a statistical correlation between values of P and 
position normal to the plane, and therefore an average gradient of P in that 
direction.  That average gradient is maintained by some process unrelated 
to diffusion.   

28  A simple but important example is that of sediment carried in 
suspension by a river or a tidal current or the atmosphere.  (We will look at 
this problem in more detail in Part II.)  You know that if a fluid flow is 
strong enough it can pick up particles of sand or dust from the lower 
boundary of the flow and carry them high up into the flow, whence they 
eventually settle back to the bed or the ground.  The concentration of the 
suspended sediment decreases upward, because of the tendency of the 
sediment to settle through its surrounding fluid.  There is a balance between 
downward settling and upward turbulent diffusion along the concentration 
gradient (Figure 4-10).  The correlation between suspended-sediment 
concentration and distance above the bottom is clear in Figure 4-10. 
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Figure 4-10.  Balance between upward transport of suspended sediment by 
turbulent diffusion and downward transport by settling. 

 

 

29  We can appeal to the idea of diffusion of fluid momentum to 
account for the differences in velocity distribution in laminar and turbulent 
flow down an inclined plane, discussed in an earlier section of this chapter.  
In laminar flow there are no eddies to be exchanged across shear planes 
parallel to the bottom, but the molecules themselves hurtle or weave 
randomly back and forth across these planes in loose analogy with the 
picture outlined above for the random motions of turbulent eddies.  Because 
on average the molecules have a greater downchannel velocity in the region 
above a given shear plane than below it, molecular exchange across the 
plane tends to even out the distribution of fluid momentum and therefore 
also of fluid velocity.  Fluid momentum is continuously created, by either 
the downslope forces of gravity or a driving downstream pressure gradient 
(or a combination of the two), then transported toward the bottom boundary 
by molecular diffusion, and in the process is “consumed” by the resistance 
force at the bottom boundary.   

30  The tendency for molecular motions to even out the velocity 
distribution in a sheared fluid is in part the physical cause of the resistance 
of a fluid to shearing.  In liquids the effect of transient molecular attractions 
in resisting shear is more important, but in gases the diffusive effect is the 
dominant one.  The viscosity of a fluid is simply a measure of the 
effectiveness of molecular motions and/or molecular attractions in 
smoothing out an uneven velocity distribution or in maintaining the 
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velocity distribution against the tendency for the fluid to accelerate 
downslope and intensify the shearing.  The continuum hypothesis allows us 
to disregard the details of molecular forces and diffusion and regard the 
resulting shear stress as a point quantity.  

31  In turbulent flow, on the other hand, there is an additional 
diffusional mechanism for transport of fluid momentum toward the 
boundary:   exchange of macroscopic fluid eddies across the planes of mean 
shear parallel to the bottom tends to even out the velocity distribution by 
diffusion of momentum toward the bottom (Figure 4-11).  By Newton’s 
second law this rate of transport of momentum by turbulent motions is 
equivalent to a shear stress across the plane. This is called the turbulent 
shear stress or, usually, the Reynolds stress.  It has exactly the same 
physical effect as an actual frictional force exerted directly between the two 
layers of fluid on either side of the plane:  the faster-moving fluid above the 
plane exerts an accelerating force on the slower-moving fluid below the 
plane, and conversely the fluid below exerts an equal and opposite retarding 
force on the fluid above.  It is true that the “range of operation” of this force 
is smeared out indefinitely for some distance on either side of the plane, but 
the result is the same as that of a force exerted directly across the plane. 

32  The total shear stress across a shear plane in the flow is the sum of 
the turbulent shear stress, caused by macroscopic diffusion of fluid 
momentum, and the viscous shear stress, caused in part by molecular 
diffusion of fluid momentum and in part by attractive forces between 
molecules at the shear plane.  Owing to its macroscopic nature the turbulent 
shear stress can be associated with a given point on a shear plane only in a 
formal way; the viscous shear stress, although it has real physical meaning 
from point to point, must be regarded as an average over the area of the 
shear plane, because in turbulent flow both the magnitude and the 
orientation of shearing vary (continuously, and on the scale of eddies) from 
point to point.  
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Figure 4-11.  The origin of turbulent shear stress. 

 

 

33  In an earlier section of this chapter we derived expressions 
(Equation 4.3) for the shear stress across shear planes in laminar flow in a 
pipe or a channel.  The shear stress in those two equations is the sum of the 
turbulent shear stress and the viscous shear stress.  You may protest that the 
results in Equation 4.3 was obtained for laminar flow only.  But in deriving 
the equations we did not assume anything at all about the internal nature of 
the flow, only that the flow is steady and uniform on the average.  This is in 
contrast to the results for velocity distribution, Equation 4.7, which involve 
the assumption that the shear stress across a shear plane is given by 
Equation 1.8, an assumption that is inadmissible for turbulent flow because 
of the importance of the additional turbulent shear stress.  The linear 
distribution of shear stress from zero at the surface to a maximum at the 
bottom should therefore hold just as well for turbulent flow as for laminar 
flow, provided only that the flow is steady and uniform on average. 

34  Except very near the solid boundary, where the normal-to-
boundary component of the turbulent velocity must go to zero, the turbulent 
shear stress is far greater than the viscous shear stress.  This is because 
turbulent exchange of fluid masses acts on a much larger scale than the 
molecular motions involved in the viscous shear stress and therefore 
transports momentum much more efficiently.  Figure 4-12 is a plot of the 
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distribution of turbulent shear stress and viscous shear stress in steady 
uniform flow down a plane.  The total shear stress is given by the straight 
line, and the turbulent shear stress is given by the curve that is almost 
coincident with the straight line all the way from the surface to very near 
the bottom but then breaks sharply away to become zero right at the 
bottom.  The difference between the straight line for total shear stress and 
the curve for turbulent shear stress represents the viscous shear stress; this 
is important only very near the boundary.  

35  Because the turbulent shear stress is so much larger than the 
viscous shear stress except very near the boundary, differences in time-
average velocity from layer to layer in turbulent flow are much more 
effectively ironed out over most of the flow depth than in laminar flow.  
This accounts for the much gentler velocity gradient du/dy over most of the 
flow depth in turbulent flow than in laminar flow; go back and look at 
Figure 4-8.  But as a consequence of this gentle velocity gradient over most 
of the flow depth, near the bottom boundary, where viscous effects rather 
than turbulent effects are dominant, the velocity gradient is much steeper 
than in laminar flow, because the shearing necessitated by the transition 
from the still-large velocity near the boundary to the zero velocity at the 
boundary (remember the no-slip condition) is compressed into a thin layer 
immediately adjacent to the boundary. 

 
THE TURBULENCE CLOSURE PROBLEM 

36  When the Navier–Stokes equations are written for turbulent flow, 
and then instantaneous velocities are converted to their mean and 
fluctuating components, as was done in Chapter 3, time averages of 
products of fluctuating quantities (the Reynolds stresses mentioned in the 
previous section) emerge as new unknowns—and when one tries to 
characterize those new unknowns, further new unknowns arise!  The result 
is that the equations of motion for turbulent flow can never form a closed 
system in which the number of equations is equal to the number of 
unknowns.  This is called the turbulence closure problem.  It is often said 
to be one of the great unsolved problems in all of physics.  (That is a very 
strong statement.) 

37  Various strategies have been devised to circumvent the closure 
problem, by making certain assumptions or parameterizations.  A simple 
and widely used example must suffice here:  parameterizing the nature of 
turbulent momentum transport in a turbulent shear flow by use of the eddy 
viscosity, and how it varies from the boundary of the flow into the interior. 
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Figure 4-12.  Distribution of total shear stress, turbulent shear stress, and 
viscous shear stress in a steady and uniform open-channel flow. 

 

 

 
STRUCTURE  OF  TURBULENT  BOUNDARY  LAYERS   

Introduction 
38  I have said quite a lot about what turbulence looks like in a general 

way, but now I need to be more specific about the structure of turbulence in 
turbulent boundary layers.  (Another term I could use instead of turbulent 
boundary layers is turbulent shear flow:  any turbulent flow that involves 
overall mean shearing, of the fluid, usually on account of the presence of a 
solid boundary to the flow.)   

39  Many of the important things about turbulence in boundary layers 
have been known for a long time.  Workable techniques for reliable 
measurement of instantaneous velocities in air were developed half a 
century ago, in the 1940s and 1950s.  Comparable laboratory techniques for 
water flows became available in the 1960s, and reliable field measurements 
in water flows became possible later.  It is still difficult to make detailed 
observations of the scales, shapes, motions, and interactions of turbulent 
eddies, especially the relatively small eddies near the boundary.  Only in 
the last few decades has observational knowledge of the dynamics of near-
boundary turbulent structure advanced from the stage of point 
measurements of velocities and their statistical treatment, to observations of 
the eddy structure of the turbulent flow as a whole by means of various 
flow-visualization techniques.  Studies on the structure and organization of 
turbulent fluid motions in boundary layers has become an actively growing 
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branch of fluid dynamics, and has resulted in much deeper understanding of 
the dynamics of turbulent flows.  

40  In the following section are some of the most important facts and 
observations on the turbulence structure of turbulent boundary layers—with 
steady uniform flow down a plane as a reference case, but the differences 
between this and other kinds of boundary-layer flow lie only in minor 
details and not in important effects. 

 
Vertical Organization of Flow Structure in Channel Flows  

41  First of all, you should expect the nature of turbulence to vary 
strongly from surface to bottom in the flow, because the boundary is the 
place where the vertical turbulent fluctuations must go to zero and where by 
the no-slip condition the fluid velocity itself must go to zero.  You have 
already seen that the relative contributions of turbulent shear stress and 
viscous shear stress change drastically in the vicinity of the boundary.  

42  If the bottom boundary is physically smooth, or if it is rough but 
the height of the roughness elements is less than a certain value to be 
discussed presently, three qualitatively different but intergrading zones of 
flow can be recognized (Figure 4-13):  a thin viscous sublayer next to the 
boundary, a turbulence-dominated outer layer occupying most of the flow 
depth, and a buffer layer between.  If the boundary is too rough, the viscous 
sublayer is missing.  Here I will only give a qualitative description of the 
flow in these layers; in later sections I will show their implications for flow 
resistance and velocity profiles.  

43  The viscous sublayer is a thin layer of flow next to the boundary 
in which viscous shear stress predominates over turbulent shear stress.  
Shear in the viscous sublayer, as characterized by the rate of change of 
average fluid velocity as one moves away from the wall, is very high, 
because fast-moving fluid is mixed right down to the top of the viscous 
sublayer by turbulent diffusion. 
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Figure 4-13.  Division of turbulent open-channel flow into layers on the 
basis of turbulence structure. 

 

 

44  The thickness of the viscous sublayer depends on the 
characteristics of the particular flow and fluid; it is typically in the range of 
a fraction of a millimeter to many millimeters.  You will find out later how 
to ascertain the viscous-sublayer thickness.   

45  The flow is not strictly laminar in the viscous sublayer because it 
experiences random fluctuations in velocity.  What is important, however, 
is that because fluctuations in velocity normal to the boundary must 
decrease to zero at the boundary itself, molecular transport of fluid 
momentum is dominant over turbulent transport of momentum near the 
boundary.  Fluctuations in velocity very close to the boundary must 
therefore be largely parallel to the boundary.  Fluctuations in shear stress on 
the boundary itself caused by these fluctuations in velocity can be 
substantial.  The turbulent fluctuations in velocity in the viscous sublayer 
are the result of advection of eddies from regions farther away from the 
wall; these eddies are damped out by viscous shear stresses in the sublayer.  

46  When the boundary is physically smooth the thickness of the 
viscous sublayer can easily be defined, but when the boundary is covered 
with closely spaced roughness elements (like sediment particles, or 
corrosion bumps, or densely spaced buildings, or trees and shrubs) with 
heights greater than the thickness of the viscous sublayer (or, more 
precisely, what the sublayer thickness would be in the absence of the 
roughness), then no sublayer is actually present at all, and turbulence 
extends all the way to the boundary, in among the roughness elements.   
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47  Of course, if you zoomed in to look at the boundary even more 
closely, you would find very thin viscous sublayers right at the surfaces of 
each of the roughness elements:  close enough to any solid surface, the flow 
has to be dominated by viscous effects.  In the preceding paragraph I was 
talking about the presence or absence of a viscous sublayer over a whole 
larger area of the boundary, at lateral scales much greater than the 
individual roughness elements. 

48  The buffer layer is a zone just outside the viscous sublayer in 
which the gradient of time-average velocity is still very high but the flow is 
strongly turbulent.  Its outstanding characteristic is that both viscous shear 
stress and turbulent shear stress are too important to be ignored.  With 
reference to Figure 4-13 you can see that this is the case only in a thin zone 
close to the bottom.  Very energetic small-scale turbulence is generated 
there by instability of the strongly sheared flow, and there is a sharp peak in 
the conversion of mean-flow kinetic energy to turbulent kinetic energy, and 
also in the dissipation of this turbulent energy; for this reason the buffer 
layer is often called the turbulence-generation layer.  (There will  be more 
on kinetic energy in turbulent flows soon.)  Some of the turbulence 
produced here is carried outward into the broad outer layer of flow, and 
some is carried inward into the viscous sublayer.  The buffer layer is fairly 
thin but thicker than the viscous sublayer.  

49  The broad region outside the buffer layer and extending all the 
way to the free surface is called the outer layer.  (In pipe flow this is more 
naturally called the core region.)  This layer occupies most of the flow 
depth, from the free surface down to fairly near the boundary.  Here the 
turbulent shear stress is predominant, and the viscous shear stress can be 
neglected.  Except down near the buffer layer, turbulence in this zone is of 
much larger maximum scale than nearer the boundary. Because of their 
large size, the turbulent eddies here are more efficient at transporting 
momentum normal to the flow direction than are the much smaller eddies 
nearer the boundary; this is why the profile of mean velocity is much 
gentler in this region than nearer the bottom.  But it turns out that these 
large eddies contain much less kinetic energy per unit volume of fluid than 
in the buffer layer.  The normal-to-boundary dimension of the largest 
eddies in this outer layer is a large fraction of the flow depth—but there are 
smaller eddies too, at a whole range of scales; see a later section for more 
discussion of eddy scales. 

50  In terms of the relative importance of turbulent shear stress and 
viscous shear stress, it is convenient to divide the flow in a somewhat 
different way (Figure 4-13) into a viscosity-dominated region, which 
includes the viscous sublayer and the lower part of the buffer layer, where 
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viscous shear stress is more important than turbulent shear stress, and a 
turbulence-dominated region, which includes the outer layer and the outer 
part of the buffer layer, where the reverse is true.  In a thin zone in the 
middle part of the buffer layer the two kinds of shear stress are about equal.  
It is worth emphasizing that there are no sharp divisions in all this 
profusion of layers and regions:  they grade smoothly one into another. 

 
FLOW  RESISTANCE  

Introduction  
51  This section takes account of what is known about the mutual 

forces exerted between a turbulent flow and its solid boundary.  You have 
already seen that flow of real fluid past a solid boundary exerts a force on 
that boundary, and the boundary must exert an equal and opposite force on 
the flowing fluid.  It is thus immaterial whether you think in terms of 
resistance to flow or drag on the boundary. 

 
Forces Exerted by a Flow on Its Boundary   

52  What is the physical nature of the mutual force between the flow 
and the boundary?  Remember that at every point on the solid boundary, no 
matter how intricate in detail the geometry of that boundary may be, two 
kinds of fluid forces act:  pressure, acting normal to the local solid surface 
at the point, and viscous shear stress, acting tangential to the local solid 
surface at the point.   

53  If the boundary is physically smooth (Figure 4-14A) the 
downstream component of force the fluid exerts on the boundary can result 
only from the action of the viscous shear stresses, because the pressure 
forces can then have no component in the direction of flow.  But the 
boundary may be strongly uneven or rough on a small scale at the same 
time it is planar or smoothly curving on a large scale; this unevenness or 
roughness might involve arrays of various kinds of bumps, corrugations, 
protuberances, or particulate masses.  Most natural flows, and many in 
engineering practice also, like canals and corroded pipes, have physically 
rough boundaries.    Then the picture is more complicated (Figure 4-14B), 
because there is a downstream component of pressure force on the 
boundary in addition to a downstream component of viscous force:  just as 
with the drag on spheres, considered in Chapters 2 and 3, if roughness 
elements are present on the boundary, local pressure forces are greater on 
the upstream sides than on the downstream sides, so each element is 
subjected to a resultant pressure force with a component in the downstream 
direction. 
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Figure 4-14.  Pressure forces and viscous forces on physically smooth and 
physically rough boundaries. 

 

 
54  The details of pressure forces on roughness elements are 

complicated, because they depend not only on a Reynolds number based on 
the size of the roughness elements and the local velocity of flow around the 
elements (in generally the same way that the pressure forces depend on a 
Reynolds number in the case of unbounded and uniform flow around a 
sphere, as was discussed in earlier chapters), but also on the shape, 
arrangement, and spacing of the elements.  Qualitatively, however, the 
picture is clear (Figure 4-15):  at low Reynolds numbers the pressure force 
on an element is of the same order as the viscous force, as in creeping flow 
past a sphere, whereas at higher Reynolds numbers the pressure forces are 
much greater than the viscous forces, as in separated flow past a sphere.  

55  The sum of all the forces on individual roughness elements on the 
boundary (or, in the case of a physically smooth boundary, the sum of the 
viscous shear stresses at all points of the boundary) constitutes the overall 
drag on the boundary, or conversely the overall resistance to the flow;  
when expressed as force per unit area this boundary resistance is called the 
boundary shear stress, denoted by τo (usually pronounced tau-zero or tau-
naught).  It is important to remember that τo refers not to the viscous shear 
stress at any given point on the flow boundary—which seems to fit the 
description of “boundary shear stress” perfectly!—but to the average force 
per unit area, viscous forces plus pressure forces, over an area of the 
boundary large enough that the variations in local forces from point to point 
are suitably averaged out.  That means an area many times the size of the 
individual roughness elements (Figure 4-16). 
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Figure 4-15.  Differences in near-bed flow and forces in flow over a rough 
boundary, as a function of the roughness Reynolds number Re*. 

 

 
 
56  It is worth considering at this point how the boundary shear stress 

τo is actually measured in pipes and channels.  Direct measurement is 
difficult even in the laboratory:  mechanical shear plates set flush with the 
boundary tend to cause some disturbance to the flow because of the 
inevitable gap or step at the edges.  Hot-film sensors, which measure the 
shear at the fluid–solid interface indirectly via the conductive heat transfer 
from a heated solid surface, get around this problem nicely for smooth 
boundaries, but they do not work well for rough boundaries, especially 
when the roughness elements are in motion, like sediment grains.  Direct 
measurement under field conditions has been limited. 
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Figure 4-16.  Boundary shear stress over physically smooth boundaries, 
granular-rough boundaries, and boundaries rough on the scale of bed forms 
as well as sediment particles. 

 

 
Figure 4-17.  Static and dynamic pressure in A) a horizontal pipe and B) an 
inclined plane. 

 

 

57  Fortunately, there are other ways of measuring the boundary shear 
stress.  In a horizontal closed conduit you can measure the downstream 
pressure gradient just by installing two pressure gauges some distance 
apart, reading the pressure drop, and dividing by the distance between the 
gauges (Figure 4-17A).  Then you can use an equation, analogous to 
Equation 4.1, that relates the boundary shear stress to the pressure gradient.  
If the conduit is not horizontal, be sure to subtract out the difference in 
hydrostatic pressure between the two stations, so that you are left with the 
dynamic pressure (Figure 4-17B).  In a steady and uniform channel flow 
you can use Equation 4.1, the resistance equation for channel flow, to find 
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τo without concern for the internal details of the flow simply by measuring 
the slope of the water surface; although not always a simple matter, this is 
possible in both field and laboratory with the proper surveying equipment.  
The problem is that the value of τo obtained in this way is the average 
around the wetted perimeter of the cross section, so it is not exactly the 
same as the boundary shear stress at any particular place on the wetted 
perimeter.  Moreover, if the channel flow is not uniform—if the depth and 
velocity vary from section to section—then Equation 4.1 holds only 
approximately, not exactly; the error introduced depends on the degree of 
nonuniformity. 

58  Another method of finding τo, suitable only for laboratory 
experiments with smooth flow, is to measure the velocity profile within the 
viscosity-dominated zone of flow very near the boundary, using various 
techniques, in order to determine velocity gradient at the boundary, which 
by Equation 1.8 is proportional to τo.  One serious problem here is that the 
viscous sublayer is very thin, necessitating that the measuring device be 
extremely small for accurate results.  Another problem is that this technique 
is not workable in situations where the roughness elements are larger than 
the potential thickness of the viscous sublayer—and that is true of most 
sediment-transporting flows of interest in natural environments. 

59  Finally, you will see presently, after considering velocity profiles 
in turbulent flow, that τo can also be found indirectly in both rough and 
smooth flow by means of less demanding measurement of the velocity 
profile through part or all of the flow depth.  This last method is the most 
useful of all.  

 
Smooth Flow and Rough Flow   

60  Two fundamentally different but intergrading cases of turbulent 
boundary-layer flow can be distinguished by comparing the thickness of the 
viscous sublayer and the height of granular roughness elements.  (What I 
will say here is for sand-grain roughness, but the situation is about the same 
for close-packed roughness of any geometry.)  The roughness elements 
may be small compared to the thickness of the sublayer and therefore 
completely enclosed within it (Figure 4-18A).  Or they may be larger than 
what the sublayer thickness would be for the given flow if the boundary 
were physically smooth rather than rough (Figure 4-18B).  In the latter 
case, flow over and among the roughness elements is turbulent, and the 
structure of this flow is dominated by effects of turbulent momentum 
transport.  There can then be no overall viscous sublayer in the sense 
described in an earlier section, although, as noted earlier, a thin viscosity-
dominated zone with thickness much smaller than the roughness size must 
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still be present at the very surfaces of all of the roughness elements.  In the 
transitional case the roughness elements poke up through a viscous sublayer 
that is of about the same thickness as the size of the elements. 

61  If, in flow over a rough bed, the viscous-sublayer thickness is 
much greater than the size of the roughness elements, the overall resistance 
to flow turns out to be almost the same as if the boundary were physically 
smooth; such flows are said to be dynamically smooth  

 

 
 

Figure 4-18.  Differences in flow structure near a granular bed, depending 
upon whether A) the viscous sublayer is thicker than the heights of the 
particles or B) the heights of the particles are greater than what the 
thickness of the viscous sublayer would be in the absence of the particles. 

 

 (or hydraulically or hydrodynamically or aerodynamically smooth), even 
though they are in fact geometrically rough.  (Obviously, flow over 
physically smooth boundaries is also dynamically smooth.)  This is a 
consequence of the argument, introduced above, that if the Reynolds 
number of flow around individual roughness elements is small, as must be 
the case if the elements are much smaller than the viscous sublayer, 
pressure forces and viscous forces are of about the same magnitude, so that 
the presence of roughness makes little difference in the overall resistance to 
flow.  If the elements are much larger than the potential thickness of the 
viscous sublayer, however, Reynolds numbers of local flow around the 
elements are large enough that pressure forces on the elements are much 
larger than viscous forces, and then the roughness has an important effect 
on flow resistance.  Such flows are said to be dynamically rough.  There is 
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an intermediate range of conditions for which the flow is said to be 
transitionally rough. 

62  It is convenient to have a dimensionless measure of distance from 
the boundary that can be used to specify the thicknesses of the viscous 
sublayer and the buffer layer.  Assume for this purpose that the dynamics of 
flow near the boundary is controlled only by the shear stress τo and the 
fluid properties ρ and μ.  This should seem at least vaguely reasonable to 
you, in that the dynamics of turbulence and shear stress in the viscous 
sublayer and buffer layer are a local phenomenon related to the presence of 
the boundary but not much affected by the weaker large-scale eddies in the 
outer layer.  There will be more on this in the later section on velocity 
profiles.  You can readily verify that the only possible dimensionless 
measure of distance y from the boundary would then be ρ1/2τo1/2y/μ, often 
denoted by y+.  A similar dimensionless variable ρ1/2τo1/2D/μ, involving the 
height D of roughness elements on the boundary, can be derived by the 
same line of reasoning about variables important near the boundary.  This 
latter variable is called the boundary Reynolds number or the roughness 
Reynolds number, often denoted by Re*.   

63  The dimensionless distance y+ and the roughness Reynolds 
number Re* can be written in a more convenient and customary form by 
introduction of two new variables.  The quantity (τo/ρ)1/2, usually denoted 
by u* (pronounced u-star), has the dimensions of a velocity; it is called the 
shear velocity or the friction velocity.  Warning:  u* is not an actual 
velocity; it is a quantity involving the boundary shear stress that 
conveniently has the dimensions of a velocity.  The quantity μ/ρ, which you 
may have noticed commonly appears in Reynolds numbers, is called the 
kinematic viscosity, denoted by ν. The word kinematic is used because the 
dimensions of ν involve only length and time, not mass.  If y+ as defined 
above is rearranged slightly it can be written u*y/ν and the roughness 
Reynolds number can be written u*D/ν.   

64  When expressed in the dimensionless form y+, the transition from 
the viscous sublayer to the buffer layer is at a y+ value of about 5, and the 
transition from the buffer layer to the turbulence-dominated layer is at a y+ 
value of about 30.  These transition values are about the same whatever the 
values of boundary shear stress τo and fluid properties ρ and μ; this 
confirms the supposition made above that over a wide range of turbulent 
boundary-layer flows the variables τo, ρ, and μ suffice to characterize the 
flow near the boundary.  These values are known not from watching the 
flow but from plots of velocity profiles, as will be discussed presently.  

65  The relative magnitude of the viscous-sublayer thickness and the 
roughness height D can be expressed in terms of the roughness Reynolds 
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number u*D/ν.  To see this, take the top of the viscous sublayer to be at 
u*δv/ν ≈ 5, meaning that δv ≈ 5ν/u* is the distance from the boundary to the 
top of the viscous sublayer.  Here I have replaced y by δv, the thickness of 
the viscous sublayer.  The ratio of particle size to sublayer thickness is then 
D/δv ≈ (u*D/ν)/5. In other words, sublayer thickness and particle size are 
about the same when the roughness Reynolds number has a value of about 
5.  (But remember that if the roughness elements are this large or larger, 
there is no well developed viscous sublayer in the first place.)  Another way 
of looking at this is that we can compare the particle size D with ν/u*, a 
quantity with dimensions of length called the viscous length scale, which is 
proportional to the thickness of the viscous sublayer.  

66  The limits of smooth and rough flow can also be specified by 
values of the roughness Reynolds number.  The upper limit of smooth flow 
is associated with the condition that the height of the viscous sublayer is 
about equal to that of the roughness elements.  As noted above, at the top of 
the viscous sublayer y+ = u*δv/ν ≈ 5, so the upper limit of roughness 
Reynolds numbers for smooth flow should be u*D/ν ≈ 5, and in fact the 
value of 5 is in good agreement with results based on both boundary 
resistance and velocity profiles.  Likewise, the lower limit of roughness 
Reynolds numbers for fully rough flows is found to be about 60.  It is 
between these values (5 < u*D/ν < 60) that the flow is said to be 
transitionally rough.  

67  Some further discussion of smooth and rough flow can be found in 
the latter part of this chapter in the section on velocity profiles.  

 
Dimensional Analysis of Flow Resistance   

68  One circumstance that tends to make the standard treatments of 
flow resistance in fluid-dynamics textbooks seem more complicated than 
they really are is that the details of the equations for flow resistance 
(although not their general form) depend not only on the boundary 
roughness but also on the overall geometry of the flow.  On the one hand, 
the flow may be a turbulent boundary layer growing into a free stream; on 
the other hand, it may be a fully established turbulent boundary layer that 
occupies all of a conduit or channel.  In terms of flow mechanics in the 
boundary layer itself, these two kinds of flow can be treated together.  In 
the latter case any number of boundary geometries are possible.  The classic 
experiments on flow resistance were made using circular pipes with inside 
surfaces coated with uniform sand, and not much systematic work has been 
done on channel flow.  The discussion here focuses on pipe flow, with the 
understanding that both the principles and the general form of the results 
are the same for any steady uniform flow whatever the boundary geometry.  
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69  In common with other aspects of turbulent boundary-layer flow, 
there is no theory we can draw on to find relationships for flow resistance.  
It is therefore again natural to start with a dimensional analysis of resistance 
to flow through a circular pipe or tube (Figure 4-19) in order to develop a 
framework in which experimental data can provide dimensionless 
relationships that are expressible in the form of essentially empirical 
equations that are valid in certain ranges of flow.  

 

 
 

Figure 4-19.  Definition sketch for dimensional analysis of flow resistance 
in a circular pipe. 

 

 

70  Which variables must be specified in order that the boundary shear 
stress τo can be fully characterized or determined?  Pipe diameter d and 
mean flow velocity U are important because they affect the rate of shearing 
in the flow, both directly and through their effect on the structure of 
turbulence.  Viscosity μ is obviously important because of its role in 
determining viscous shear stress at the boundary.  Fluid density ρ is 
important because if the flow is turbulent there must be local fluid 
accelerations.  Finally, the size D of boundary roughness elements may 
affect the turbulent forces and motions near the boundary.  There are thus 
two important length scales in the problem of flow resistance:  pipe 
diameter and roughness height.  We will have to assume that shape, 
spacing, and arrangement of the roughness elements are either always the 
same or, if variable, are of secondary importance in determining flow 
resistance.  Neither assumption is justified, but they form a good place to 
start.  Never mind that if the boundary is rough there is some haziness 
about where the position of the wall should be taken in defining the pipe 
diameter; at least with respect to flow resistance, any reasonable choice 
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produces consistent results provided that consideration is limited to 
geometrically similar roughness.  

71  Assuming that all of the important variables have been included, 
τo can be viewed as a function of the five variables U, d, D, ρ, and μ.  You 
should then expect to have a dependent dimensionless variable as a 
function of two independent dimensionless variables.  It should occur to 
you immediately that one of the independent dimensionless variables can 
be a Reynolds number based on U and d, which I will call the mean-flow 
Reynolds number.  The other independent dimensionless variable is most 
naturally d/D, the ratio of pipe diameter to roughness height.  This variable 
is called the relative roughness.  The dependent dimensionless variable, 
which must involve τo, has exactly the same form and physical significance 
as the dimensionless drag force or drag coefficient that characterizes the 
drag on a sphere moving relative to a fluid (Chapter 2), except that here we 
are dealing with a force per unit area rather than with a force.  You can 
verify that one possible dimensionless variable involving τo is 8τo/ρU2, and 
although this is not the only one possible (there are two others; you might at 
this point try to find them yourself) it is the most useful, and it is the one 
that is conventionally used.  (The factor 8 is present for reasons of 
convenience that need not concern us here.)  This dimensionless boundary 
shear stress is called the friction factor, denoted by f; it is one kind of flow-
resistance coefficient.  

72  The functional relationship for flow resistance can thus be written  
 

f = 8τo
ρU2  = F(ρUd

μ  , dD )      (4.8) 
 

where F is a function that for turbulent flow has to be ascertained by 
experiment. 

 
Resistance Diagrams   

73  The relationship expressed in Equation 4.8 can be shown in a two-
dimensional graph most easily by plotting curves of f vs. Reynolds number 
for a series of values of d/D.  Figure 4-20 shows a graph of this kind, called 
a resistance diagram.  The data were obtained by Nikuradse (1933) for 
flows through circular pipes lined with closely spaced sand grains of 
approximately uniform size.  A version of Figure 4-20 is shown in just 
about all books on flow of viscous fluids.  
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Figure 4-20.  Graph of friction factor vs. mean-flow Reynolds number (pipe 
friction diagram) for a flow in a circular pipe with granular roughness. 
 

 

74  Leaving aside the steeply sloping part of the curve on the far left 
(it holds for laminar flow in the pipe, for which we have already obtained 
an exact solution), you see that at fairly low Reynolds numbers the curve of 
f vs. Re for any given d/D in Figure 4-20 at first slopes gently down to the 
right, then breaks away, and finally levels out to a horizontal straight line.  
The larger the relative roughness d/D the greater the Reynolds number at 
which the breakaway takes place.  Physically smooth boundaries, for which 
D/d = 0, follow the descending curve to indefinitely high Reynolds 
numbers.  Flows that plot on this descending curve are those I earlier 
termed dynamically smooth.  Note that flows over physically rough 
boundaries can be dynamically smooth, provided that d/D is sufficiently 
large.  If Re is fairly small and the pipe is fairly large, D can be absolutely 
large—millimeters or even centimeters—in smooth water flows.  Flows 
that plot on the horizontal straight lines to the right are those I called fully 
rough, and those at intermediate points are those I called transitionally 
rough.  For a given d/D the flow is smooth at low Reynolds numbers but 
rough at sufficiently high Reynolds numbers.  

75  Two questions need to be discussed at this point:   
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•  How would the results in Figure 4-20 change for kinds of 
roughness elements different from glued-down uniform sand 
grains?  

•  How would the results change for conduits or channels with 
geometry different from that of a circular pipe? 

 
The answer to both of these questions is that the results are qualitatively the 
same, provided that the characteristics of the roughness are not grossly 
different and that the size of the roughness elements remains a small 
fraction of the conduit diameter or channel depth.  The curves are merely 
shifted slightly in position or differ slightly in shape.  To adapt the uniform-
sand-roughness results to other kinds of roughness a quantity called the 
equivalent sand roughness, denoted by ks, is defined as the fictitious 
roughness height that would make the results for the given kind of 
roughness expressible by the same plot as in Figure 4-20 for uniform-sand-
roughness pipes.  And to compare the pipe results with those for conduits or 
channels with different geometry, it is customary to use the hydraulic radius 
in place of the pipe radius, although the results cannot be expected to be 
exactly the same.  By applying the definition of hydraulic radius given 
earlier in this chapter you can verify that for a circular pipe the hydraulic 
radius specializes to one-fourth the pipe diameter.  (You have already seen 
that for an infinitely wide channel flow the hydraulic radius specializes to 
the flow depth.)  

76  There is an equivalent way of expressing resistance that is used 
specifically for open-channel flow.  Combining the equation τo = (f/8)ρU2 
that defines the friction factor f with the equation τo = ρgdsinα (Equation 
4.1) for boundary shear stress in steady uniform flow down a plane, 
eliminating τo from the two equations, and then solving for U,  

 

U = (8g
f   d sinα)1/2 

       (4.9) 
 
 

U = C(dsinα)1/2         (4.10) 
 

where 
 

C = (8g
f  )1/2

         (4.11) 
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77  Equation 4.11, which relates mean velocity, flow depth, and slope 
for uniform flow in wide channels, is called the Chézy equation, after the 
eighteenth-century French hydraulic engineer who first developed it.  The 
coefficient C, called the Chézy coefficient, is not a dimensionless number 
like the friction factor f; it has the dimensions g1/2.  But because g is very 
nearly a constant at the Earth’s surface, C can be viewed as being a function 
only of f.  I have introduced the Chézy C because it is in common use in 
work on open-channel flow, but you should understand that it adds nothing 
new. 

 
 

VELOCITY  PROFILES   
Introduction   

78  You have already seen that the profile of time-average local fluid 
velocity u  from the bottom to the surface in turbulent flow down a plane is 
much blunter over most of the flow depth than the corresponding parabolic 
profile for laminar flow (Figure 4-8).  This is the place to amplify and 
quantify the treatment of velocity profiles in turbulent boundary-layer 
flows.   

79  First I will pose the following question:  Can an equation for the 
velocity profile in a turbulent boundary-layer flow be found by writing an 
equation like Equation 1.8 for turbulent flow and solving for the velocity 
profile by integration?  As noted earlier, Equation 4.4, for the distribution 
of total shear stress in the flow, is valid for turbulent flow as well as for 
laminar flow, because no assumptions were made about the nature of 
internal fluid motions in its derivation, just that the flow must be steady and 
uniform on the average.  And an expression of the same kind as Equation 
1.8, defining the shear stress, can also be written for turbulent flow: 

 

τ = μ du
dy  + η du

dy          (4.12) 
 
80  The term μ(du/dy) is the viscous shear stress due to the mean shear 

across planes parallel to the boundary.  (Actually it’s is a spatial average 
over an area of such a plane that is large relative to eddy scales, because 
fluid shear varies from point to point in turbulent flow.)  The term η(du/dy) 
is a way of writing the turbulent shear stress across these planes that 
involves an artificial quantity η, called the eddy viscosity, that is formally 
like the molecular viscosity μ.  Everywhere in a turbulent shear flow except 
very near the solid boundary the eddy viscosity is much larger than the 
molecular viscosity, because turbulent momentum transport is dominant 
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over molecular momentum transport.  (0ften η is written as ρε, where ε can 
be viewed as the kinematic eddy viscosity, in analogy with ν; ε is also 
called the eddy diffusion coefficient.)  Just as for laminar flow, the 
expressions for τo in Equation 4.12 and Equation 1.8 can be set equal to 
give a differential equation for u as a function of distance y from the 
boundary: 

 

 (μ + η) du
dy   = γ sinα(d - y)       (4.13)  

 
81  Unfortunately there is always an insuperable problem in 

integrating Equation 4.13, or any other equation like it for turbulent flow in 
a conduit or channel with some other geometry, to find the velocity 
distribution.  Unlike the molecular viscosity μ, the eddy viscosity η, rather 
than being a property of the fluid, depends upon the flow:  it varies with 
height above the boundary, because the turbulent shear stress it represents 
is a function of the flow itself, for which we are trying to solve.  We are 
therefore always forced to find the velocity distribution in turbulent flow by 
experiment. 

82  It is important to realize, however, that experiments to find the 
velocity profile do not have to be blindly empirical:  physical reasoning can 
be used to guess which effects and therefore which variables are important 
in governing the velocity distribution in the various layers of the flow.  If 
the functional relationships thus specified by the dimensional structure of 
the problem are consistent with the observational results, then the 
correctness of that qualitative view of the physics is confirmed.  In fact, 
much of what is known about turbulent flow past solid boundaries has been 
learned in this way. 

83  We will stick with steady and uniform flow down a plane, but 
exactly the same kind of analysis could be made for flow in a closed 
conduit.  Think about which variables you have to specify to take full 
account of the profile of time-average velocity u along an imaginary line 
through the flow, normal to the bottom boundary, stretching from the 
bottom to the free surface (Figure 4-21). 
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Figure 4-21.  Definition sketch for dimensional analysis of velocity profiles 
in turbulent open-channel flow. 

 

 

84  The bottom can be either smooth or rough.  As in the flow-
resistance problem, make the assumption (not a good one, but it gets us 
started) that the roughness can be characterized by the size D of the 
elements without having to worry about their shape and arrangement.  The 
boundary shear stress τo is the best variable to use to characterize the 
strength of the flow.  You should expect that in general the flow depth d 
would be needed as well.  The viscosity μ is needed, because it is tied up 
with shearing in the fluid.  Finally, as in all problems in turbulent flow, the 
fluid density ρ is needed, because the fluid experiences local accelerations 
(in the form of eddies), so fluid inertia is important.  So u  can be viewed as 
a function of τo, ρ, μ, d, and D, and of course the distance y above the 
bottom: 

 
u  = f(τo, ρ, μ, D, d, y)       (4.14) 
 

The dimensionless functional relationship for u  is then  
 

  u 
u*

= f(u*D
ν  , dD , yd  )        (4.15)  

 
where we have made use of the shear velocity u* and the kinematic 
viscosity ν introduced earlier in this chapter. Equation 4.15 says that u /u*, 
a dimensionless version of u  (often denoted u+), should be a function only 
of the roughness Reynolds number u*D/ν and the relative roughness d/D 
for a given dimensionless position y/d in the flow.  There are alternative 
possibilities for the three independent dimensionless variables (for 
example, all three could be put into the form of a Reynolds number, each 
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with a different one of the three length variables), but this is the most 
natural. 

85  I am sure that all the velocity data you could get your hands on 
would plot very nicely in a four-dimensional graph using the variables 
u /u*, u*D/ν, d/D, and y/d.  But even though the number of variables has 
been reduced from seven to four, you would still have a burdensome 
plotting job and a product that would be unwieldy for practical use.  
Moreover, further careful study would be needed to decipher what the 
graph is telling you about the physics behind velocity profiles.  This is a 
good place to think about whether the problem can be simplified further by 
a divide-and-conquer approach wherein certain of the variables are 
eliminated or modified in certain ranges of conditions to arrive at simpler 
functions that represent the data well under those conditions.  This serves 
two purposes:  it provides useful results, and it helps to clarify the physical 
effects that are important. 

86  First off, in the next two sections, I will present some ideas about 
energy in turbulent flow.  This may seem out of place here, but it leads to 
two conclusions that are of great importance for velocity profiles in 
turbulent flow:  that of 

 
•  the existence of overlapping inner and outer layers of the flow, in 

which separate equations for velocity profiles hold, and that of  
•  the approximate independence of these profiles on the mean-flow 

Reynolds number. 
 

Further subsections are devoted to the details of velocity profiles in the 
inner and outer layers of flows for which the diameter of the sediment on 
the bed is far smaller than the flow depth. 
 

 
Energy   

87  In making some simplifying assumptions it helps to take a closer 
look at the nature of turbulence in a channel flow.  I will present some 
arguments that I hope will make some sense to you even though they 
cannot be developed rigorously here.  In what follows, remember that 
kinetic energy, a quantity mv2/2 associated with a body with mass m 
moving with velocity v, is changed only when an unbalanced force does 
work on the body, and the change in kinetic energy is equal to the work 
done.  The change in kinetic energy caused by the action of certain forces 
like gravity can be recaptured without any loss of mechanical energy, but 
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the work done by frictional forces represents conversion of mechanical 
energy into heat. 

88  I will start with laminar flow because the energy bookkeeping is 
simpler (Figure 4-22A).  The viscous shear stress acting across the shear 
planes does work against the moving fluid.  (Remember that a force does 
work on a moving body provided that there is a component of the force in 
the direction of movement of the body, as is the case here.)  The viscous 
shear stress is the 

 

 
 

Figure 4-22.  Energetics of A) laminar open-channel flow and B) turbulent 
open-channel flow. 

 

 
mechanism that converts potential energy into heat, the heat then being 
transferred to the surroundings by conduction or radiation.  The particular 
magnitude of kinetic energy in the flow in the process of this conversion is 
an outcome of the dynamics of the flow.  

89  In turbulent flow (Figure 4-22B), kinetic energy is contained not 
just in the mean flow but also in the turbulent fluctuations.  Potential energy 
is again converted to heat, but the way the flow mediates this conversion, 
and therefore the picture of kinetic energy in the flow, is more complicated.  
This is because energy is extracted mainly by the work done against the 
mean motion by the turbulent shear stress rather than by the viscous stress, 
because at all levels in the flow except very near the bottom the former 
greatly overshadows the latter.  This work done by the turbulent shear 
stress transforms the kinetic energy of the mean motion into kinetic energy 
associated mostly with the largest eddies, which have the dominant role in 
the turbulent shear stress because they are the longest-range carriers of fluid 
momentum.  But not much of this turbulent kinetic energy is converted 
directly into heat in these large eddies, because they are so large relative to 
the velocity differences across them that shear rates in them are very small.   
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90  Then where does the kinetic energy go?  Answer:  it is handed 
down to smaller eddies.  This phrase “handed down” might strike you as 
plausible but unilluminating.  Large eddies degenerate or become distorted 
into smaller eddies in ways not elaborated here, and when this happens the 
kinetic energy that was associated with the large eddies becomes 
“transferred to” (that is, is now associated with) the smaller eddies.  But the 
odds are all against smaller eddies organizing themselves again into larger 
eddies—just watch the breakup of regular flow in a smoke plume to get the 
sense that the natural tendency in turbulent motions is for larger-scale 
motions to be broken up into smaller-scale motions.  So in terms of kinetic 
energy, turbulence is largely a one-way street:  it passes energy mostly 
from large scales to small scales, not in the other direction.  This effect is 
called an energy cascade.  Shear rates are greatest in the smallest eddies 
because of their small size relative to the velocity differences across them, 
and it is in these smallest eddies that most of the kinetic energy is finally 
converted into heat.  In fact, the reason why there is a lower limit to eddy 
size is that below a certain scale the viscous shear stresses are so strong that 
they damp out the velocity fluctuations. 

91  A very significant consequence is that viscosity has a direct effect 
on turbulence only at the smallest scales of turbulent motion.  If the mean-
flow Reynolds number is increased, the energy cascade is lengthened at the 
smallest scales by development of even smaller eddies, but the structure of 
turbulence at larger scales is not much changed (Figure 4-23).  So any bulk 
characteristic of the flow that is governed by the large-scale turbulence—
like the velocity profile, which depends mainly on the turbulent exchange 
of fluid momentum—should be only slightly dependent on the Reynolds 
number.  This effect is called Reynolds-number similarity. 
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Figure 4-23.  Increase in the range of eddy scales as a function of mean-
flow Reynolds number. 

 
 

 
Inner and Outer Layers   

92  Now back to velocity profiles.  I want to convince you that two 
different but overlapping regions or layers of the flow can be recognized 
(Figure 4-24) in which the velocity profile depends not on the full list of 
variables τo, ρ, μ, D, y, and d used in the dimensional  
analysis above but on certain subsets.  The advantage is that in each of 
these layers there is then a simpler functional relationship for the velocity 
profile, one that leads to a curve in a two-dimensional graph that holds very 
well for almost the entire range of turbulent channel flows.  I will wave my 
arms a little about the various variables, but of course the most convincing 
evidence is that this is how things actually work out, as you will see.  

 

93  Near the bottom boundary, in what I called the buffer zone and for 
a ways outside it, the turbulence is small-scale and intense, and both 
production and dissipation of turbulent kinetic energy are known from 
actual measurements to be at a peak.  It is reasonable to view the dynamics 
of the turbulence, and therefore the nature of the velocity profile, as being 
controlled by local effects and substantially independent of the nature of the 
turbulence in the rest of the flow, all the way up to the free surface.  This is 
also true of the viscous sublayer, if one is present, because there the 
velocity profile is controlled by the strong viscous shear adjacent to the 
solid boundary.  The velocity profile in this inner layer thus depends on τo, 
D, ρ, μ, and y, but not on d. 
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Figure 4-24.  Layers in turbulent open-channel flow. 
 

 

94  On the other hand, over most of the flow depth, from the free 
surface all the way down to the top of the buffer layer in smooth flow, you 
have seen already from the discussion of turbulent energy that the velocity 
profile should be largely independent of μ.  If the boundary is rough, the 
profile should be independent of D as well as of μ down to a position just 
far enough above the roughness elements that the turbulence shed by the 
elements is not important in the turbulence dynamics.  But you should 
expect the profile to depend on d, because the size of the largest eddies is 
proportional to the flow depth.  The velocity profile in this outer layer (here 
I have generalized the significance of the concept of the outer layer 
introduced in an earlier section) should thus depend on τo, ρ, d, and y, but 
not on D or μ.  

95  If you scrutinize the definitions of the inner and outer layers in the 
last two paragraphs in the light of what I have said about the structure of 
the flow, you will see that they are likely to overlap.  In other words, there 
is a zone where the velocity profile is at the same time independent of all 
three variables d, μ, and D.  This should be true so long as the mean-flow 
Reynolds number is high enough (well beyond the laminar–turbulent 
transition) that the viscosity-dominated zone near the boundary is very thin 
relative to the flow depth.  (Remember that the thickness of the viscous 
sublayer decreases as the Reynolds number increases, because the Reynolds 
number is a measure of the relative importance of inertial forces and 
viscous forces.)   
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96  You are probably thinking by now that I have presented you with 
a confusion of layers.  I will summarize them at this point.  On the one 
hand, in terms of the relative importance of viscous shear stress and 
turbulent shear stress it is natural to recognize three intergrading but well 
defined zones (the viscous sublayer, the buffer layer, and the outer layer) 
or, more generally, a viscosity-dominated layer below and a turbulence-
dominated layer above.  On the other hand, in terms of importance or 
unimportance of variables (a related but not identical matter), two 
overlapping layers can be recognized:  an inner layer in which the mean 
velocity, and other mean characteristics of the flow as well, depends on μ 
or D (or both) but not d, and the same outer layer in which the mean 
velocity depends on d but not on μ or D.  In rough flow the entire thickness 
of the flow is dominated by turbulence, and there is no viscosity-dominated 
layer—but there are still inner and outer layers.  

 
The Law of the Wall for Smooth Boundaries   

97  Look first at the inner-layer velocity profile over a physically 
smooth bottom boundary.  From what was just said about the inner layer,  

 

u  = f(τo, ρ, μ, y)          (4.16) 
 

or in dimensionless form,  
 

 
u 
u*

= f(ρu*y
μ  )         (4.17) 

 
Equation 4.17 states that the velocity u , nondimensionalized using u*, 
depends only on y+, the dimensionless distance from the bottom.  So the 
velocity profile should be expressible as a single curve for all turbulent 
channel flows with smooth bottom boundaries.  Equation 4.17 is the 
general form of what is called the law of the wall for smooth boundaries.  

98  You should expect the velocity profile expressed in Equation 4.17 
to be in two parts, one corresponding to the viscous sublayer and the other 
to the outer part of the inner layer, where turbulent shear stress 
predominates over viscous shear stress.  These two parts of the profile have 
to pass smoothly one from the other in the intervening buffer layer.  
Because fluid accelerations are unimportant in the viscous sublayer, u there 
depends on τo, μ, and y, but not on ρ:  

 

u  = f(τo, μ, y)         (4.18) 
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The only way to write Equation 4.28 in dimensionless form is 

 
μ u
τoy  = const          (4.19)  

 
because there is only one way to form a dimensionless variable from the 
four variables u , τo, μ, and y.  Equation 4.19 can be juggled algebraically a 
little by introducing ρ on both sides, for no other reason than to put it in the 
same form as Equation 4.17: 

 
u 
u*

= const ρu*y
μ           (4.20) 

 
99  The constant in Equation 4.20 turns out to be unity.  To get an idea 

why, go back to Equation 4.7, the exact solution for the velocity profile in 
laminar channel flow.  It is reasonable to expect that the velocity profile in 
the viscous sublayer of a turbulent channel flow is like the velocity profile 
near the boundary in a laminar channel flow.  Points near the boundary in 
laminar flow, where the velocity gradient d u /dy is very large, are way out 
on the limb of the parabola in Equation 4.7, so the second term on the right 
in Equation 4.7 can be neglected and u  assumed to be a linear function of 
y/d: 

 

u  = τo
μd (yd)           (4.21)  

 
When cast in the same form as Equation 4.30, this becomes 

 
u 
u*

= ρu*y
μ            (4.22) 

Equation 4.22 represents the specific part of the law of the wall for a 
dynamically smooth flow inside the viscous sublayer.  Figure 4-25 shows 
that Equation 4.22 is in good agreement with careful velocity 
measurements in the viscous sublayer. 
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Figure 4-25.  Plot of dimensionless mean flow velocity u /u*  vs. 
dimensionless distance from boundary, ρ u*y/μ, for the viscous sublayer in 
turbulent open-channel flow.  This plot represents the law of the wall inside 
the viscous sublayer. 

 
 
100  In the outer, turbulence-dominated part of the inner layer over a 

physically smooth bottom, we can assume that du dy  does not depend on μ, 
because the shear stress and therefore the velocity gradient is determined 
almost entirely by turbulent momentum exchange (see Equation 4.12).  On 
the other hand, u  itself must depend on μ, because the velocity profile in 
the turbulence-dominated part of the inner layer must be connected to that 
in the viscosity-dominated part, and you have just seen that the velocity 
profile in the viscous sublayer depends on μ.  In other words, the velocity at 
the base of the turbulence-dominated part of the inner layer depends on the 
velocity at the top of the viscous sublayer, which in turn depends on μ.  The 
viscosity-dominated part of the profile can be viewed as “anchoring” the 
turbulence-dominated part of the profile to the bottom, where the velocity is 
zero by the no-slip condition.  So to get the velocity profile we have to start 
with the velocity gradient, rather than the velocity itself, and write du dyy 
= f(τo, ρ, y) in dimensionless form as 
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y
u*

  
du
dy  = A          (4.23) 

 
where A is a dimensionless constant that should hold in this particular layer 
for all turbulent channel flows over smooth boundaries, and then integrate 
to obtain the dimensionless velocity profile: 

 
u 
u*

 = A lny + A1         (4.24)  
 

where A1, also dimensionless, is a constant of integration.  By the concept 
of Reynolds-number similarity discussed above, A should be very nearly 
constant provided that the Reynolds number is high enough for the 
turbulence to be fully developed.  

101  Note that Equation 4.24 does not contain μ explicitly, but from 
what was said above, μ has to be in there somewhere.  The resolution of 
this seeming paradox is that the constant of integration A1 must depend 
upon μ.  You can verify that this is so by noting that Equation 4.24 can be 
put into the general form of the law of the wall given by Equation 4.17 if 
and only if A1 is equal to A ln(ρu*/μ) +  B:  putting this expression for A1 
into Equation 4.24, 

 
u 
u*

 = A lny + A ln ρu*
μ   + B  

       = A ln ρu*y
μ   + B         (4.25) 

 
The constant B is just the residuum of the constant of integration after 

A ln(ρu*/μ) has been extracted.  

102  There is no universal agreement in the literature on the values of 
the constants A and B:  A is usually taken to be between 2.4 and 2.5, and B 
is taken to be between 5 and 6.  The small differences in A and the larger 
differences in B from source to source are an understandable result of 
fitting straight lines in semilogarithmic plots of slightly scattered data from 
diverse experimental studies.  Discussions on the values of these constants 
can be found in Monin and Yaglom (l971) and Hinze (1975).  With the 
commonly used values A = 2.5, B = 5.1, Equation 4.25 becomes 

u 
u*

 = 2.5 ln ρu*y
μ   + 5.1       (4.26) 
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103  The constant A, which is a reflection of the nature of turbulent 

momentum transport in the inner layer, is often written 1/κ, and κ is called 
von Kármán’s constant.  Thus, κ has a value very nearly 0.4.  The reason A 
is written as 1/κ is historical, not fundamental.  Also, you should expect a 
weak dependence of A on the mean-flow Reynolds number.  The exact 
nature of variation of A with the Reynolds number, and with the suspended-
sediment concentration in sediment-transporting flows as well, has been 
controversial. 

 

 
Figure 4-26.  Plot of dimensionless mean flow velocity u / u* vs. 
dimensionless distance from the boundary, ρ u*y/μ, for the inner layer over 
a smooth boundary in turbulent open-channel flow.  This plot represents the 
law of the wall for dynamically smooth flow. 
 
 

 

104  Equation 4.26 shows that the velocity profile is expressed by a 
single curve for the turbulence-dominated part of the inner layer, just as 
was the case for the viscosity-dominated part.  It is the profile given by 
Equation 4.26 that is usually called the law of the wall, although that term 
more properly describes the whole inner-layer profile, viscosity-dominated 
and turbulence-dominated, plus the transition between. 
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Figure 4-27.  Schematic version of Figure 4-26. 

 
 
105  In summary, time-average velocity u  in the inner layer over a 

smooth boundary, when nondimensionalized by dividing by u*, should plot 
as a single curve as a function of y+, the dimensionless distance above the 
bottom.  Figure 4-26, which incorporates the data already plotted in Figure 
4-25 for the viscous sublayer, shows the velocity profile through the whole 
of the inner layer over a smooth boundary.  This profile represents the 
complete law of the wall for smooth boundaries.  The data points in the 
viscosity-dominated part of the inner layer follow Equation (4.22); the data 
points in the turbulence-dominated part of the inner layer follow Equation 
(4.26), which plots here as a straight line because of the semilogarithmic 
coordinates. 

106  Between y+ values of about 5 and about 30 in Figure 4-26 there 
is a smooth transition between the viscosity-dominated profile (Equation 
4.22) and the turbulence-dominated profile (Equation 4.26); see Figure 
4-27.  This is the buffer layer, where viscous shear stress and turbulent 
shear stress are both important.  For y+ < 5 the turbulent shear stress is 
negligible, and Equation 4.32 describes the profile; for y+ > 30 the viscous 
shear stress is negligible, and Equation 4.36 describes the profile.  It is in 
wall-law plots like Figure 4-26 that the lower and upper limits of the buffer 
layer are most clearly manifested.  You will see a variety of lower and 
upper limiting y+ values mentioned in the literature; this is understandable, 
because the divergence of the curves given by Equations 4.22 and 4.26 
from the actual profile is gradual.  Although it is of no great physical 
significance, the height of intersection of Equations 4.22 and 4.26 in the 
buffer layer is at y+ = 11, as you can see from Figure 4-26.  What is of 
greater significance is that the turbulent shear stress and the viscous shear 
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stress are found experimentally to be equal at a slightly larger y+ value of 
about 12; this is in a sense the “middle” of the buffer layer. 

107  The dimensionless height y+ above the boundary at which u /u* 
begins to deviate from the law of the wall depends on the mean-flow 
Reynolds number Re; it ranges upward from around 500 at small Re to over 
1000 at larger Re.  For y+ greater than this, u /u* is greater than predicted 
by the law of the wall.  

108  How thick is the inner layer?  The upper limit of y+ for the law of 
the wall at high Reynolds numbers for open-channel flow is not well 
established, but assume a y+ value of 1000 in a flow of room-temperature 
water 1 m deep at a mean flow velocity of 0.5 m/s.  Then y at the outer limit 
of the inner layer is about 5 cm. (To figure this out, compute Re, use the 
smooth-flow curve in Figure 4-20 to get f and therefore τo, and put that into 
y+.)  So the inner layer occupies only a small percentage of the flow depth, 
no more than 10–20%.  And the viscous sublayer in this flow is only a 
fraction of a millimeter thick.  Note that the logarithmic abscissa axis in 
plots like Figure 4-26 crowds the whole outer layer, in which Equation 4.26 
no longer holds, into a small part of the graph.  

109  Most of the data points in Figure 4-26 are from flows in circular 
pipes and rectangular ducts rather than from open-channel flows.  But data 
from open-channel flows, and from boundary layers developing on flat 
plates as well, are consistent with those from flow in pipes and ducts.  This 
emphasizes the important point that the law of the wall holds for a wide 
variety of geometries of outer-layer flow.  From the earlier discussion of 
variables important in the inner and outer layers, this should be no surprise:  
the flow in the inner layer is governed by local effects and is independent of 
the nature of the outer flow.  In fact, the law of the wall is even more 
general:  although we won’t pursue the matter here, the law of the wall 
holds even when there is a substantial pressure gradient (negative or 
positive) in the direction of flow, resulting in downstream acceleration or 
deceleration. 
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Figure 4-28.  Definition sketch for analysis of mean velocity profiles in 
dynamically rough flow. 

 

 
 

The Law of the Wall for Rough Boundaries   
110  In many turbulent boundary-layer flows, the boundary is not 

physically smooth but instead is occupied by, or is covered by, or consists 
of, roughness elements of some kind.  By the term roughness element I 
mean any local part of the boundary that protrudes above the overall or 
average boundary surface.  Such things as buildings, trees, crops, people, 
water waves, sand particles, boulders, or corrosion scales come readily to 
mind.  In what follows, we will assume (Figure 4-28) that the roughness 
elements are much smaller than the flow depth (D << d) and that the layer 
of the flow we will consider, for now, has a thickness that is not a large 
fraction of the flow depth (y << d).  Provided that the roughness elements 
are not much smaller than the thickness of the viscous sublayer, the 
velocity profile in the boundary layer depends on the size, shape, and 
arrangement of the roughness elements as well as on τo, ρ, μ, and y: 

 

u  = f (τo, ρ, μ, y, roughness geometry)       (4.27) 
 

where the roughness geometry is specified by the size distribution, the 
shape distribution, and the plan-view packing or arrangement of the 
roughness elements. 

111  To make any progress we have to be specific about the nature of 
the roughness.  Assume here that the roughness is composed of fairly well 
sorted mineral sediment particles with the usual natural range of particle 
shape and roundness, and that the particles form a full sediment bed that is 
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planar on a large scale.  Roughness of this kind, called close-packed 
granular roughness by fluid dynamicists, is fairly well characterized by the 
single variable D, the mean or median particle size.  This roughness is the 
best-studied kind, and it is important in a great many natural water flows 
over sediments, but there are many other kinds of roughness, in both nature 
and technology.   

112  With the above simplifications, Equation 4.27 becomes  
 

u  = f (τo, ρ, μ, y, D)        (4.28)   
 

or, in dimensionless form, 
 

u 
u*

= f(ρu*y
μ  , ρu*D

μ  )        (4.29)  
 

So for flow over rough boundaries the dimensionless velocity u/u* 
generally depends not only on y+ but also on the boundary Reynolds 
number.  Equation 4.28, which could also be written using y/D instead of 
ρu*D/μ, is called the law of the wall for granular-rough boundaries. 

113  Two different aspects of the effect of the roughness on the 
velocity profile become apparent upon examination of Equation 4.29.  First, 
the size of the roughness elements relative to the thickness of the viscous 
sublayer is important.  Remember from the section on smooth flow and 
rough flow earlier in this chapter that if D is much smaller than the viscous 
length scale μ/ρu* the roughness elements are embedded in the viscous 
sublayer, whereas if D is much larger than μ/ρu* there is no viscous 
sublayer and the roughness elements are enveloped in turbulence generated 
by flow separation around upstream elements.  You should suspect, then, 
that for very small ρu*D/μ (less than about 5, for which viscous-sublayer 
thickness and roughness height are about equal), the roughness has no 
effect on the velocity profile.  Under these conditions the velocity profile 
over physically rough boundaries is indeed found to coincide with that over 
physically smooth boundaries—provided that we do not place our velocity 
meter so close to the bed that individual roughness elements distort the 
velocity field.  The law of the wall for smooth boundaries, Equations 4.22 
and 4.26 together with the transition between them through the buffer layer, 
therefore holds for flows with ρu*D/μ < 5 over physically rough 
boundaries also.  These are the flows that in the section on flow resistance 
were termed dynamically smooth even though physically rough and were 
shown to fall on the curve for physically smooth boundaries in the 
resistance diagram in Figure 4-20.  For very large ρu*D/μ, however, there 
is no viscous sublayer and therefore no effect of μ on the velocity profile, 
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and you should expect to see a velocity profile that is rather different from 
the law of the wall for smooth flow.  The next two subsections are devoted 
to the velocity profile in these dynamically rough flows.  

 

 
 

Figure 4-29.  Differing regions of flow as a function of distance from the 
boundary in dynamically rough flow. 

 

 
114  Second, in the case of rough flow the value of y relative to D is 

important (Figure 4-29).  For y ≈ D, at points in the flow that are nestled 
among the roughness elements themselves or are just a few roughness 
heights above the tops of the roughness elements, the velocity depends in a 
complicated way on the shapes of the roughness elements and on the 
position of the profile relative to individual elements, and we should not 
expect to find any generally applicable profile; the velocity profile could be 
said to be spatially disunified.  A bit higher in the flow, several diameters 
above the tops of the elements, the wakes shed by individual elements 
blend together in such a way that the velocity profile is about the same at 
all positions, but the flow structure is still affected by the roughness-
generated turbulence.  Far above the tops of the elements, however, for y 
>> D, it is reasonable to expect that the turbulence structure is governed by 
local dynamics, as in smooth flow, and not by the wakes from the little 
roughness elements far below.  If D is sufficiently smaller than the flow 
depth d, there should then be a layer of the flow for which y << d and 
y >> D at the same time—that is, a part of the inner layer in which 
roughness-generated turbulence is not of direct importance.  Remember, 
however, that by analogy with what was said about smooth flow above, this 
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part of the profile still has to be anchored at its lower end to that part of the 
velocity profile controlled by the roughness-generated turbulence.  

115  In the following I will present the velocity profile in rough flows 
for which there is indeed a zone for which y << d but at the same time 
y >> D (or, more precisely, above the near-bed layer of spatial 
disunification of the profile, which is something like several roughness 
heights above the tops of the roughness elements).  I will deal only with the 
region far enough above the bed that the roughness elements do not affect 
the profile shape; this could be called “the inner layer far above the 
roughness elements”. I will make only a few brief comments about the 
equally important flows in which there is no zone for which y << d and 
y >> D, examples being shallow flows in gravel-bed streams.  

116  In the part of the inner layer for which y >> D, neither μ nor D 
affects the slope of the velocity profile.  We can therefore make exactly the 
same statement as for the turbulence-dominated part of the inner layer in 
physically smooth flow:  the velocity gradient d u /dy depends only on τo, ρ, 
and y.  This leads again to Equation 4.23, and upon integration, to Equation 
4.24.  We should even expect the constant A to be the same, because it is a 
manifestation of the vertical turbulent transport of streamwise fluid 
momentum, and we just concluded that sufficiently far from the boundary 
the structure of the turbulence depends only on local effects and is 
independent of the turbulence shed by the boundary roughness.  The 
constant of integration A1, however, is different, because it depends on the 
nature of the connecting velocity profile nearer the boundary, which is 
different from that in smooth flow.  This latter difference has to do with the 
relative importance of viscous shear stress and turbulent shear stress near 
the boundary, and with the relative importance of viscous drag and pressure 
drag at the boundary: if D >> μ/ρu* (I termed such flows fully rough), 
viscous shear stress in the flow and viscous drag on the boundary are 
negligible, so not only the velocity gradient but also the velocity itself is 
unaffected by μ in the layer under consideration here.  

117  We can rearrange Equation 4.24 to obtain Equation 4.25 just as 
in the case of smooth flow, but with one important difference:  by 
comparison with the general form of the law of the wall for rough flow 
(Equation 4.29), the term B is now not a constant but instead a function of 
the boundary Reynolds number: 

 

u 
u*

= A ln ρu*y
μ   + f(ρu*D

μ  )       (4.30) 
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118  Equation 4.30 can be put into an equivalent but more revealing 
and more useful form by splitting f(ρu*D/μ) into two parts:  -A ln(ρu*D/μ) 
plus a remainder that is some different function of ρu*D/μ, which I will call 
B'.  The only reason for this otherwise arbitrary choice is that now Equation 
4.30 can be written 

 

u 
u*

= A(ln ρu*y
μ   -ln ρu*D

μ  )+B'   

= A ln
y
D  + B'          (4.31) 

 
119  Equation 4.31 is neater than Equation 4.30, but remember that B' 

is a function of ρu*D/μ.  If ρu*D/μ is sufficiently large, however, so that D 
is large relative to what the viscous-sublayer thickness would be, 
turbulence extends down among the roughness elements and there is no 
viscosity-dominated layer next to the bottom.  The velocity profile then 
cannot depend on μ and therefore not on ρu*D/μ, so B' in Equation 4.31 is 
a constant, which has a value of about 8.5 for uniform, close-packed sand-
grain roughness.  (There is about as much uncertainty about this constant as 
there is about the constant B in Equation 4.25.)  The value of B has indeed 
been found experimentally to become constant for ρu*D/μ > 60.  It is under 
these conditions that the flow was termed fully rough in the earlier section 
on flow resistance.  Equation 4.31 can then be written as Equation 4.32, the 
law of the wall for fully rough flow: 

 
u 
u*

= 2.5 ln
y
D  + 8.5         (4.32)  

 
120  Figure 4-30 shows Equation 4.32 together with the data from 

Nikuradse (1933) on which the value of 8.5 for B' was originally derived.  
Nikuradse’s data were obtained for a particular geometry of granular 
roughness manufactured by gluing a somewhat open monolayer of 
subrounded and almost single-size sand to the inner walls of circular pipes.  
You should expect the value of B' to be different for different roughness 
geometries, even if the average roughness height is the same, because the 
shape and arrangement of the roughness elements would be different, and 
this affects the details of the turbulence structure right near the boundary 
and thus also the velocity profile right near the boundary. 
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Figure 4-30.  Plot of u /u* vs. y/D for the inner layer over granular-rough 
boundaries.  Data are from Nikuradse (1933) for runs with pipe radius > 
60D.  Only data for which Re* > 60 are shown, so this plot represents the 
law of the wall for dynamically fully rough flow.  All points up to 0.2 times 
the pipe radius are shown.  Included are eight profiles from four sand-lined 
pipes.  As described in a later section, the y = 0 level has been adjusted 
downward from the tops of he grains a distance y/D = -0.36 to extend the 
straight-line fit as close to the bed as possible. 

 
 
121  Figure 4-31 is another plot of Equation 4.32, this time without the 

data points.  It is meant to serve as a warning about how close to the 
boundary Equation 4.32 actually applies.  Recall that at heights no greater 
than a few roughness-element sizes, the flow can be said to be spatially 
disunified (see Paragraph 114 above), and in that region the basis for 
derivation of Equation 4-32 no longer holds.  That is emphasized, in 
cartoon form, by the blurring of the profile near the rough boundary. 
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Figure 4-31.  Plot of u /u* vs. y/D for the inner layer over granular-rough 
boundaries (Equation 4.32), showing the region near the bed where the 
profile fails to follow Equation 4.42. 
 

 

122  As is commonly done, you can preserve the value of 8.5 for B' in 
Equation 4.31 and use for D the fictitious diameter of single-size sand 
grains in a uniform monolayer that makes Equation 4.31 fit the velocity 
data best.  That size is called the equivalent sand roughness, usually 
denoted ks.  (A more descriptive term would be the “equivalent Nikuradse-
style sand roughness”.)  In other words, ks for any given bed roughness, of 
any kind whatever, is the uniform-sand-grain height that gives the same 
wall-law velocity distribution for a given value of τo.  On the face of it this 
seems like a neat way around the problem of what the value of B' is, but 
keep in mind that to determine B' in the first place you need to measure 
both the velocity profile and the boundary shear stress, independently, at 
the same time. 

123  For 5 < ρu*D/μ < 60 the flow is said to be transitionally rough.  
The velocity profile is still a semilog straight line for y >> D, whether u /u* 
is plotted against ρu*y/μ as in Figure 4-26 or against y/D as in Figure 4-30, 
and it still has the same slope given by the universal constant A.  But the 
position of the straight line varies as the near-bed part of the profile 
changes from the smooth-flow profile shown in Figure 4-26 to the fully 
rough profile shown in Figure 4-30.  For transitionally rough flows, the law 
of the wall in the innermost region, where there is some dependence on μ, 
cannot be derived in the form of a simple equation like Equation 4.26 or 
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Equation 4.31; keep in mind, however, that some form of the general law of 
the wall for rough boundaries (Equation 4.30) holds there nonetheless. 

 

 
Figure 4-32.  Combined plots of the law of the wall in smooth, 
transitionally rough, and fully rough flows. 

 
 
124  Finally, if ρu*D/μ is very small the roughness elements are 

deeply embedded in the viscous sublayer and can have no effect on the 
structure of the turbulence and the shape of the velocity profile above the 
viscous sublayer.  The velocity profile is then the same as if the boundary 
were physically smooth.  As discussed earlier in the section on flow 
resistance, the flow is dynamically smooth even though physically rough. 

125  Figure 4-32, a combined plot of the law of the wall in smooth 
and rough flows, summarizes much of what is in this section and the 
previous one (see also Figure 4-33).  The three-dimensional surface in 
Figure 4-32, drawn by use of Equations 4.22, 4.26, and 4.32, shows u /u* 
as a function of y+ and Re*.  In smooth flows, represented by the left-hand 
part of the surface, the velocity profiles do not depend on Re*, so the 
surface is a cylinder whose elements are parallel to the Re* axis.  Each of 
the several profiles shown, which represent intersections of the surface with 
planes for which Re* = const, is exactly the same as that in Figure 4-26.  In 
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fully rough flows, represented by the region to the right of the plane 
Re* = 60, the velocity profiles depend only on y/D.  To see why the right- 

 

 
 

Figure 4-33.  Ranges of roughness Reynolds number for dynamically 
smooth flows, transitionally rough flows, and fully rough flows. 

 
 

hand part of the surface slopes downward to the right, write ln (y/D) as 
ln(ρu*y/μ) - ln (ρu*D/μ), or lny+ - lnRe*; thus, the larger the value of Re*, 
the smaller the value of u /u* for a given value of y+.  Because there is no 
viscous sublayer or buffer layer to contend with, the profiles are straight 
lines all the way down to positions not far above the tops of the roughness 
elements.  The rough-wall profile deviates from a semilog straight line 
within several roughness heights above the tops of the roughness 
elements—to say nothing of the spatial disunification of the velocity profile 
that sets in at a level just above the tops of the roughness elements.  Only at 
points on the surface in Figure 4-32 well above the dashed curve that 
expresses the condition y = D are the profiles valid; the part of the surface 
shown in the lower right is therefore useful only hypothetically, for 
displaying the nature of the relationships.  Finally, in the middle part of the 
surface the profiles are transitional between the smooth and the fully rough 
profiles.  Here the lines for y+ = 5 and y+ = 30 shown on the left-hand part 
of the surface lose their physical significance as the viscous sublayer 
disappears.  
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126  Note in Figure 4-32 that at any value of y+ well up in the inner 
layer u /u* in any rough flow is less than u /u* in any smooth flow, 
although the slopes of the profiles for the two flows are the same at that 
height.  This is because nearer the bottom the velocity increases more 
sharply with distance from the bottom in smooth flow than in rough flow. 
Figure 4-34 shows that effect, in cartoon form:  the profile for rough flow 
lies everywhere below the profile for smooth flow.  You can think of the 
two profiles shown in Figure 4-34 as being representative of the left and 
right extremes of the surface shown in Figure 4-32, given that the surface 
slopes downward to the right in Figure 4-32. 

 

 
 

Figure 4-34.  Cartoon plot showing the comparison between velocity 
profiles for smooth flow and rough flow. 

 

 
127  A conventional additional step that is taken with Equation 4.31 is 

to write B' in the form -A ln(yo/D), where the quantity yo, with the 
dimensions of length, is called the roughness length. (Outdoors fluid 
dynamicists like meteorologists take the normal-to-boundary coordinate 
direction to be z, so they deal with zo, not yo.)  Note:  if you read the 
literature on velocity profiles in natural flow environments, you are likely 
to encounter this roughness length, rather than the equivalent quantities I 
have used earlier in this section. 

128  Use of yo allows B' to be completely absorbed into the log term 
in Equation 4.32: 
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u 
u*

 = A ln y
D  - A ln yo

D    

       = A ln
y
yo

          (4.33) 
 

By the definition of the natural logarithm, yo can be written in terms of B' 
as yo = D exp(-B'/A).  

129  If the flow is only transitionally rough, yo is a function of 
ρu*D/μ, as is B'.  If the flow is fully rough, however, yo is independent of 
ρu*D/μ for the same reason that B' in Equation 4.30 is independent of 
ρu*D/μ.  Warning:  don’t confuse yo with the actual roughness height D:  
for a given geometry of roughness in fully rough flow yo is proportional to 
D (for close-packed uniform sand-grain roughness yo = D/30), but the 
proportionality coefficient varies considerably depending upon the 
particular geometry of the roughness.  

130  Setting y equal to yo in Equation 4.33 gives u /u* = 0.  So 
another way of looking at yo is that it is the height at which the velocity 
would become zero if the logarithmic rough-wall equation for the velocity 
profile could be extended down to that height.  It is important to remember, 
however, that Equation 4.33 becomes inapplicable far above that position, 
which is nestled in among the roughness elements.  (That is why I used the 
contrary-to-fact “subjunctive” verb construction in the preceding sentence.)  
See the very brief comments in the next paragraph.  

131  We still have not considered the lowermost part of the inner 
layer, not far above the tops of the roughness elements.  For sand-size bed 
roughness this region is not much more than a few millimeters thick, but for 
water flowing over gravels or for wind blowing over large ground-surface 
roughness like buildings or vegetation it may be decimeters or even meters 
thick, and no sophisticated, miniaturized velocity meters are needed to 
include it in measured velocity profiles.  At positions this close to the bed, 
two complications arise:  the logarithmic profile becomes distorted, and 
there is no obvious choice for y = 0.   

    
Velocity Defect Law   

132  Now look at the velocity profile in the outer layer.  There the 
velocity is most naturally specified relative to that at the boundary with the 
free stream (or, in the case of free-surface flow, relative to the surface 
velocity, or in the case of pipe flow, relative to the centerline velocity), 
because we have seen that the inner layer, with a different relationship for 
the velocity, intervenes between the outer layer and the bottom boundary.  
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In other words, if we look at the velocity relative to that at the surface we 
do not have to worry about how the velocity is anchored to the bottom 
through the inner layer.  So instead of u  we use Us - u , called the velocity 
defect, where Us is the surface (i.e., maximum) velocity.  

133  If you go back and review the discussion in the section on inner 
and outer layers you will see that the structure of the turbulence in the outer 
layer should depend on τo, ρ, y, and d, but not on μ, for the same reason 
that the velocity profile in the turbulence-dominated part of the inner layer 
does not depend on μ.  Because this is true from the free surface down to 
the bottom of the outer layer, and because Us - u  characterizes the velocity 
relative to the free surface rather than the bottom, then not just the velocity 
gradient d u /dy (as in the turbulent part of the inner layer) but also Us- u  
itself is independent of μ.  Turbulence structure and Us - u  should not 
depend on D either, provided that D << d.  So the general form of the 
velocity-defect profile is 

 

Us - u  = f(τo, ρ, y, d)        (4.34) 
 

or in dimensionless form 
 

Us − u 
u*

 = f(y
d )        (4.35) 

 
134  Equation 4.35 tells us that the dimensionless velocity defect 

depends only on the dimensionless height above the bottom.  This 
relationship for the velocity profile in the outer layer is called the velocity-
defect law.  I will defer further discussion of velocity profiles in the outer 
part of the flow until the following section, where an examination of the 
region of overlap between the inner and outer layers affords further insight 
into the form of the velocity-defect law.  

 
The Overlap Layer; More on the Velocity-Defect Law   

135  One more matter to consider in this exposition of velocity 
profiles has to do with the overlap layer, where at sufficiently high mean-
flow Reynolds numbers the conditions defining the inner and outer layers 
hold simultaneously; I refer you once more to the earlier section on inner 
and outer layers.  This overlap layer is far enough from the bottom that the 
flow structure is independent of both viscosity and the characteristics of the 
bottom roughness but close enough to the bottom that the flow structure is 
independent of the flow depth (Figure 4-35).  Here the inner-layer and 
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outer-layer velocity profiles must match—that is, the velocities given by 
the law of the wall and by the velocity-defect law at any level in the overlap 
layer must be the same.  The upper limit of the overlap layer is at the top of 
the inner layer.  In smooth flow the lower limit is at the top of the buffer 
layer.  With regard to the lower limit in rough flow, presumably the 
velocity-defect representation of the velocity profile, which looks 
downward from the free surface and can ignore the details of the bottom 
roughness, must start to break down when it reaches the lower part of the 
inner layer, where you have seen that the roughness causes the inner-layer 
profile to curve away from a semilog straight line.   

 

 
 

Figure 4-35.  The overlap layer (the logarithmic layer) for smooth wall law, 
rough wall law, and velocity defect law. 

 
 
136  The constraints imposed by the matching requirement on the 

form of both the wall law and the velocity-defect law in the overlap layer 
were first perceived by Izakson (1937) and Millikan (1939).  The 
mathematical consequence of this matching, which I will not detail here, is 
that in the overlap layer—but not farther out, beyond the inner layer—the 
velocity-defect law as well as the wall law is of logarithmic form.  The 
overlap layer is often called the logarithmic layer, because in it both the 
wall law and the defect law are logarithmic. 

 

 142



     

 
 

Figure 4-36.  Velocity-defect profiles:  plots of (Us - u )/u* versus y/D in 
boundary-layer flows with four geometries:  A) flat plate; B) circular pipe; 
C) wide planar duct; and D) open-channel flow.  After Monin and Yaglom 
(1971) (various sources), and Coleman (1981).  Straight lines with slopes of 
-A (= -1/κ) are fitted to points for y/d < 0.2. 
 

 

137  Figure 4-36 shows velocity-defect profiles on flat plates and in 
pipes, wide planar ducts, and open channels.  The open-channel data, from 
Coleman (1981), are for a width-to-depth ratio of only about 2, but I have 
not been able to find any better data; the scarcity of good published data on 
complete velocity profiles from surface to bottom in steady uniform open-
channel flows at large ratios of width to depth is striking.  In each graph in 
Figure 4-36 the data points define a single curve that holds for a wide range 
of mean-flow Reynolds numbers, indicating that our assumptions about the 
controls on velocity and turbulence in the outer layer are justified.  In each 
graph there is a well-defined semilog straight-line segment for fairly small 
y/d; that is the log layer.  Toward the position of maximum velocity at y/d = 
1 the profile breaks away from the semilog straight line to reach the point 
(Us - u )/u* = 0 at the position of maximum velocity. 
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138  The differing shape of the outer part of the velocity-defect profile 
in different geometries of flow is to be expected because of differing 
physical effects in the movement and geometry of large eddies in the region 
of the flow farthest from the solid boundary.  Because the outer edge of a 
freely growing turbulent boundary layer is highly irregular in shape 
(Chapter 3), at any point near the outer edge passage of large turbulent 
eddies alternates with passage of nonturbulent fluid, so the efficacy of 
turbulent momentum exchange is less and the velocity gradient 
correspondingly steeper than in regions closer to the boundary; this 
explains the large divergence of the profile from the semilog straight-line 
segment in Figure 4-36A.  In pipes and planar ducts the similar but smaller 
divergence might be explained by the free passage of large eddies across 
the centerline or center plane from the opposite sides of the flow.  In open-
channel flow a similar effect might be produced by flattening of large 
eddies moving toward the free surface.  The meager data from open 
channels suggest an effect similar in magnitude to that in pipes and planar 
ducts, or perhaps even smaller.  There seems to be no reason to expect a 
perfectly logarithmic profile all the way to the free surface, but the 
deviations clearly are insubstantial, at least for practical work. 

 
 

Effects of Roughness Height and Spacing   
139  It is in some ways discouraging to sit back and consider that just 

about everything said so far about velocity profiles is limited to the case of 
sediment-free flow over close-packed roughness elements  
whose size is a tiny fraction of the flow depth.  Obviously this is only a 
small subset of turbulent boundary-layer flows over rough boundaries.  The 
discussion in this section emphasizes mostly the qualitative effects to be 
expected as (1) the height of the roughness elements increases relative to 
the flow depth and (2) the spacing of the roughness elements increases 
relative to their height.  

140  Figure 4-37 summarizes the changes in velocity profile as the 
size of close-packed granular roughness increases relative to flow depth.  In 
Figure 4-37A the particles are so small (or, more precisely, the roughness 
Reynolds number ρu*D/μ is so small) that the particles are embedded in a 
viscous sublayer, and the flow is dynamically smooth.  In Figure 4-37B the 
particles are larger and the flow is dynamically rough, but the particle size 
is still so small relative to the flow depth that there is a well developed 
outer layer beyond the overlap layer in which the velocity-defect profile 
holds but the inner-layer profile does not.  These first two cases are covered 
by the preceding detailed treatment of velocity profiles. 
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Figure 4-37.  Changes in velocity profile as the size of the close-packed 
granular roughness increases relative to flow depth. 

 
 
141  In Figure 4-37C, as the ratio of flow depth to particle size 

decreases still further, the distinction between inner and outer layers begins 
to be blurred, and eventually a situation is reached where the entire profile, 
from bottom to free surface, is affected by the details of the roughness.  The 
whole profile then looks like just the lower part of the wall-law profile in 
flows with very large values of d/D.  This effect begins to become 
appreciable at d/D values of something like 10 to 15.   

142  As d/D decreases further, an increasingly large fraction of the 
total flow depth is occupied by the zone of the flow, within one or perhaps 
two grain diameters above the tops of the roughness particles, where the 
velocity profile is spatially disunified, in the sense that it varies with 
position relative to the layout of the particles.  As shown in Figure 4-37D in 
exaggerated form, for d/D values below about 2 or 3 most or all of the 
velocity profile is spatially variable in this way.   

143  What happens as d/D decreases further (Figure 4-37E) depends 
on the value of the mean-flow Froude number U/(gD)1/2.  (For full 
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appreciation of this point you will have to wait until I have presented more 
about free-surface flow later, in the next chapter.)  For Froude numbers 
close to or greater than one (i.e., for supercritical or nearly supercritical 
flow), the free surface is strongly deformed by the presence of the particles 
just below the surface; think of a shallow fast-flowing mountain stream 
with a bed of cobbles and boulders.  For the same very small d/D but low 
Froude numbers, however, the grains rest just beneath a relatively placid 
water surface, or in the extreme case project above the surface as islands. 

144  Figure 4-38 is a cartoon showing the changes in the structure of 
the flow as the roughness spacing decreases relative to the roughness 
height.  Start with a physically smooth and planar bottom; the flow is 
dynamically smooth, and y = 0 is naturally taken at the planar bottom.  Now 
take a set of roughness elements whose heights are a very small fraction of 
the flow depth and begin to place them either randomly or in a regular 
pattern on the bed.  The elements could be three-dimensional bluff bodies 
or two-dimensional ridges transverse to the flow; the effects are 
qualitatively the same, at least until the ratio of spacing to height becomes 
very small.  

145  Provided that the roughness Reynolds number (based on the 
height of the roughness elements being added) is sufficiently large, each 
element creates a wake as the flow separates around it.  From the discussion 
of flow separation in Chapter 3 you can see that the flow structure 
downstream of each roughness element is very complicated:  the smooth-
flow boundary layer is profoundly modified by the development of a highly 
turbulent shear layer that extends downstream from the separation point.  
Downstream from each element the flow gradually readjusts toward the 
boundary-layer structure that would exist in the absence of roughness; the 
wakes shed by the elements are said to relax. This readjustment or 
relaxation takes the form of a new lowest layer of the flow, expanding 
upward at the expense of the turbulent shear layer, in which a turbulence-
dominated wall-law profile is established in just the same way as in a 
boundary layer growing on a flat plate.  It takes a surprisingly large number 
of element heights downstream, something of the order of a hundred, for 
the process to be completed, whereupon the local structure of the flow 
shows no trace of the presence of the roughness element upstream and the 
wall-law layer extends without interruption from the planar bottom up into 
the region of the flow far above the level of the tops of the large roughness 
elements.  The case of low roughness Reynolds numbers is of less interest 
here, because then the elements are embedded in a viscous sublayer, but in 
that case also a deficit in fluid momentum is created downstream of each 
element even though the flow does not separate, and this deficit is ironed 
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out downstream by viscous shear until the original viscosity-dominated 
velocity profile is reestablished. 

 

 
 

Figure 4-38.  Changes in flow structure as roughness spacing decreases 
relative to roughness height. 

 
 

146  If the roughness elements are sufficiently far apart (Figure 
4-38A) each has a long wake extending downstream, but the flow is able to 
return to normal before it encounters the next roughness element.  This has 
been called isolated-roughness flow (Morris, 1955). The velocity profile 
measured above a given point on the bed depends on the position of that 
point relative to the wakes behind the elements.  You would have to 
measure a large number of profiles and average them spatially to obtain a 
profile that represents the entire flow.  Compared with the original smooth-
flow profile before emplacement of any roughness elements, the spatially 
averaged profile shows a deficit of velocity within one or two roughness 
heights of the bed.  

147  The spatially averaged boundary shear stress τo is still 
dominantly viscous, as in the absence of roughness elements, but the 
contribution of pressure drag to τo increases with the roughness density.  
The flow could now be termed transitionally rough, although in a rather 
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different sense from the use of that term in flow over close-packed 
roughness in earlier sections. Note also that the original flow, before 
emplacement of roughness elements, can itself be dynamically rough, if the 
bottom is covered with close-packed roughness that is much smaller than 
the large, isolated roughness we are adding.  Then τo is dominated from the 
start by pressure drag, but this pressure drag is of two parts:  a spatially 
uniform part produced by the underlying small and close-packed roughness, 
and a spatially nonuniform part produced by the large and isolated 
roughness.  It takes only a low density of large roughness elements for their 
contribution to the pressure drag to outweigh that of the close-packed 
elements.  

148  As we continue to add large roughness elements, a point is 
reached where the wakes shed by the elements do not relax completely 
before encountering another roughness element downstream, and with 
some further increase in density most points in the near-bed flow are within 
wakes in various stages of relaxation (Figure 4-38B).  Now there iss no 
place on the bed that shows the relatively simple velocity profile of the 
original smooth flow without roughness elements.  A flow of this kind has 
been called wake-interference flow (Morris, 1955).  Again you have to take 
a large number of local velocity profiles and spatially average them to get a 
profile representative of the entire bed.  Because most of the area of the bed 
is overlain by reattached and relaxing wakes, the spatially averaged profile 
shows two distinct segments:  one, adjacent to the bed and extending 
upward for some fraction of the roughness height, represents the spatial 
average of the local wall-law profiles in the relaxing wakes, and the other, 
starting well above the tops of the large roughness elements and extending 
far above, represents the wall law above the zone in which the upward-
diffusing wake turbulence blends into a spatially uniform layer—the case 
that was treated at length in the earlier part of this chapter.  These two 
distinctive parts of the profile tend to plot as semilog straight lines with a 
transition at heights somewhat below to somewhat above the tops of the 
roughness elements.  See Nowell and Church (1979) for a good example.  
As the roughness spacing decreases, the height of the y = 0 level for the 
overall wall-law profile above the tops of the roughness elements rises 
higher and higher above the planar bottom.  

149  With increasing roughness density, eventually most of the area of 
the bed between roughness elements is overlain by the parts of the wakes 
that lie upstream rather than downstream of reattachment (Figures 4-38C, 
38D); this condition sets in when the ratio of roughness spacing to 
roughness height is of the order of ten or less.  Well before this stage the 
lower straight-line segment of the spatially averaged velocity profile loses 
its distinctive character.  The turbulent shear layers downstream of loci of 
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separation then impinge mostly upon the surfaces of roughness elements 
downstream rather than on the planar bottom; viscous shear stresses on the 
planar bottom are almost nonexistent, and the geometry of the bottom in the 
areas between the roughness elements is irrelevant to the dynamics of the 
flow.  For three-dimensional granular roughness this condition is 
maintained with no qualitative change as the elements become so closely 
spaced that their bases are touching—a good approximation to the 
condition of a loose granular bed treated in detail earlier.  If the roughness 
consists of transverse ridges, however, the ratio of spacing to height can 
continue to decrease toward zero, and as it becomes smaller than about one 
the flow skims across the crests of the ridges and drives a circulation of 
stable vortices located in the deep and narrow troughs between the ridges; 
this has been called skimming flow (Morris, 1955). 

 
MORE ON THE STRUCTURE OF TURBULENT BOUNDARY 

LAYERS:  COHERENT STRUCTURES IN TURBULENT SHEAR 
FLOW 

 
150  There was a time, until the 1960s, when the emphasis in 

turbulence research was statistical:  turbulence was largely viewed as a 
strictly random phenomenon, one that can be analyzed only by statistical 
methods.  Implicit in such an approach is that turbulence has no apparent 
regularity or “ordered-ness” in its structure. 

151  Beginning in the 1960s, however, there have been many studies 
on what are now termed coherent structures in turbulent shear flow.  (I 
postponed this material until now, so that you would have more background 
in turbulent shear flow to bring to it.)  It has become clear that shear 
turbulence is not merely a random assemblage of eddies of all sizes, shapes, 
and magnitudes and orientations of vorticity; rather, these are irregular but 
repetitive eddy structures, or flow patterns, in time and space, with 
distinctive shapes and histories of formation, evolution, and dissipation.  
These coherent  structures are not strictly regular in geometry or periodic in 
time, but nonetheless they have a strong and distinctive element of non-
randomness.  One way of describing these coherent structures is that they 
are quasi-regular, or quasi-periodic, or quasi-deterministic.  (The word 
quasi in Latin means “almost”.) Admittedly the foregoing characterization 
does not give you much basis for imagining or visualizing what the 
coherent structures look like; see below for more concrete material. 

152  Recall from Chapter 3 that turbulence can be viewed as an 
assemblage of swirling  and intergrading parcels of fluid, called eddies, on 
a wide range of scales.  Eddies have vorticity:  the fluid in the eddies 
undergoes rotational motion, which is described by the local rate and 
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orientation of rotation, varying from continuously from point to point.  To 
appreciate the nature of coherent structures in shear turbulence, you need to 
deal with the shapes and also the vorticity of the structures, and how the 
shape and the vorticity develop ands change during the lifetime of a given 
element of structure. 

153  The best way to perceive or capture ordered structures is to 
visualize them, by supplying the flow with marker material that reveals or 
distinguishes differently moving regions of fluid.  Studies of ordered 
structures in turbulent flow have mostly used three techniques flow 
visualization: 

 

•  dye injection, at points or along lines 
•  generation of lines of tiny hydrogen bubbles in water by passing a 

current through a fine platinum wire immersed in the flow  
•  high-speed motion-picture photography of very small opaque solid 

particles suspended in the flow 
 

154  It is generally agreed that flow near the boundary in a turbulent 
shear flow tends to be characterized by the following sequence of events, 
commonly called the burst–sweep cycle.  A high-velocity eddy or vortex 
(called a sweep) moves toward the boundary and interacts with low velocity 
fluid near the boundary to cause acceleration, increase in shear, and 
development of small-scale turbulence; this accelerated fluid is then lifted 
from the boundary and ejected as a turbulent burst into a region of flow 
farther from the boundary.  The sweeps are inrushes of high-seed fluid at at 
a shallow angle toward the wall; the bursts are violent ejections of low-
speed fluid outward from the vicinity of the wall. 

  
155  Close to the boundary the high-velocity and low-velocity 

vortices or eddies tend to be elongated or streaked out in the streamwise 
direction, and their manifestation is a streaky or ribbon-like pattern of high 
and low fluid velocities, and therefore of boundary shear stresses as well. 
Owing to the substantial changes in velocity, shear, and turbulence above a 
given point on the boundary occasioned by the bursting cycle, the effective 
thickness of the viscous sublayer varies with time.  Because of the 
existence of the burst–sweep cycle, the picture of the viscous sublayer 
developed earlier in this chapter is oversimplified:  it has a definite 
thickness only as a time average at a given point.  At a given time, the 
viscosity-dominated layer near the bottom is in some regions thin (and in 
those regions, shear near the bed, and shear stress on the bed, are 
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temporarily high), and in adjacent regions it is thicker (and in those regions, 
the shear and the bed shear stress are temporarily smaller). 

 

 
 

Figure 4-39.   Low-speed wall streaks and high-speed regions, as seen from 
above, revealed by the distortion of a horizontal cross-stream line of 
hydrogen bubbles generated along the left-hand line just above the wall.  
(From Smith, 1996.) 
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Figure 4-40.  Cartoon of low-speed wall streaks and intervening high-speed 
regions, as seen looking horizontally downstream near a horizontal wall.  
(From Smith, 1996.) 

 
 
156  The common visual manifestation of the burst–sweep cycle is the 

existence of streamwise-oriented low-speed streaks (also called wall-layer 
streaks, or just streaks) just above the flow boundary.  These streaks are 
low-speed zones that lie between intervening high-speed zones.  In the low-
speed zones, slow-moving fluid has an upward (that is, in the direction 
away from the boundary) component of motion as a result of downward 
flow in the high-speed zones (Figures 4-39, 4-40).  Sediment particles tend 
to be swept into the low-speed streaks as the faster-moving fluid in the 
high-speed zones moves slightly obliquely toward the low-speed zones. 

157  You might have seen such low-speed streaks on a cold winter 
day, with temperatures well below freezing, when a wind-driven light snow 
first falls upon are pavement, or in the desert when a strong wind blows 
fine sediments across the road surface.  It is not difficult to set up a 
beautiful visual demonstration of low-speed streaks in a laboratory flume, 
where a small concentrations of brilliant white sediment particles are 
transported across a dark-colored bare flume bottom. 
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158 The strong message from such visualizations is that 
 
•  the streaks are strongly elongated parallel to the flow direction; 
•  the streaks waver and shift irregularly from side to side; and 
•  the streaks appear and disappear with time. 
 

159  Much effort has gone into study of the scale of the streaks.  It is 
clear that for dynamically smooth flow  the average spacing λ of the 
streaks, when nondimensionalized as λ+ = ρλu*/μ, is in the range 
somewhat above or below 100, and only weakly dependent upon the mean-
flow Reynolds number. The streaks are also present when the flow is 
dynamically fully rough; the spacing of the streaks, when 
nondimensionalized by dividing by the size of the close-packed roughness 
elements, is between 3 and 4.  In transitionally rough flow, the situation is 
less straightforward. 

160  The burst–sweep cycle and its associated streak structure is a 
feature of the near-boundary part of the inner layer, in what was called in an 
earlier section the viscous sublayer (if one is present) and the buffer layer.  
Farther away from the boundary, where eddy scales range to larger size and 
where both production and dissipation of turbulent kinetic energy are less, 
there seems to be less coherence in the structure of the turbulence. 

161  It remains to look into how the counter-rotating vortices, 
stretched out in the streamwise direction, originate, and how their shapes 
evolve.  It is generally accepted that the key features in this regard are 
vortices variously called horseshoe vortices or hairpin vortices, owing to 
their characteristic shape (Figures 4-41, 4-42).  These vortices develop, in 
ways not yet well understood, and then become stretched downstream by 
the strong mean shear, and as they are stretched, the vorticity in the limbs 
increases.  (In an approximate sense, as the diameter of the spinning fluid is 
decreased, the spinning is compressed into a smaller cross section, and the 
rate of spinning increases.)  These elongated vortex limbs are generally 
believed to be responsible for the fluid motions in the burst–sweep cycle. 
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Figure 4-41.  Model of a near-wall horseshoe vortex.  (Modified from Grass 
and Mansour-Tehrani, 1991; originally from Theodorsen, 1952.) 

 

 
Figure 4-42.  Formation and evolution of a horseshoe–hairpin vortex, 
showing its role in the burst–sweep cycle.  (Modified from Hinze, 1975.) 
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162  The study of coherent structures in turbulent shear flows is an 
active area of research.  For informative reviews of the status of 
understanding, see Robinson (1991), Grass and Mansouri-Tehrani (1996), 
and Smith (1996).  Also on the reading list at the end of the chapter are 
some of the classic papers:  Kline et al. (1967), Corino and Brodkey (1969), 
Grass (1971), and Offen and Kline (1974, 1975). 
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