
CHAPTER 5 
 

OPEN-CHANNEL  FLOW  
 

 
 

1.  INTRODUCTION  
1  Open-channel flows are those that are not entirely included within rigid 

boundaries; a part of the flow is in contract with nothing at all, just empty space 
(Figure 5-1).  The surface of the flow thus formed is called a free surface, 
because that flow boundary is freely deformable, in contrast to the solid 
boundaries.  The boundary conditions at the free surface of an open-channel flow 
are always that both the pressure and the shear stress are zero everywhere.  But a 
flow can have a free surface but not be an open-channel flow.  Closed-conduit 
flows that consist of two immiscible fluid phases of differing density in contact 
with each other along some bounding surface are not open-channel flows, because 
they are nowhere in contact with open space, but they do have a freely deformable 
boundary within them.  Such flows are free-surface flows but not open-channel 
flows (Figure 5-2), although they are usually called stratified flows, because the 
density difference between the two fluids gives rise to gravitational effects in the 
flow.  On the other hand, open-channel flows are by their definition also free-
surface flows. 

 

 
 

Figure 5-1.  An open-channel flow. 
 

 

2  In a narrow technical sense, flows of liquid at the Earth’s surface, like 
ocean-surface currents or rivers, are not open-channel flows, because they are in 
contact with another fluid—the atmosphere—at a free surface within a two-phase 
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fluid medium.  But the contrast in density between water and air is so great that in 
studying Earth-surface liquid flows we usually ignore the presence of the 
overlying atmosphere.  

 

 
 

Figure 5-2.  A free-surface flow that is not an open-channel flow. 
 

 

3  All of the principles and techniques for dealing with velocity structure 
and boundary resistance that were developed for closed-conduit flows in earlier 
chapters hold as well for open-channel flows.  In fact, much of the material in 
Chapter 4, on flow resistance and velocity structure, is about open-channel flows.  
But open-channel flows involve an important added element of complexity 
beyond what we have covered on laminar and turbulent flows in closed conduits:  
the presence of the free surface means that the geometry of the flow can change in 
the flow direction not just by being constrained to do so by virtue of the geometry 
of the boundaries but also by the behavior of the flow itself.  This means that the 
acceleration of gravity can no longer be ignored by the expedient of subtracting 
out the hydrostatic pressure, as with closed-conduit flows, because the force of 
gravity helps to shape the free surface.  So gravity must therefore be included as 
an additional independent variable in dealing with free-surface flows.  You have 
already seen an example of this back in Chapter 1, when a sphere was towed 
underwater but near the free surface. 

4  Also, under the right conditions gravity waves can be generated on the 
free surface, whether or not the fluid is flowing.  When the deformable free 
surface is momentarily deformed in some small area by a deforming force of 
some sort—by the force of the wind, or by your agitating the water with your 
hand—the force of gravity acts to try to restore the free surface to its original 
planar condition.  Provided that the viscosity of the liquid is not too high (have 
you ever tried to make waves in a vat of molasses?) this attempt at restoration of a 
deformed free surface leads to the propagation of gravity waves away from the 
region of surface disturbance.     

5  This chapter is a selective presentation of some important topics in free-
surface flow.  I will defer consideration of the generation and propagation of 
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gravity waves on the free surface of a standing or flowing body of liquid until 
Chapter 6, on oscillatory flow.  

 
TWO  PRACTICAL  PROBLEMS 

6  One of the interesting things about open-channel flow is the effect of 
gravity on the shape of the free surface relative to the solid boundary.  Babbling 
brooks and white-water rivers clearly have complex free-surface geometries 
governed by bed relief, expansions and contractions of the channel, and, less 
obviously, upstream and downstream conditions.  But all open-channel flow, even 
broad, majestic rivers like the Mississippi, or flows in laboratory channels we try 
to keep as nearly uniform as possible, are subject to such effects of gravity.  To 
make this effect concrete, I will pose two questions at this point for you to think 
about.  Both are of great practical importance to engineers dealing with open-
channel flows.  

7  Your intuition might have some trouble with the first question.  Suppose 
that you set up a nice open-channel flow, in a wide rectangular channel, just for 
the sake of definiteness, with a planar bottom, which may or may not be sloping.  
Then, at a particular position down along the channel you introduce a smooth and 
gentle step in the channel bottom, either upward or downward (Figure 5-3).  The 
question is:  does the water surface rise or fall over the step, relative to its 
upstream level? 

 

 
 
Figure 5-3.  A positive step and a negative step in a channel bottom. 
 

 

8  You will probably feel more comfortable with the second question.  A 
river with a constant bottom slope is dammed at a certain point, so that the river 
has to merge somehow into a deep reservoir formed in the river valley (Figure 
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5-4).  You can assume that far upstream in the channel the flow is very nearly 
uniform.  That sloping water surface upstream has to pass continuously into the 
horizontal water surface of the reservoir, where the water velocity is negligible.  
What would the water-surface profile look like along a streamwise vertical cross 
section through the channel and the reservoir?  Would it change very gradually, 
all the while sloping monotonically down toward the reservoir?  Or would it 
continue unchanged all the way to the reservoir level, to meet the water surface in 
the reservoir by an abrupt change in water-surface slope? 

 

 
 

Figure 5-4.  When a river enters a lake or reservoir, does the water surface in he 
river meet the water surface in the lake or reservoir in a smooth transition, or 
abruptly? 

 

 

9  Before attacking these problems, you need a brief look at uniform flow, 
which is a useful reference for study of the nonuniformities introduced by the 
joint effect of gravity and the changing boundary geometry.  Then I will have to 
expose you to more material on flow energy, because it turns out that this is the 
key to the problems posed above. 

 
UNIFORM FLOW   

10  Uniform flow serves as a good reference case from which to think about 
the effect of gravity on the free surface in an open-channel flow.  Only if an open-
channel flow can somehow be adjusted to be strictly uniform, in the sense that the 
water surface is planar and the flow depth is the same at all cross sections along 
the flow (Figure 5-5), can the effect of gravity in shaping the flow be ignored. 

11  Flows in the laboratory can be set up to be very nearly uniform, and 
outdoors flows like those in long canals are often also close to being uniform.  But 
uniformity is an abstraction:  real flows are never perfectly uniform, because, no 
matter how closely the conditions of flow are adjusted, there are always subtle 
free-surface effects that extend downstream from the source of the flow and 
upstream from the sink for the flow, or upstream and downstream from places 
where the channel geometry changes, like dams or bridge piers. 
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Figure 5-5.  A uniform open-channel flow:  the depth and the velocity profile is 
the same at all sections along the flow. 

 

 

12  One kind of problem that is associated with uniform flow is what the 
channel slope will be if discharge Q, water depth d, and bed sediment size D are 
specified or imposed upon the flow.  You can investigate this by building an open 
channel in your back yard, just nailed together out of wood, as if you were going 
to pan for gold.  Try to make the channel several meters long and something like a 
meter wide, with a planar bottom and planar vertical sidewalls.  Immerse the 
downstream end of the channel in one of those big above-ground swimming pools 
so many people have in their yards these days.  (This is the key to imposing the 
flow depth on the channel upstream:  the higher the water level in the swimming 
pool relative to the sediment bed in the channel, the deeper the flow in the 
channel.)  Put a submersible pump in the pool to recirculate the water, and the 
transported sediment as well, to the upstream end of the channel at a given 
discharge Q.  Lay a full bed of sand in the channel, thick enough so that the flow 
can redistribute it by erosion and deposition if it so desires, without exposing the 
channel bottom.  Mount the upstream end of the channel on a scissors jack or the 
like, so that you can vary the slope of the channel. 

13  It should seem obvious to you that for a given discharge, and an 
arbitrary channel-bottom slope you set at the beginning, the flow depth in the 
channel would vary from upstream to downstream:  in general the flow in your 
channel is nonuniform, before the flow erodes sand from one end of the channel 
and deposits in at the other end in its desire to establish uniform flow.  If that does 
not seem obvious to you, imagine that for a given discharge you first increased 
the channel slope; eventually you would have a condition in which the flow was 
relatively shallow at the upstream end and relatively deep at the downstream end 
(Figure 5-6A).  On the other hand, if you decreased the channel slope to be very 
gentle, you would eventually have a condition in which the flow was relatively 
deep at the upstream end and relatively shallow at the downstream end (Figure 
5-6B).  Somewhere in between those two extreme conditions there would be a 
slope for which the flow was nearly uniform.  The question then is:  what governs 
what the slope is for uniform flow? 
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Figure 5-6.  A) An open-channel flow for which the water-surface slope is less 
than the slope of the channel bottom.  B) An open-channel flow for which the 
water-surface slope is greater than the slope of the channel bottom. 

 
 

14  The key to the answer lies in flow resistance, which was addressed at 
length in Chapter 4.  But there we analyzed the dynamics of flow resistance after 
assuming that the flow had already been adjusted for uniformity.  Now we are 
asking how we can predict what the slope will be for uniform flow.  This an 
important engineering problem:  if you have to design a drainage culvert or an 
irrigation channel, you want to make sure that the flow is not grossly non-
uniform, or it might end up overflowing its banks either upstream or downstream, 
and make you vulnerable to lawsuits.  

15  The problem is fairly straightforward.  First of all, you have at your 
disposal the basic resistance equation for open-channel flow (Equation 4.11, 
repeated here): 

 

τo = γ d sinα             (5.1) 
 

You also have an empirical equation for bed shear stress τo in terms of a 
resistance coefficient, which could be the friction factor f or the Chézy coefficient 
C (Equation 4.18, repeated here in slightly rearranged form): 

 

τo = f8  ρU2         (5.2) 
 

You also know the mean velocity U, because you have chosen Q yourself and you 
already know d, so by the relation Q = Ud b (where b is the known width of the 
channel) you can solve for U.  Compute the mean-flow Reynolds number Re, go 
to a diagram like that in Figure 4-27 (that diagram was found for flow in a circular 
pipe, but it is known to give fairly good results for open-channel flow, provided 
that you use the hydraulic radius both for the channel flow and for the pipe flow) 
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to find f and thus, by Equation 5.2, τo.  Then, knowing τo, you can use Equation 
5.1 to find the slope angle α.  You could adjust the channel slope by use of your 
scissors jack—and you would have to do that if the channel bottom is rigid rather 
than mantled with loose sediment—but with the full bed of sediment, the flow 
eventually adjusts the slope to the condition of uniform flow by eroding sediment 
and one end and depositing sediment at the other end. 

16  Now for a further aspect of uniform flow, one that is more relevant to 
natural open-channel flows on the Earth’s surface.  Excavate a very long, straight 
channel, ending at the brink of a large, deep, open pit into which the flow will fall 
freely, on a gently and uniformly sloping area of the land surface.  A length of 
many kilometers would be good. Arrange to pass a discharge Q of your choosing 
down the channel.  You can readily appreciate that if the channel is sufficiently 
long the flow in the channel will be close to being uniform, although you can 
assist the approach to uniformity by fiddling a bit with the flow at the downstream 
end, by installing a sluice gate or a porous weir to prevent the decrease in 
upstream depth as the flow falls out of the channel.  You will also have to be 
prepared to feed in some bed sediment at the upstream end, to replenish what is 
transported down the channel and out the end, if the flow turns out to be strong 
enough to move some of the sediment.  Otherwise, you would be modeling the 
long-term behavior of a real river, whereby the river gradually wears down the 
land area on which it flows, thus decreasing the slope of the land over the long 
term. 

17  The big question now is:  what will the uniform flow depth be, given the 
imposed slope and discharge?  Is the flow fast and shallow, or is it slow and deep?  
You have the same hydraulic relationships available as in the previous situation, 
but now their application is not as straightforward.  Think about what you know 
and what you do not know.  What is given is the slope angle α, the discharge Q, 
the bed sediment size D, and the channel width b  The unknowns are the mean 
flow velocity U, the flow depth d, the resistance coefficient or friction factor f, 
and the boundary shear stress τo.  You have four relationships available that 
involve these knowns and unknowns: 

τo = γ d sinα (the basic resistance equation for uniform channel flow) 
Q = Ud b (conservation of flow volume) 

τo = (f/8)ρU2  (the relationship between flow velocity and boundary shear 
stress) 

f = f(Re, D/d)  (the dependence of the friction coefficient on flow velocity, 
flow depth, and bed roughness) 

These are the same equations used in the earlier situation.  The difference is that 
you cannot proceed step by step to find the answer:  you need to deal with them 
all at once.  The problem is well posed (four unknowns, four equations), but you 
cannot obtain the solution analytically, in closed form; you need to find the 
solution by some iterative numerical technique.  The important point here, though, 
is that there is a unique solution:  for any given combination of channel slope, bed 
sediment, and water discharge, there is a certain flow depth, mean flow velocity, 
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and boundary shear stress.  And your intuition tells you, correctly in this case, that 
the uniform flow depth increases with water discharge and also with bed 
roughness:  the greater the discharge, and the rougher the bed (meaning more 
resistance to flow), the greater the flow depth for uniform flow.  It is clear also 
that the flow depth depends on the slope:  the greater the slope, the smaller the 
flow depth. 

   
ENERGY  IN  OPEN-CHANNEL  FLOW  

18  To address the two channel-transition problems posed earlier, we need 
to have a closer look at mechanical energy in an open-channel flow, and at how 
the partitioning of the various components of that mechanical energy, kinetic and 
potential, are changed at the transition in question.    

19  I noted back in Chapter 3 that the Bernoulli equation is an expression of 
the work–energy theorem:  the work done by the fluid pressure is equal to the 
change in kinetic energy of the flow.  Remember that, in cases like this, if the 
change in kinetic energy is reversible a quantity called potential energy is defined 
as minus the work done, and then the sum of kinetic energy and potential energy, 
often called mechanical energy, is unchanged or conserved.  Forces for which this 
is true, like the fluid pressure in this case, are said to be conservative forces.  
Gravity is a good example:  a ball thrown upward gains potential energy on its 
way up at the same rate it loses kinetic energy, if the frictional resistance of the air 
is ignored.  Frictional forces, on the other hand, degrade mechanical energy into 
thermal energy (more commonly called heat or heat energy).  

20  Review the derivation of the Bernoulli equation in Chapter 3 and you 
will see that fluid pressure is a conservative force:  in the absence of friction, the 
change in pressure potential energy per unit volume between two points 1 and 2 
down a streamline, which is minus the work per unit volume -(p2 - p1) by the fluid 
pressure, is equal to the change in kinetic energy per unit volume, (ρ/2)(v22- v12), 
so the two kinds of mechanical energy are interchangeable in this case also.  It 
should therefore seem natural that when the fluid is in a gravity field a term for 
gravitational potential energy can be included in the Bernoulli equation as well.  
Because gravitational potential energy is mgh (where m is the mass of the body 
under consideration and h is the elevation relative to an arbitrary horizontal 
plane), the potential energy per unit volume is ρgh.  

21  So in the expanded Bernoulli equation the mechanical energy per unit 
volume of fluid moving along a streamline, v2/2 + p + ρgh, is constant.  This can 
be written a little more conveniently for our purposes as energy per unit weight of 
fluid Ew.  Because weight equals volume multiplied by ρg, 

 

Ew = v
2

2g  + 
p
γ  + h         (5.3)  

 
Note that each term has the dimensions of length; Ew is called the total head, and 
the terms on the right are called the velocity head, the pressure head, and the 
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elevation head, respectively.  In a real fluid, friction degrades mechanical energy 
to heat as the fluid moves along a streamline.  This decrease in mechanical energy 
from point to point, expressed per unit weight of fluid, is called the head loss.  If 
you add up all three terms on the right in Equation 5.3 the sum decreases 
downstream, no matter how the values of the individual terms change.  

22  It would be nice to generalize Equation 5.3 so that it applies to an entire 
open-channel flow, not just to each streamline in it.  The problem in doing this is 
that velocity, elevation, and pressure are not constant from point to point on a 
cross section.  But if there are no strong fluid accelerations normal to the flow 
direction, pressure is close to being hydrostatically distributed:  p = γ (d-y).  Then 
the sum of the elevation head and the pressure head can be written  

 

h + 
p
γ  = ho + y + 

p
γ   

 = ho + y + γ (d - y)
γ   

            = ho + d        (5.4) 
 

where ho is the elevation of the channel bottom.  Variations in pressure and 
elevation over the cross section are thus taken into account in Equation 5.3.  
Variation in velocity is still a problem, but in turbulent flows the velocity profile 
is so flat over most of the section that only a small correction need be made in 
order to replace v by the cross-sectional mean velocity U.  Equation 5.3 can then 
be written between two cross sections 1 and 2 in a channel flow that varies only 
slowly downstream as 

 

head loss = (Ew)2 - (Ew)1 

      = U22

2g   + ho2 + d2 - (U12

2g   + ho1 + d1)  (5.5)  
 

A plot of Ew against downchannel position is called the energy grade line, and 
the slope of this line (or, generally, curve) is the energy gradient or energy slope.  

23  In a uniform open-channel flow, for which both kinetic energy and 
potential energy are the same at every cross section but potential energy decreases 
downstream, the head loss is simply the rate of decrease of elevation head 
downstream, or in other words the slope of the water surface and bed surface, 
which is then also equal to the energy slope.  

24  It is often useful to apply Equation 5.5 to an open-channel flow that 
varies rapidly enough that there is little head loss but slowly enough that the 
hydrostatic-pressure approximation is not too far wrong.  Those conditions are not 
very restrictive:  examples are a gentle rise or fall in the channel bed, as in the 
first “practical problem” posed earlier in this chapter (Figure 5-3) or a gentle 
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expansion or contraction of the channel walls.  The development in the rest of this 
section is meant to address such cases.  Equation 5.5 becomes 

 
U22

2g   + ho2 + d2 = U12

2g   + ho1 + d1       (5.6) 
 
25  A convenient quantity to substitute into Equation 5.6 is d + U2/2g, 

called the specific head Ho: 
 

Ho = d + U
2

2g            (5.7) 
 

Ho, also called the specific energy, is simply the head (i.e., flow energy per unit 
weight) relative to the channel bottom.  Using Ho, Equation 5.6 becomes  

 

Ho2 + ho2 = Ho1 + ho1       (5.8) 
 

or 
 

Ho2 = Ho1 - (ho2 - ho1)       (5.9)  
 
26  Now look at a unit slice parallel to the flow direction in a two-

dimensional flow.  In other words, you do not have to worry about the sidewalls 
because they are far away relative to what is happening locally.)  Discharge per 
unit width q is constant and equal to Ud.  Substitution of U = q/d into the 
definition for specific head eliminates U and provides a relation between d and Ho 
for each value of q: 

 

Ho = q2

2gd2  + d         (5.10)  
 

The family of curves of Ho vs. d for various values of q is called the specific-head 
diagram or specific-energy diagram (Figure 5-7). 

 

 166



 
 

Figure 5-7.  The specific-energy diagram.  Each of the curves is for a given value 
of discharge per unit width, q. 

 

 
27  To illustrate the usefulness of the specific-head diagram, suppose that 

the flow approaching the step shown in Figure 5-3 is characterized by values of q, 
d, and Ho (i.e.: discharge per unit channel width; depth; and flow energy) that plot 
at point P1 in Figure 5-8, on the upper part of the curve for the given q.  Because 
the bottom rises by a positive distance Δh = ho2 - ho1, by Equation 5.9 the specific 
head Ho2 associated with the flow downstream of the transition lies a distance Δh 
to the left of Ho1 along the Ho axis; P2 is the corresponding point that represents 
the flow.  Flow depth downstream of the step is therefore smaller by (Δd)P in 
Figure 5-8 than in the approaching flow, and by the relation q = Ud the flow 
velocity is greater (Figure 5-9).  Does that do damage to your intuition? 

28  By virtue of the doubly branched form of the curves in Figure 5-7 there 
can also be an approaching flow, represented by point Q1 on the lower part of the 
same curve, with exactly the same discharge and flow energy but with shallower 
depth and higher velocity.  In this case the flow downstream of the transition, 
represented by the point Q2 found by moving a distance Δh leftward along the Ho 
axis as before, has depth greater by (Δd)Q than the approaching flow, and smaller 
velocity (Figure 5-10).  Open-channel hydraulicians speak of upper and lower 
alternate depths. 
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Figure 5-8.  The specific-energy diagram for one particular value of q, to illustrate 
the effect of raising the channel bottom by a distance Δh.  See text for 
explanation. 

 

 

 
 

Figure 5-9.  The effect of raising the channel bottom beneath a subcritical 
approaching flow.  The depth decreases over the transition, and the mean flow 
velocity increases. 

 

 
 

Figure 5-10.  The effect of raising the channel bottom beneath a supercritical 
approaching flow.  The depth increases over the transition, and the mean flow 
velocity decreases. 
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29  For points at which the curves of d vs. Ho have vertical tangents, depth 
and velocity do not change in the transition.  Flows corresponding to these points 
are called critical flows.  The equation for such points is found in two steps.  First, 
differentiate the function in Equation 5.10 to find dHo/d(d), set this derivative 
equal to zero, and solve for q as a function of d.  The result is 

qc
2 = gdc

3        
 (5.11) 
where the subscript c indicates that the equation is for the critical condition of 
vertical tangency.  Then substitute this expression for qc

2 into Equation 5.10 to 
obtain 

 

Hoc = 32  dc         (5.12) 
 

again with the subscript c denoting critical flow. 
The locus of points in the specific-head diagram for which the flow is critical is 
thus a straight line with a slope of 2/3.  It is shown in Figure 5-7 as a dashed line 
extending upward and to the right from the origin.  Flows corresponding to points 
above the line are subcritical (deeper depths and lower velocities), and flows 
corresponding to points below the line are supercritical (shallower depths and 
higher velocities).  

30  Thus, to every combination of discharge per unit width q and flow 
energy (represented by Ho) there correspond two different possible flow states, 
with different depth and velocity given by the two intersections of the curve of d 
vs. Ho for that q and the vertical line associated with that Ho.  In some kinds of 
transitions along the channel, the flow is forced all the way from one of these 
states to the other, thereby passing through the critical state during the transition.  
Any flow, whatever its origin and therefore whatever its depth and discharge, falls 
at some point on one of the curves in the specific-head diagram, and is therefore 
either supercritical or subcritical (or critical).  The behavior of that flow in a 
transition is radically different depending on whether the flow is subcritical or 
supercritical.  This difference in behavior is fundamentally a consequence of the 
requirement of conservation of flow energy expressed by Equation 5.6, together 
with the conservation-of-mass requirement that 

 

q = U1
d1

  = U2
d2

          (5.14) 
  

For example, in the transition examined above, the variables U1, d1, ho1, and ho2 
are all given, and Equations 5.6 and 5.12 then specify exactly which combination 
of U2 and d2 must hold.  

31  It happens that the condition for critical flow corresponds to a mean-
flow Froude number U/(gd)1/2 of unity.  To verify this, simply substitute Equation 
5.11, the condition for critical flow, into Equation 5.7, the definition for Ho, to 
obtain a relation between U and d for critical flow:  U2 = gd, or Fr = 1.  

 169



Subcritical flows are characterized by Froude numbers less than one, and 
supercritical flows are characterized by Froude numbers greater than one. 

32  You will see in Chapter 6, on oscillatory flow, that the speed c of a 
gravity wave in shallow water is (gd)1/2, where d is the water depth.  If you 
substitute this wave speed c for the denominator (gd)1/2 in the definition of the 
Froude number, you see that for a Froude number equal to one the mean flow 
velocity is equal to the speed of surface waves.  A water-surface wave that is 
moving in the upstream direction appears to an observer on the channel bank to be 
standing still.  This means that if the Froude number of the flow is  greater than 
one, wavelike disturbances cannot propagate upstream:  the flow coming from 
upstream cannot know what is in store for it at positions downstream.  In 
subcritical flow, on the other hand, the upstream flow can be influenced, 
commonly for long distances, by conditions downstream. 

33  That last point is well illustrated by one final consideration of the 
upward step shown in Figure 5-3.  As the step height is gradually increased, the 
corresponding point on the upper branch of the specific head diagram moves 
leftward and downward from point P toward the point of vertical tangent, C.  The 
farther along the curve the point shifts, the greater is the decrease in flow depth 
over the step.  But there is a limit to this effect:  the specific energy cannot 
decrease beyond that corresponding to the point C of vertical tangent, because the 
flow has to stay on the q = constant curve.  So what happens as the step is raised 
even further?  The flow over the step remains critical and the depth upstream of 
the step increases.  Instead of having no effect on the upstream flow, as was the 
case for lower steps, the step now acts as a dam:  its effect is felt far upstream. 

34  You might be wondering at this point how the flow condition 
represented by the alternate point on the specific-head diagram can be attained.  
To see how that might happen, suppose that the geometry of the step in Figure 5-3 
is changed a bit:  after the crest of the step is reached, the channel bottom falls 
smoothly again to its original height.  If now for the approaching subcritical flow 
with given q the step height is raised to the point where the flow over the step has 
just attained the critical condition, represented by point C on the curve for the 
given q in Figure 5-11, the passage of the flow downstream to the original level is 
manifested on the specific-head diagram as a shift from point P to point Q 
vertically below the original point P but on the lower (supercritical) limb of the q 
curve.  The flow is now at the same elevation, and has the same energy (i.e., the 
same channel-bottom elevation and the same specific head), but it is now flowing 
at a greatly different combination of depth and velocity, corresponding to 
supercritical flow (Figure 5-12).  What is happening, physically, in contrast to 
graphically, is that the critical flow at the crest of the step accelerates down the lee 
side of the step, to attain a supercritical velocity (and, by virtue of conservation of 
mass, a shallower depth).  If the step is raised even beyond what is needed to 
attain the critical condition, then the flow upstream is dammed, and its depth 
increases, forcing point P upward to the right along the curve for the given q in 
the specific-energy diagram. 
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Figure 5-11.  The specific-energy diagram for one particular value of q, to 
illustrate the effect of raising and then lowering the channel bottom to force the 
flow to pass from subcritical to supercritical. 

 

 
 

Figure 5-12.  The behavior of the flow over a rise and then a fall of the channel 
bottom, when an approaching subcritical flow is forced to the critical condition by 
raising the step by a sufficiently large increment. 

 

 

35  A final comment is that the supercritical flow downstream of the step 
does not stay supercritical for a very great distance, unless the slope of the bottom 
downstream of the step becomes much steeper.  If the bottom retains its gentle 
slope, a hydraulic jump is likely to be formed at some point downstream, with the 
consequence that the flow reverts to its original subcritical condition; see the 
following section. 

 
THE HYDRAULIC JUMP 

36  We still have not milked the positive-step example, as arranged in 
Figure 5-12, for all the insight it affords.  We made the implicit assumption that 
the flow coming from upstream had a combination of depth and velocity 
corresponding to the given q that was the outcome of the particular gentle channel 
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slope that exists for a long distance upstream; see the earlier section on uniform 
flow.  The combination of slope, discharge per unit width, and bed roughness was 
such as to provide subcritical flow at that d and U.  We should expect that the 
flow would like to settle back to that same subcritical condition, somewhere far 
downstream of the step.  But you have just seen that for a sufficiently high step—
just high enough for the flow to attain the condition of critical flow, but not so 
high as to change the upstream flow—the flow for some distance downstream of 
the step is supercritical.  How, then, does the flow pass from being supercritical, 
just downstream of the step, to subcritical far downstream?  The answer is that 
commonly in situations like this the change from supercritical to subcritical is 
abrupt, in the form of what is called a hydraulic jump, rather than gradual. 

 

 
 

Figure 5-13.  The hydraulic jump.  The distribution of hydrostatic pressure is 
shown at section 1, upstream of the jump, and at section 2, downstream of the 
jump. 

 
 
37  Hydraulic jumps are a striking feature of open-channel flow.  You have 

all seen them, if only in your kitchen sink.  You turn the faucet on full force, and 
the descending jet impinges on the bottom of the sink to form a thin, fast-moving 
sheet of water, with supercritical depth and velocity, that spreads out in all 
directions.  But at a certain radius from the point of impact of the jet, which 
depends on the force of the down-flowing jet, the flow jumps up to a deeper and 
slower flow as it moves toward the drain.  The jump is in the form of a steep and 
nearly stationary front accompanied by strong turbulence (Figure 5-13).  Another 
situation in which a hydraulic jump commonly forms is downstream of a change 
from a relatively steep channel slope, with which supercritical flow is associated, 
to a relatively gentle channel slope, over which a uniform flow would be 
subcritical.  If the change in slope is sufficiently rapid, the transition from 
supercritical flow to subcritical flow is in the form of a hydraulic jump rather than 
a smooth change in depth and velocity.   

38  The nature of the hydraulic jump cannot be accounted for by use of the 
energy equation, because there is a substantial dissipation of energy owing to the 
turbulence associated with the jump; we need to appeal instead to conservation of 
momentum. 
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Figure 5-14.  Definition sketch for deriving the moment diagram for flow through 
a hydraulic jump.  The block of fluid contained between sections 1 and 2 at a 
given time is located between sections 1' and 2' a short time Δt later. 

 
 
39  Figure 5-13 is a cross-section view of the flow from upstream of the 

hydraulic jump to downstream of it.  Look at a block of the flow bounded by 
imaginary vertical planes at cross sections 1 and 2.  The distributions of 
hydrostatic pressure forces are shown on the upstream and downstream faces of 
the block.  You would have to locate section 2 quite a distance downstream of the 
jump, because it takes a long distance for the downstream flow to become 
organized.  In the absence of any submerged obstacle to the flow between sections 
1 and 2, the only streamwise forces on the fluid in the block are the pressure 
forces on the upstream and downstream faces; the hydraulic jump itself exerts no 
force on the flow.  To see the effect of these forces, we need to do some 
momentum bookkeeping for use in Newton’s second law, F = ma.  For that 
purpose, look at Figure 5-14, a slight redrawing of Figure 5-13. 

40  In a short time interval Δt, the block of fluid moves downstream from 
positions 1 and 2 to positions 1' and 2'.  In that time it has lost momentum equal to 
that of the fluid that was between sections 1 and 1'.  That momentum, written per 
unit flow width (remember that the channel is of the same width from upstream to 
downstream of the hydraulic jump) is [ρd1(Δx)1]U1, where U1 is the mean velocity 
at section 1.  This can be expressed slightly differently, keeping in mind that U1 = 
(Δx)1/Δt and q = Ud, as ρd1U1

2Δt, or ρqU1Δt.  This can be written in still another 
form by eliminating U1 by use of the relationship q = Ud again:  (q2ρ/d1)Δt.  
Likewise, during Δt the fluid block has gained momentum equal to that of the 
fluid that has moved in to occupy the volume between sections 2 and 2': 
(q2ρ/d2)Δt.  The change in momentum as the fluid block moves from position 1–2 
to position 1'–2' is then 

 

q2ρ
h1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Δt −

q2ρ
h2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Δt        (5.15) 
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or 
 

q2ρ
h1

−
q2ρ
h2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Δt         (5.16) 

 
 

The time rate of change of momentum of the fluid block is then obtained by 
dividing by the time interval Δt: 

 

q2ρ
h1

−
q2ρ
h2

        (5.17) 

 
41  By Newton’s second law, we can set this rate of change of momentum 

equal to the net streamwise force on the fluid block, F1 (acting in the downstream 
direction) minus F2 (acting in the upstream direction).  The linear distribution of 
hydrostatic pressure forces on the upstream and downstream faces of the fluid 
block make it easy to find the resultant forces F1 and F2: 

 

F1 = ρgydy =
1
20

h1

∫ ρgh1
2       (5.18) 

 
and likewise F2 = (1/2)ρgd2

2.  The net force on the fluid block is then 
 

F1 − F2 =
ρgh1

2

2
−

ρgh2
2

2
      (5.19) 

 
Finally, setting this net force equal to the rate of change of momentum, 

 

q2ρ
h1

−
q2ρ
h2

=
ρgh1

2

2
−

ρgh2
2

2
     (5.20) 

 
We can massage this a bit to put it into a form that is more convenient for our 
purposes by rearranging and dividing through by ρg: 

 

q2

gh1
+

h1
2

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

q2

gh2
+

h2
2

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0      (5.21) 

 
What is commonly done is to define a quantity 
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M =
q

gd
+

d 2

2
        (5.22) 

 
called the momentum function.  Then Equation 5.21 boils down to M1 - M2 = 0, 
which says that the momentum function does not change through the transition, 
provided that no streamwise forces other than the hydrostatic pressure forces (like 
resistance forces exerted by obstacles in the channel bottom) act on the fluid 
block. 

42  Just as with the specific energy in an earlier section, we can plot a useful 
graph of the momentum function M against the flow depth d (Figure 5-15).  And 
just as with the specific-energy diagram (Figure 5-7), you can verify the shape of 
the curve in Figure 5-15 by assuming a value for q, choosing some values for d, 
and computing the corresponding values of M; in this case, however, there is no 
unrealistic limb of the function below the d = 0 axis.  There is a family of curves, 
of the general shape shown in Figure 5-15, one for each value of discharge per 
unit width q.  As with the specific-energy diagram, all points on the upper limb of 
each curve, above the point of vertical tangent, represent supercritical flow, and 
all points on the lower limb, below the point of vertical tangent, represent 
subcritical flow. 

 

 
Figure 5-15.  The momentum diagram:  a plot of the momentum function M vs. 
flow depth y, shown for one of a family of curves for values of discharge per unit 
width, q. 

 

 

43  Now we have the tools to predict the height of the hydraulic jump.  We 
start at point 1 on the lower, supercritical limb of the curve in Figure 5-15, and 
jump up to point 2, at the same value of M but on the upper, subcritical limb, 
corresponding to the deeper, subcritical flow downstream of the hydraulic jump.  
You can see that the closer to the critical condition the upstream supercritical flow 
is, the smaller is the height of the hydraulic jump to subcritical flow, represented 
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by the vertical distance between the respective points of intersection of the M = 
constant vertical line with the two limbs of the curve in Figure 5-15. 

44  (Just as the shapes of the curves in the family of curves with q as the 
parameter in Figure 5-15 differ from the shapes of the corresponding curves in 
Figure 5-7, the specific-head diagram, so do the equations for the condition of 
critical flow—but that need not concern us here.  You yourself can take the one 
further step, the same as for the specific-head diagram, to find the shape of the 
curve for critical flows in Figure 5-14, the momentum-function diagram.) 

45  Finally, one incidental note is in order.  The subcritical flow 
downstream of the jump, which emerges from the considerations above, is not 
exactly of the same depth and velocity as the subcritical uniform flow that is 
ultimately attained far downstream of the step; there is some slow further 
adjustment to that condition. 

 
HYDRAULIC REGIMES  OF  OPEN-CHANNEL  FLOW 

46  Now that you know about supercritical vs. subcritical flow as well as 
about laminar vs. turbulent flow, various phenomena of open-channel flow can be 
drawn together into a single graph, to give you an idea of the wide range of 
hydraulic regimes of flow that can exist.  Figure 5-16 is a graph of mean flow 
depth against mean flow velocity for steady uniform open-channel flow in a wide 
rectangular channel.  If bed roughness is present, its height is assumed to be a 
small fraction of the flow depth.  Both depth and velocity span several orders of 
magnitude, a far greater range than is found in the sediment-transporting flows 
encountered in natural flow environments. 

47  It is easy to plot curves in Figure 5-16 corresponding to Fr = 1, for the 
transition between subcritical flow and supercritical flow, and to Re = 500 (Re 
based on flow depth), for the transition between laminar flow and turbulent flow.  
In a log–log plot like Figure 5-16 both of these conditions plot as straight lines; 
the line for Fr = 1 slopes upward to the right, and the line for Re = 500 slopes 
downward to the right.  These two lines partition the graph into four sectors:  
turbulent subcritical in the upper left (the most common in natural open-channel 
flows), turbulent supercritical in the upper right, laminar subcritical in the lower 
left, and laminar supercritical in the lower right. 

48  The usefulness of a graph like Figure 5-16 is that it helps to put into 
perspective the wide range of open-channel flows.  The flow regimes shown in 
Figure 5-15 are just extensions of the concept of flow regimes introduced in the 
discussion of flow around a sphere in Chapter 3. 

 

 176



 
flow velocity U (m)

laminar
subcritical

Re = 500

turbulent
super-
critical

turbulent
subcritical

Fr
 =

 1

lim
it 

= 
f (

ro
ug

hn
es

s)

L.S.

flo
w

 d
ep

th
 d

 (m
)

100 10210-210-4
10-4

10-2

102

100

lim
it

roll

waves

ae
ra

te
d 

flo
w

flumes

0.
1 

m
m

1 
m

m

Figure 5-16.  Hydraulic regimes of open-channel flow in a graph of mean flow 
depth vs. mean flow velocity.  See text for explanation of curves. 

 

 
49  In the lower part of Figure 5-16 are two curves (one for laminar flow 

and the other for turbulent flow) sloping upward to the right, below which steady, 
uniform open-channel flows cannot exist.  These curves are defined by the 
condition that channel slope approaches the vertical, giving the greatest 
gravitational driving force possible.  It is easy to get an exact solution for the 
curve that expresses this condition for laminar flow, by integrating Equation 4.17 
to find the mean velocity U as a function of flow depth, fluid properties γ and μ, 
and channel slope angle φ, and then taking sin φ = 1, giving U = d2γ /3μ.  This 
plots as a straight line in Figure 5-16.  A sheet of rainwater running down a soapy 
windowpane is an example of flows represented by this line.   

50  It is not as easy to obtain the limiting curve for turbulent flows, because 
we have to work with a resistance diagram like that in Figure 4-31.  The curve 
shown in Figure 5-16 was drawn in an approximate way by obtaining the friction 
factor f from the smooth-flow curve in Figure 4-27 and using that value together 
with τo = γ d sinα in Equation 4.11.  Figure 4-27 is for circular pipes, but it should 
be roughly applicable to open-channel flow provided that the pipe diameter is 
appropriately replaced.  Four times the flow depth was used in place of pipe 
diameter in computing the Reynolds number in Figure 4-27, because as noted in 
Chapter 4 the hydraulic radius of a circular pipe is one-fourth the pipe diameter, 
whereas the hydraulic radius of a very wide open-channel flow is just about equal 
to the flow depth.  For rough flows the limiting curve in Figure 5-15 would be 
displaced upward somewhat, because the friction factor is greater for a given 
Reynolds number. 
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GRADUALLY  VARIED  FLOW  

51  Nonuniform flows for which the changes in depth and velocity are so 
abrupt that radial accelerations distort the vertical distribution of fluid pressure 
from the hydrostatic condition are called rapidly varied flows.  Flow over a sharp-
crested dam or weir, and flow under a sluice gate, are good examples.  Such flows 
are difficult to deal with analytically, and I will not pursue them here, although 
they are important in many engineering applications. 

52  Nonuniform open-channel flows for which the changes in depth and 
velocity are slow enough in the downstream direction that the vertical distribution 
of fluid pressure from the free surface to the bottom is not much different from 
hydrostatic are called gradually varied flows.  An example is the flow transition 
over a gentle step, introduced at the beginning of this chapter (Fig. 5-3).  It is 
completed in a sufficiently short distance that loss of flow energy by friction can 
be neglected, but the fluid accelerations are still sufficiently small that the vertical 
distribution of fluid pressure is close to being hydrostatic.  In most gradually 
varied flows, however, the change takes place over a distance sufficiently great 
that we cannot assume zero energy loss due to bottom friction.  The second 
channel-transition example posed at the beginning of this chapter falls into that 
category.   

53  To see what happens to the elevation of the water surface through a 
transition over such a long distance that bottom friction cannot be neglected, we 
need to start with the equation for the total head at a cross section of the flow and 
differentiate each term with respect to distance in the flow direction.  (In what 
follows, I am going to write y instead of d for the flow depth.)  Start with 
Equation 5.3, written using the elevation of the channel bottom ho (cf. Equation 
5.4): 

 

Ew = U
2

2g  + y + ho          (5.22) 
 

Differentiate Equation 5.15 with respect to the flow direction x: 
 

dEw
dx   = d(U2/2g)

dx   + dy
dx  + dho

dx         (5.23) 
 

The term on the left side of Equation 5.23 is the rate of change in total energy in 
the downstream direction.  This is always negative, because energy is inevitably 
lost by friction.  Think in terms of the downward slope of the line formed by 
plotting Ew as a function of downstream distance.  This slope, denoted by Se, is 
what was called the energy slope, or the energy gradient, or the slope of the 
energy line earlier in this chapter.  By convention, such a negative slope is 
considered to be positive Se, so we replace dEw/dx in Equation 5.23 by -Se.   

54  Friction loss in nonuniform flow is not well studied, but to get 
somewhere just in a qualitative way we can assume that the friction loss in 
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slightly to moderately nonuniform flow is not greatly different from what it would 
be in uniform flow—and we have already dealt with that satisfactorily in Chapter 
4.  Remember the Chézy coefficient I introduced back then?  According to 
Equation 4.20, repeated here as Equation 5.24, 

 

U = C(ysinα)1/2         (5.24) 
 

Assuming that tanα ≈ sinα,  which is a very good approximation for the small 
angles we are dealing with here, and keeping in mind that the slope tanα is just 
Se, and solving for Se, 

 

Se = U2

C2y           (5.25) 
 

This can be written a little more usefully by getting rid of U by use of the relation 
q = Uy; remember that the discharge per unit channel width q (which is constant 
along the channel) is related to the mean velocity U by this relation.  Then 
Equation 5.25 can be written 

 

Se = q2

C2y3          (5.26) 
 
55  Now for some manipulation of the right side of Equation 5.23.  The first 

term on the right can be massaged in the following way to put it into a more 
useful form.  In what follows, again keep in mind that the discharge per unit 
channel width q is related to the mean velocity U and the flow depth y by the 
equation q = Uy. 

 

d
dx (U2

2g)  = d
dx ( q2

2gy2)  

     = q
2

2g  d
dx  ( 1

y2)  

     = q
2

2g (-2
y3)  dy

dx  

     = - q2

gy3  dy
dx        (5.27) 

 
56  For later convenience, one more thing needs to be done with this result.  

Go back to Equation 5.11, which gives the relationship between q and y that holds 
when the flow is critical, and write the depth as y instead of d (just a matter of 
notation, as explained above), and substitute that equation into Equation 5.27.  
What you get is 
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d
dx  (U2

2g)  = - yc3

y3   dy
dx         (5.28) 

 
With regard to the second term on the right in Equation 5.23, we do not have to 
do anything further with it, because it just represents the rate of change of flow 
depth in the downstream direction.   

57  The last term in Equation 5.23 represents the slope of the channel 
bottom (remember that ho was defined as the elevation of the channel bottom), 
and because in the realm of channel flows the downward slope is arbitrarily 
defined as positive that last term can just be written -So, where So is the slope of 
the channel bottom.  So can be written in a form that you will see is useful:  think 
about the hypothetical uniform flow that could pass down the given bottom slope 
(which, remember, in reality has a nonuniform flow at some different depth 
passing over it).  The depth of this hypothetical uniform flow over any given 
bottom slope is called the normal depth, yn.  Just as with Se, you can express So in 
terms of the Chézy equation by using this normal depth yn: 

 

So = q2

C2yn3           (5.29) 
  
58  So now, upon substitution of all these reworked forms of the various 

terms into Equation 5.23, and then bringing the terms with dy/dx to the left and 
the other two to the right, the equation reads as follows: 

 

dy
dx (1 - yc3

y3)  = q2

C2yn3   - q2

C2y3       (5.30) 
 
 

Rewrite the second term on the right in the form 
 

q2

C2 ( y3

yn3) yn3

  

 
and apply to this term the expression for So given in Equation 5.29 to obtain 

 

 So (
yn3

y3   ) 
 

and substitute that result into Equation 5.30, replacing the last term back with So 
also.  Finally, solve for dy/dx to get the grand finale: 
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dy
dx   =  So  

1 - (yn
y)3

 1 - (yc
y)3

         (5.24) 

 
59  To get you back on the ground after that tortuous (also torturous?) 

exercise in manipulation (see Figure 5-17 for a summary “road map”), what 
Equation 5.31 does is give, for a flow that is slowly changing its depth in the 
downstream direction, the rate of change of depth with downstream distance, as a 
function of (1) the bottom slope So, (2) the critical depth yc associated with the 
given discharge (that is, the flow depth you would see if a flow with that 
discharge per unit width were in the form of critical flow—which it is not), and 
(3) the normal depth yn associated with the given discharge (that is, the flow depth 
you would see if a flow with that bottom slope and that discharge per unit width 
were uniform—which it is not).  The only thing that stands in the way of 
perfection is the assumption we made that the friction loss in nonuniform flow at 
a given depth and discharge is the same as would be seen in the corresponding 
uniform flow at the same depth and discharge.   

 

 
Figure 5-17.  A “road map” to aid in following the analysis of backwater curves in 
the text. 

 
 
60  People do numerical integrations of Equation 5.31 to get approximate 

but reasonable water-surface profiles in real gradually varied flows.  But what is 
also commonly done is just to use Equation 5.31 as a qualitative guide to the 
profile shape to be expected.  We will do a little of that here, so that we can 
finally address the problem of what the water surface looks like as the river runs 
into the deep reservoir—and that is just one of the many important problems that 
can be attacked by this approach.    
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61  What you need to think about is the sign of dy/dx on the left side of 
Equation 5.31, because if dy/dx is positive then the flow depth increases 
downstream, and if dy/dx is negative then the flow depth decreases downstream—
and this is just the information we need in order to keep track of what the water 
surface does relative to the channel bottom.   

62  The derivative dy/dx is positive (meaning that the depth increases 
downstream) if in Equation 5.31 both the numerator and the denominator are 
positive or if both the numerator and the denominator are negative.  Conversely, 
dy/dx is negative, and the depth decreases downstream, if the numerator and the 
denominator have different sign. 

63  Another thing we can do is think about the conditions under which (1) 
dy/dx becomes zero, meaning that the flow approaches the uniform condition, or 
(2) dy/dx approaches infinity, meaning that the water surface gets steeper and 
steeper (obviously, something has to happen before it gets to be vertical!), or (3) 
dy/dx becomes equal to So, meaning that the water surface approaches 
horizontality. 

64  Suppose that our river flow is subcritical, as is usually the case for large 
rivers, meaning that the depth is greater than critical and the velocity is less than 
critical.  We can express this by the condition y > yc.  So the denominator in the 
fraction in the right side of Equation 5.31, which in the following I will call F, is 
always less than one.  With regard to the numerator, you know already that 
whatever the actual shape of the water-surface profile, the depth must ultimately 
increase when the reservoir is reached, so y > yn as well.  Also, because we said 
that the approaching river is subcritical, you know that yn > yc.  You can easily 
convince yourself that these three inequalities guarantee that the fraction F must 
be positive and less than one, so dy/dx is positive and less than So, meaning that 
the depth gradually increases downstream.   

65  As y gets larger and larger in the process, both the numerator and the 
denominator of F go to one, meaning that dy/dx goes to So, which if you think 
about it a little bit is the same as saying that the water surface itself becomes 
horizontal.  So our conclusion is that the water-surface profile is as shown in 
Figure 5-18A:  it is asymptotic to the uniform-flow profile upstream, and to the 
horizontal water surface of the reservoir downstream.  This kind of curve is called 
a backwater curve, for reasons I suppose are obvious. 

66  To carry this analysis just a little further, what is the effect of assuming 
that the river upstream is flowing at conditions closer to being critical?  You can 
see by inspection of the fraction F that as yn → yc, F itself stays closer and closer 
to one for y > yn, meaning that the transition from the almost uniform flow 
upstream to the horizontal reservoir level downstream is sharper and sharper (that 
is, it takes place over a shorter and shorter distance), until, for critical flow 
upstream, the river meets the reservoir at a sharp angle (Figure 5-18B)! 
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Figure 5-18.  Qualitative water-surface profiles when a river in A) subcritical flow 
and B) supercritical flow enters a lake or a reservoir. 

 

 

67  For big rivers flowing well below the critical condition, the backwater 
effect is felt not just for kilometers but for tens of kilometers upstream, and the 
superelevation of the actual water surface above the hypothetical point of 
intersection between the uniform flow and the reservoir level can be many meters.  
You can imagine the importance of being able to predict the magnitude of this 
superelevation at all points upstream, when you are worrying about how many 
homes and farms and businesses you are going to be flooding when you build that 
dam. 

68  I have just scratched the surface of the business of analyzing backwater 
effects.  There are many qualitatively different kinds of backwater curves, 
depending upon whether the approaching flow is subcritical, critical, or 
supercritical, and upon whether (1) y > yn and y > yc, (2) y is between yn and yc, or 
(3) y < yn and y < yc. 
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