Electron Microprobe Analysis

2.141

Nilanjan Chatterjee, Ph.D.

Principal Research Scientist

Electron Microprobe Facility Department of Earth, Atmospheric and Planetary Sciences

© Massachusetts Institute of Technology

Electron Microprobe or Electron Probe Microanalyzer (EPMA)

Surface characterization of solids at the micrometer-scale:

Surface topography and compositional imaging

 Complete chemical analysis of microscopic volumes (Electron beam induced X-ray emission spectrometry)

Signals produced in the Electron Microprobe

Specimen

Qualitative analysis

 Visual characterization and identification of phases in image (shape, size, surface relief, etc.)

Identification of elements in each phase (no concentration measurement)

Semi-quantitative analysis

Spatial distribution of elements in an image

 Quick and approximate spot concentration measurement without calibration

Quantitative analysis

- Full quantitative micro-chemical analysis
 Concentration of all elements present at the spot
- Elemental concentration mapping
 Concentration of all elements present at each pixel of the image

Electron-specimen interactions

Elastic Scattering

• Back-scattered electron

Inelastic Scattering

- Characteristic X-rays
- Secondary electron
- Cathodoluminescence

Electron interaction volume

Electron interaction volume

 $\boldsymbol{R} = 0.0276 \boldsymbol{E}^{1.67} \frac{\boldsymbol{A}}{\rho \boldsymbol{Z}^{0.889}}$ $(\boldsymbol{A} = \text{atomic weight}, \boldsymbol{\rho} = \text{density})$ (Kanaya-Okayama range)

- Increases with electron beam energy, E
- Decreases with sample atomic number, Z

Electron interaction volume

*Typical ranges (*15 kV, *perpendicular beam):*

$\mathbf{C} (\mathbf{Z} = 6)$	1.8 µm
Fe ($Z = 26$)	1.1 µm
U(Z = 92)	0.8 μm

Electron probe diameter and Electron interaction volume

Elastic scattering cross-section

For a scattering angle $> \phi_e$, cross-section (events.cm²/e⁻.atom)

- Z: atomic number
- *E*: beam energy
- ϕ_{e} : elastic scattering angle
- Increases with sample atomic number, Z
- Decreases with electron beam energy, E

Back-scattered electron (BSE) (Elastic scattering)

- Beam electrons scattered backward from specimen surface
 - High energy electrons with energy about the same as that of the electron beam
- BSE image resolution improves with shrinking of the electron interaction volume through:
- 1. Decrease in beam energy
- 2. Increase in specimen atomic number

Electron backscatter coefficient

BSE image contrast is better among low Atomic Number elements

Backscattered electron image

Back-scattered electron

Polished surface

Plane polarized transmitted light

Thin section

Function of composition

Function of optical properties

The X-ray spectrum

Phase identification: EDS X-ray spectra

<u>Z</u>	1	8	11	12	13	14	19	20	22	26
ilm:		Ο							Ti	Fe
grt:		Ο		Mg	Al	Si		Ca		Fe
bt:	Н	Ο		Mg	Al	Si	Κ			Fe
hbl:	Η	Ο		Mg	Al	Si		Ca		Fe
plg:		Ο	Na		Al	Si		Ca		

JEOL JXA-8200 Superprobe

Sample surface is perpendicular to the electron beam

Back-scattered electron detector

Located vertically above the specimen A split ring shape

solid-state diode

Compositional and topographic imaging with BSE detector

A+B Compositional mode A-B Topographic mode

Energy Dispersive X-ray Spectrometer (EDS)

EDS detector: a 'p-n' layer of intrinsic Si(Li) semiconductor; Be window; aperture wheel

Multichannel analyzer (MCA) processes the X-ray signal

Secondary electron (SE) (Inelastic scattering)

 Electrons from specimen surface are mobilized by beam electrons

Emitted at low energies (typical: <10 eV) (recall BSE are high energy beam electrons that underwent

elastic scattering, $E_1 = E_0$, E_0 typically being 10-20 keV)

Secondary electron detector

Located on the side wall of the sample chamber

Imaging with the E-T detector

-ve Faraday cage bias only BSE Surfaces in direct line of sight are illuminated **+ve Faraday cage bias** BSE + SE All surfaces are illuminated

Cathodoluminescence (CL)

Light generated from semiconductor samples through electron beam interaction

- Pure material has an empty conduction band; does not conduct
- Trace impurities add additional energy levels in the band gap that can accept electrons in the excited state
- *CL* photon is emitted as electron drops back to the valence band

Cathodoluminescence spectrometer

Optical microscope camera (not used)

Optical spectrometer

Cathodoluminescence spectrometry

12.141 Electron Microprobe Analysis January (IAP) 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.