Understanding X-rays: The electromagnetic spectrum

- E = hvh: Planck's constant = 6.626×10^{-34} Joule.sec $= 6.626 \times 10^{-34} / 1.6021 \times 10^{-16}$ keV.sec $= h (c/\lambda)$ v: frequencyc: speed of light in vacuum = 2.99793×10^{17} nm/sec
 - λ : wavelength

 λ (nm) = *hc/E* = 1.2398/*E* (keV)

Characteristic X-ray generation

Inner-shell ionization

<u>X-ray</u>	<u>electron transition</u>
Κα Κβ	L to K-shell M to K-shell
Lα	M to L-shell
Μα	N to M-shell

<u>X-ray</u>	electron transition	<u>X-ray energy</u>
Κα Κβ	L_{II+III} to K_{I} M_{III} to K_{I}	$\begin{split} \mathbf{E}_{\mathbf{K}\alpha} &= \mathbf{E}_{\mathbf{c}(\mathbf{K}_{\mathbf{I}})} - \mathbf{E}_{\mathbf{c}(\mathbf{L}_{\mathbf{I}\mathbf{I}}+\mathbf{I}\mathbf{I})} \\ \mathbf{E}_{\mathbf{K}\beta} &= \mathbf{E}_{\mathbf{c}(\mathbf{K}_{\mathbf{I}})} - \mathbf{E}_{\mathbf{c}(\mathbf{M}_{\mathbf{I}\mathbf{I}})} \end{split}$
Lα	$M_{\rm IV+V}$ to $L_{\rm III}$	$\mathbf{E}_{\mathbf{L}\alpha} = \mathbf{E}_{\mathbf{c}(\mathbf{L}_{\mathrm{III}})} - \mathbf{E}_{\mathbf{c}(\mathbf{M}_{\mathrm{IV}+\mathrm{V}})}$
Μα	$\mathrm{N}_{\mathrm{VII}}$ to M_{V}	$\mathbf{E}_{\mathbf{M}\alpha} = \mathbf{E}_{\mathbf{c}(\mathbf{M}_{\mathbf{V}})} - \mathbf{E}_{\mathbf{c}(\mathbf{N}_{\mathbf{V}\mathbf{H}})}$

X-ray energy and Critical excitation energy

$$E_{c(K)} = E_{K\alpha} + E_{c(L)}$$

= $E_{K\alpha} + E_{L\alpha} + E_{c(M)}$
= $E_{K\alpha} + E_{L\alpha} + E_{M\alpha} + E_{c(N)}$
 $\approx E_{K\alpha} + E_{L\alpha} + E_{M\alpha}$

The X-ray spectrum

Continuum X-rays are generated by deceleration of beam electrons in the Coulombic field of outer shells of target atoms. Maximum energy = electron beam energy

Condition for Ionization: Overvoltage $U = E/E_c$ > 1

E: electron beam energy (~10-20 keV) E_c : critical excitation energy of the shell

Best analytical condition, U \approx 5

Cross-section of ionization

 $Q = 6.51 \times 10^{-20} \left[(n_{s}b_{s}) / (UE_{c}^{2}) \right] \ln(c_{s}U)$

 n_s : number of electrons in the shell

 b_{s}, c_{s} : constants

X-ray production volume and maximum depth

$$\mathbf{R}_{\text{X-ray}} = 0.064 (\mathbf{E}^{1.68} - \mathbf{E}_{c}^{1.68}) \frac{1}{\rho}$$

(Anderson-Hasler range)

-Always smaller than electron range recall analogous expression for electron range: $\boldsymbol{R}_{\text{electron}} = \left(\frac{0.0276 \, A}{Z^{0.889}}\right) \boldsymbol{E}^{1.67} \frac{1}{\rho}$

-Depends on energy of ionized shell, E_c -Increases with electron beam energy, E

X-ray production volume: Castaing's formula

X-ray depth-distribution: the $\phi(\rho z)$ function

 $\phi(\Delta \rho z)$ = intensity from a freestanding layer of thickness 'z' $\phi(\rho z)$ at depth z = intensity from depth 'z' divided by $\phi(\Delta \rho z)$ where, ρ = density, and z = depth

Wavelength Dispersive Spectrometer (WDS)

$n\lambda = 2d\sin\theta$

= path length ABC *n* = order of reflection (any integer)

Diffraction angle

 $n\lambda_1 = 2d \sin\theta_1 \qquad \qquad n\lambda_2 = 2d \sin\theta_2$

Diffraction angle changes with wavelength being diffracted (for the same order of reflection, n)

First and second order diffractions

 $1\lambda = 2d \sin\theta_1$ =ABC $2\lambda = 2d \sin\theta_2$ =DEF

path DEF = 2* path ABC
Same wavelength is being diffracted at different diffraction angles

Analyzing crystals with different "d" spacings

		Atomic Number											
	(nm)		6	14 	22	30 	38 	46	54 	62 	70	78 	86
ТАР	2.576		80	15P	24Cr		41N	b 46Pd				79A	u
PET	0.8742		13Al 25Mn 36Kr					65Tb 70Yb					
LIF	0.4027		19 <mark>K 3</mark> 7Rb 48 <mark>Cd</mark>										
		Κ α,	β	Lα	,β	Μα	,β,γ						

	2d (nm)	Be	в	С	N	0	F
LDE1	Approx.6			• •	• (\bigcirc	\bigcirc
LDEB	Approx.14.5	\bigcirc	\bigcirc				
LDE2H	Approx.10			0			

WDS: Focusing geometry

 $L = n\lambda . R/d$

Curved diffracting crystals

FWHM of fully focusing Johansson-type crystal ~10 eV

Some defocusing in Johan-type, but resolution is not compromised

Crystal orientations Vertical, horizontal and tilted spectrometers

WDS: X-ray detector (proportional counter)

Tungsten collection wire set at 1-3 kV bias

Flow counter: 90% Ar +10% CH₄ (P-10); poly-propylene window

Sealed counter: Xe; Be window

Amplification in proportional counter

 Collection wire bias range (applied potential): 1-3 kV

 Bias is set so that amplification is in the proportional region

Counting efficiency of gas in proportional counter

<u>Gas used for long wavelengths</u>: 90% Ar +10% CH_4 (P-10)

<u>Gas used for short wavelengths</u>: Xe

WDS: changing the angle of diffraction

Theoretical and actual limits of spectrometer movement

 $2\mathbf{R} \leq \mathbf{L} \leq \mathbf{0}$

WDS signal processing

Single channel analyzer (SCA)

Pulse Height Analysis (PHA)

Single Channel Analyzer (SCA) scan

Imaging with X-rays: compositional mapping

Beam-rastered image: electron beam rasters over the area to be imaged Stage-rastered image: electron beam is stationary, stage moves

Number of point measurements: image resolution
 Signal: beam current and dwell time/point

Defocusing in beam-rastered WDS X-ray maps

As the beam moves off the optic axis, the displacement in the specimen plane is equivalent to a change in the angle of incidence of the x-rays on the crystal by an angle $\Delta \theta$.

X-ray image artifact: background

Zn-Sn composite

Ca x-ray image

Continuum X-rays: background artifact

A composite made of 2 materials is being mapped:

Neither material contains Cr

12.141 Electron Microprobe Analysis January (IAP) 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.