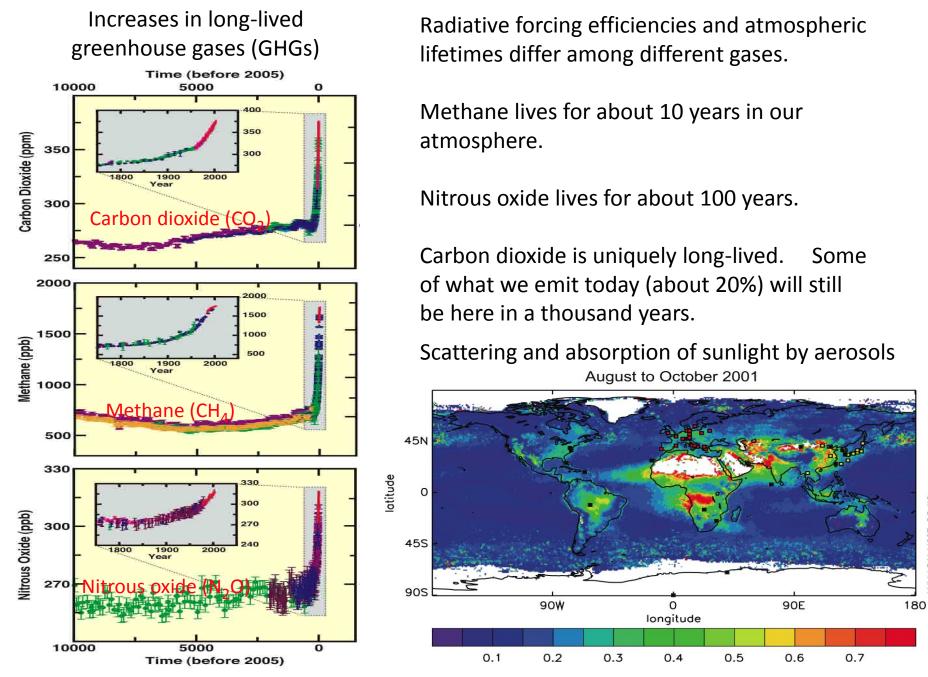
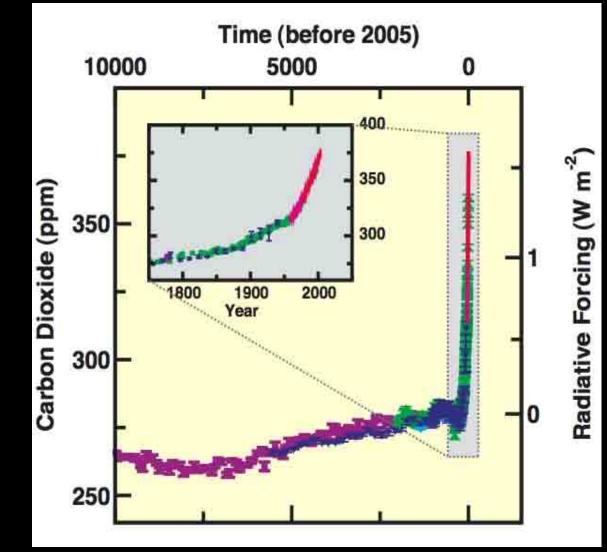

Climate Change Mitigation and Some Links to Adaptation

Susan Solomon


- 1. Introduction
- 2. Forcing agents and the stock-flow concept of Sterman
- 3. Why do we emit so much carbon dioxide and why is mitigation controversial
- 4. Some options for carbon dioxide emission reduction and the wedge concept of Socolow and Pacala
- 5. What about emissions of other warming agents?

Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Figure 3.9. Cambridge University Press. Used with permission. Last ten years: warmest decade since at least the late 1800s

Widespread warming has occurred. Globally averaged, the planet is about 0.75°C warmer than it was in 1880, based upon dozens of high-quality long records using thermometers worldwide, including land and ocean.

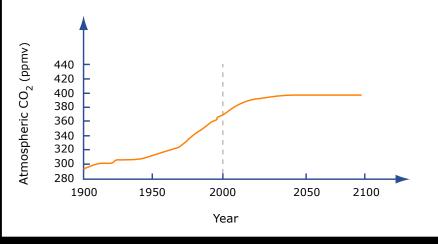

Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Figure SPM.1 and 2.11. Cambridge University Press. Used with permission.

3

Unprecedented Increases in Carbon Dioxide

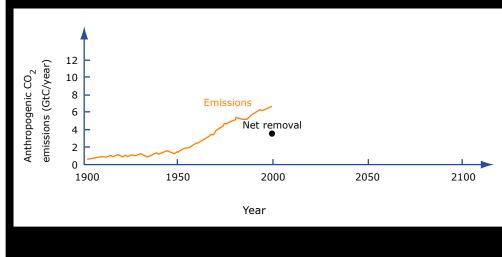
A critical
'greenhouse gas' that
absorbs energy and is
the largest single
driver of current
warming

• Increases change the Earth's energy budget, 'forcing' climate to change and acidifying the oceans IPCC WG1 (2007) ch 2



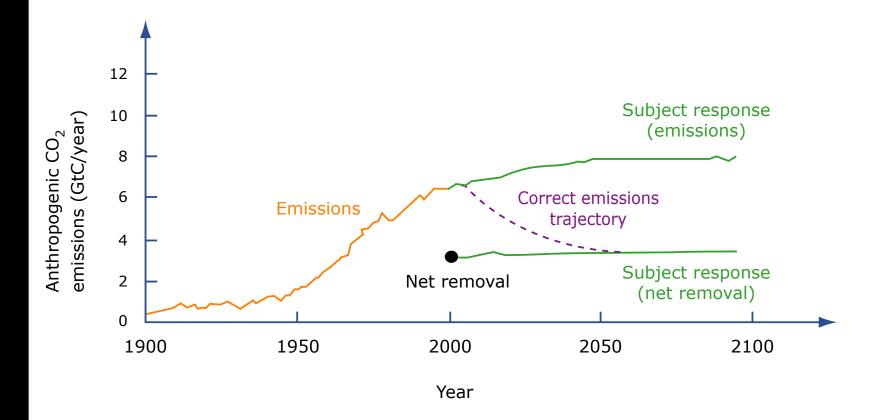
Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Figure SPM.1. Cambridge University Press. Used with permission.

Bathtubs are Key: Sterman (2007)


Scenario for atmospheric CO2 concentration versus time

Consider a scenario in which the concentration of CO_2 in the atmosphere gradually rises to 400 ppm, about 8% higher than the level in 2000, then stabalizes by the year 2100, as shown here:

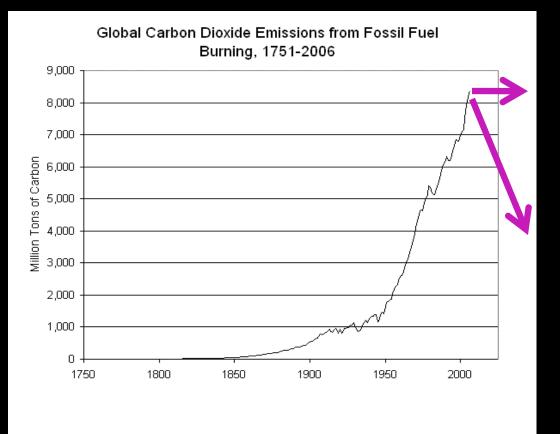
Sketch your estimate of future net CO2 removal and anthropogenic emissions for this 400 ppmv stabilization scenario.


Anthropogenic emissions versus time, and current net removal

Images by MIT OpenCourseWare.

Sterman, Science, 2007

Bathtubs are Key: Sterman (2007)



A typical reponse to the climate stabilization task.

Future emissions are erroneously correlated with atmospheric CO_2 . Purple dashed line indicates the correct emissions path to stabilize CO_2 given the subject's estimate of net removal.

Image by MIT OpenCourseWare.

The Amount of Carbon in The Bathtub

This image has been removed due to copyright restrictions. Please see the image on page http://www.cartoonstock.com/newscartoons/cartoonists/tmc/lowres/tmcn193l.jpg.

Image courtesy of CD/AC, BP and USGS.

Stabilization of CO₂ concentrations globally would require at least 50% emissions reductions

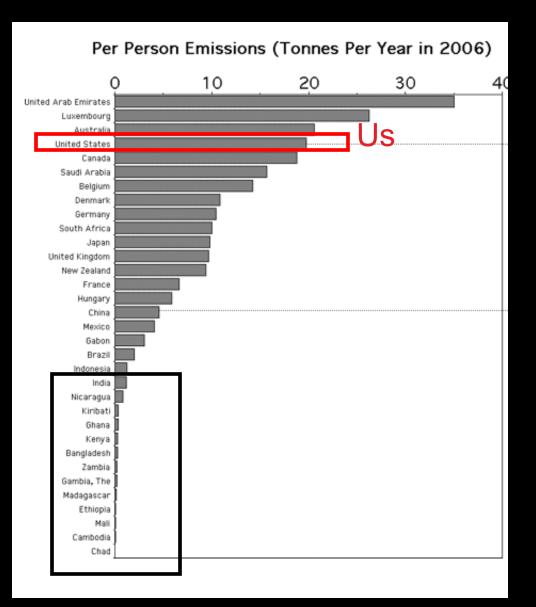
What if the gas was methane? What if it was HCFC-123?

What drives carbon emissions?

The Kaya identity (8, 9) expresses the global *F* as a product of four driving factors:

$$F = P\left(\frac{G}{P}\right)\left(\frac{E}{G}\right)\left(\frac{F}{E}\right) = Pgef,$$

Where *P* is global population, *G* is world GDP of gross world product, E is global primary energy consumption, g = G/P is the per-capita world GDP, e = E/G is the energy intensity of world GDP, and f = F/E is the carbon intensity of energy. Upper- and lowercase symbols distinguish extensive and intensive variables.


Image by MIT OpenCourseWare.

One way of considering factors involved (not the only way): population, GDP per capita, energy required per unit GDP, emissions per unit energy. --> Population, wealth, efficiency, cleanliness

Carbon emission is integral to all of the world's economies

Learn more by reading Raupach et al., PNAS, 2007

Carbon Dioxide Emission From Fossil Fuel Burning

The human side of climate change.

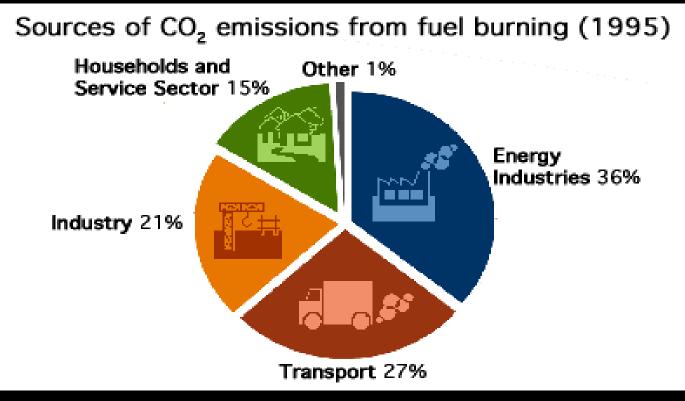
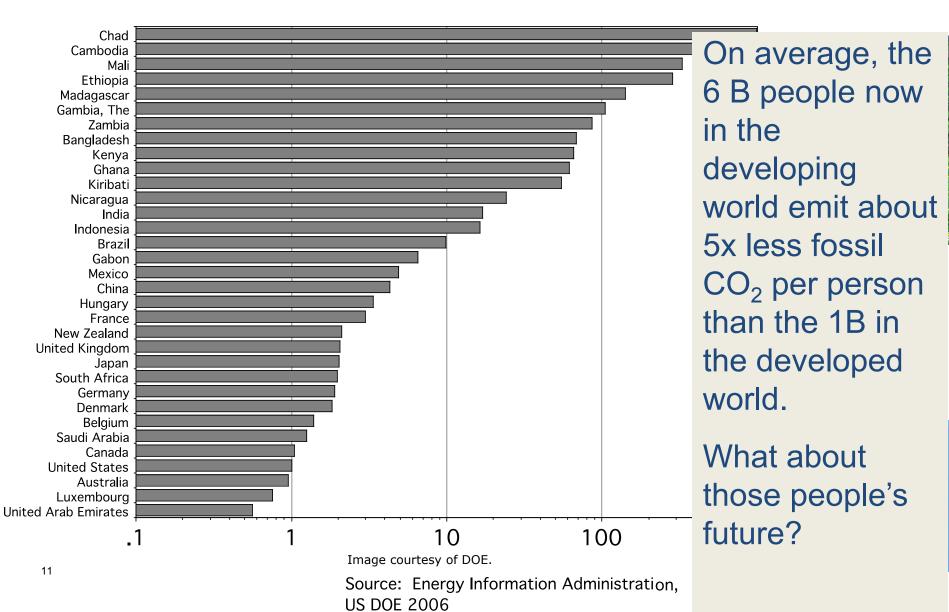
Who?

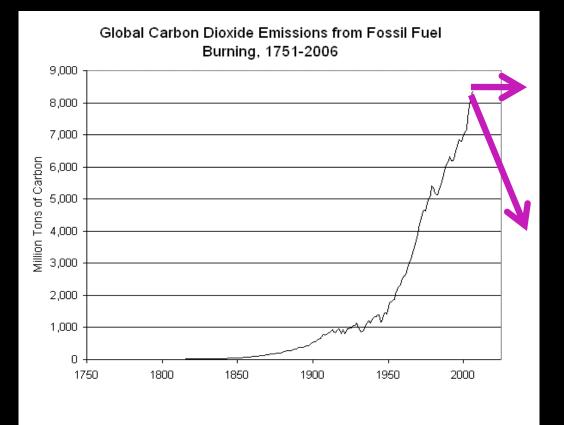
Source: Energy Information Agency, DOE

Image courtesy of DOE.

Why: Going, Doing, Making, Being Comfortable.....

In short, just about everything.

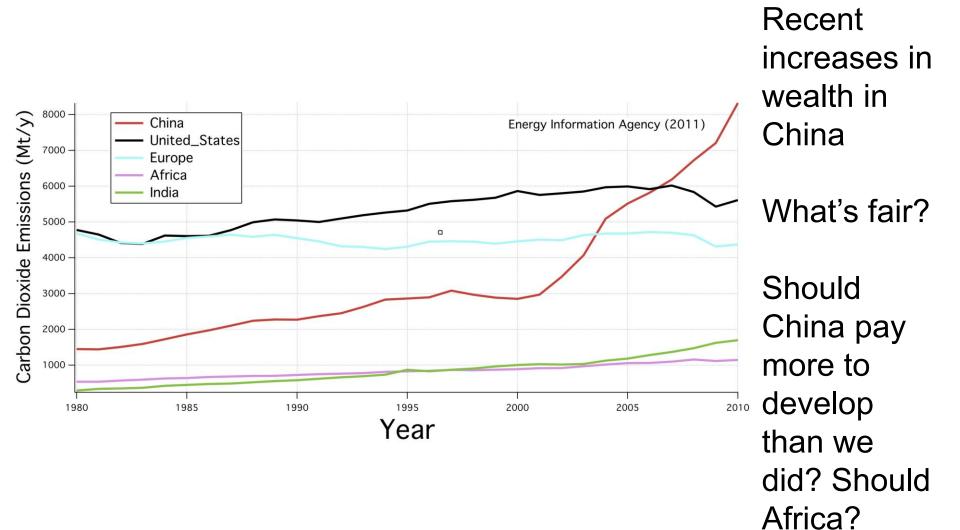

Image courtesy of EPA.

People in the Mirror: Carbon Dioxide Emission From Fossil Fuel Burning

Ratio of US per person emission/country of interest

The Amount of Carbon in The Bathtub

This image has been removed due to copyright restrictions. Please see the image on page http://www.cartoonstock.com/newscartoons/cartoonists/tmc/lowres/tmcn193l.jpg.


Image courtesy of CD/AC, BP and USGS.

Can we mitigate carbon emissions at the same time that the world's poor countries develop and increase their energy needs?

This image has been removed due to copyright restrictions. Please see the image on page http://bushlandsafar is.com/cultural.htm.

• 6/7 of the people emit about 5x less per person than 1/6

What about total emissions, not per capita? Let's add it up by country.....

Carbon Intensity of the Global Economy

This image has been removed due to copyright restrictions. Please see the image on page http://www.globalcarbonproject.org/global/images/general/ThumbCoal_dredge.jpg.

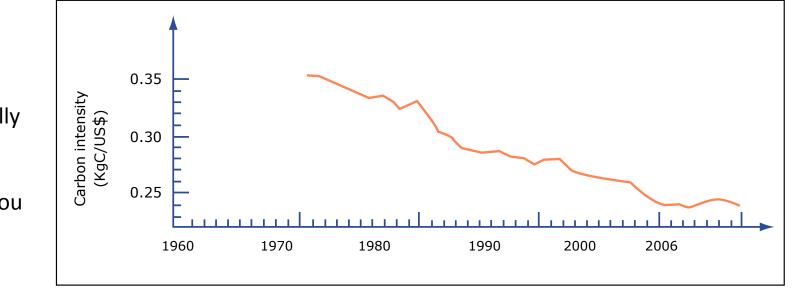


Image by MIT OpenCourseWare.

 ≈ -50% globally since 1970 but flattening out recently (can you guess why?)

Infrastructure Commitments

Power plants, homes ~50 years

This image has been removed due to copyright restrictions. Please see the image on page http://www.behance.net/ga llery/Fossil-Fuels-are-Burning/5161371.

This image has been removed due to copyright restrictions. Please see the image on page http://suppateam.files.wordpress.com/20 08/11/traffic-jam1.jpg.

Cars ~10 years

This image has been removed due to copyright restrictions. Please see the image on page http://www.lmco.net/conte nt.cfm?n=projects.

The next few decades...it's up to us.

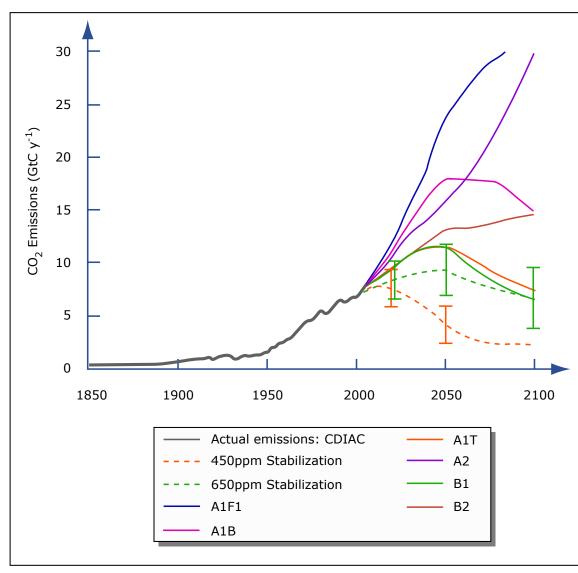
This image has been removed due to copyright restrictions. Please see the image on page http://www.amazon.ca/Blad e-Runner-Final-Cut-Blu-ray/dp/B004GDB7OA.

Past and future emissions from 'stuff' we already have (leads to about 1-1.4° C warming)

See Davis et al., Science, 2010

This image has been removed due to copyright restrictions. Please see the image on page http://www.behance.net/ga llery/Fossil-Fuels-are-Burning/5161371.

What will be built: power plants, cars, planes, trains, appliances, homes, etc.....


(leads to about 3-7° C warming by 2100).

This image has been removed due to copyright restrictions. Please see the image on page http://www.nydailynews.com /entertainment/tv-movies/voice-star-trek-majel-barrett-ro ddenberry-dead-76-article-1.357407.

Our joint choices on what 'stuff' to build matter a great deal.

Blade runner or star trek?

Emissions past and future

- Typical scenarios
- A1FI, A1B, etc show plausible futures with no additional climate policy; note uncertainties even with no policy.
- Stabilization at 450 would require large emissions reductions within the next several decades; 650 would imply reduced rate of growth soon, and bigger reductions by 2050.

Image by MIT OpenCourseWare.

This image has been removed due to copyright restrictions. Please see Figure 4 in Bolin, and Kheshgi. *Science* (2000).

From Bolin and Kheshgi, Science, 2000.

Information and implications:

• units here are tC not tCO₂

≈75% of the total accumulated CO₂
in the atmosphere came from
developed countries during 1860 1990.

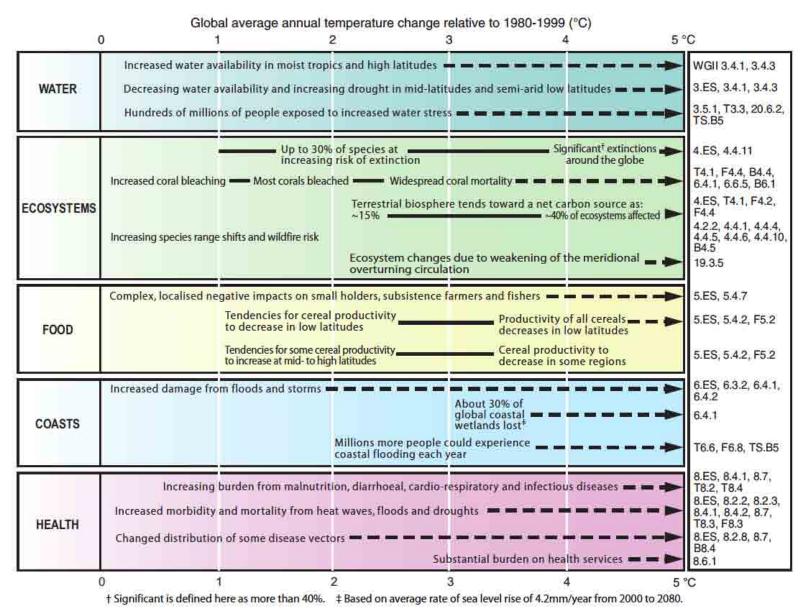
• The integrated per capita contribution of developed countries to today's fossil fuel CO₂ burden is about 20x larger than that of developing countries. The current annual contribution is about 5x.

• Stabilization at e.g., 550 suggests future DC share less than 1tC per person/yr, many times lower throughout the 21st century than what it took for the developed world to develop.

• Gridlock at UN level: developed and developing....

• Role of science and tech?

Political Matters:


numbers; north-south issues, connections

- (1) the times are difficult
- (2) The numbers at the table are large
- (3) Equity issues?

These images have been removed due to copyright restrictions. Please see the images on page http://www.iisd.ca/climate/cop_10/fri1012.html

Never before has there been a greater need for a joint and wellinformed societal choice, or a more difficult one.

A Very Few Words About Impacts and Adaptation

Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland. Used with permission.

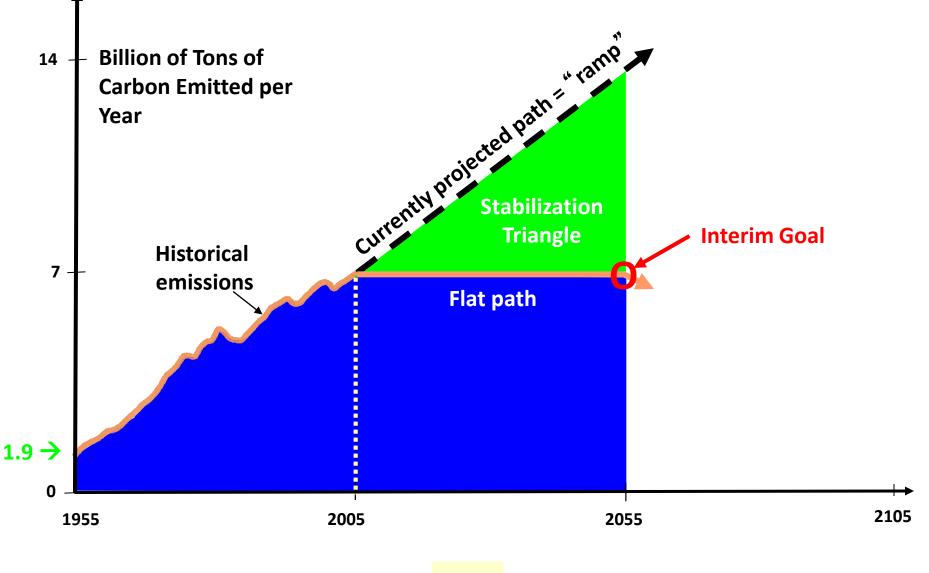
A Very Few Words About Impacts and Adaptation

Table 4.1. Selected examples of planned adaptation by sector.

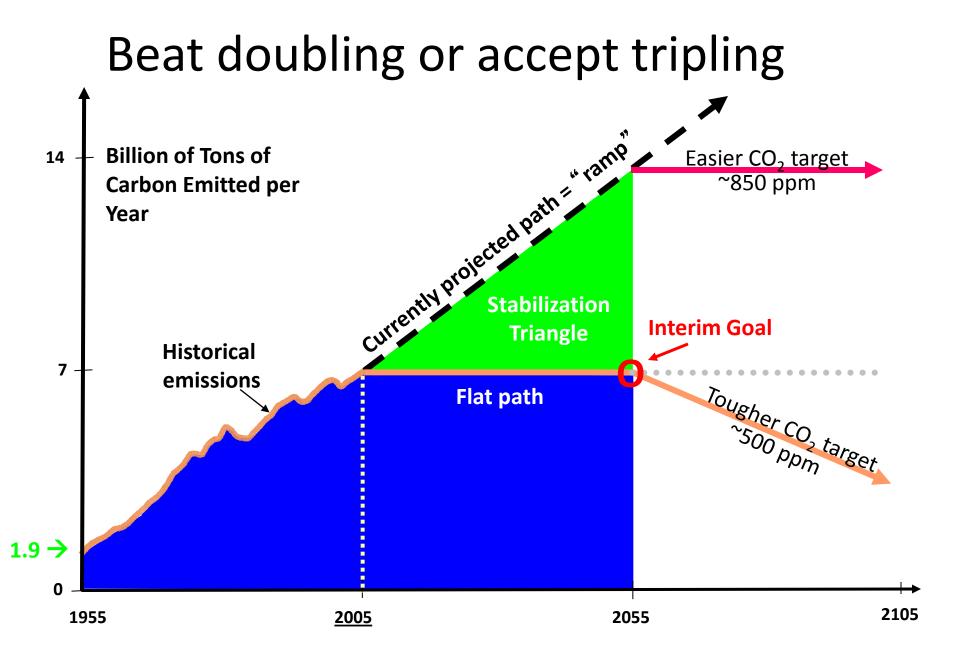
Sector	Adaptation option/strategy	Underlying policy framework	Key constraints and opportunities to implementation (Normal font = constraints; <i>italics = opportunities</i>)
Water (WGII, 5.5, 16.4; Tables 3.5, 11.6,17.1)	Expanded rainwater harvesting; water storage and conservation techniques; water reuse; desalination; water-use and irrigation efficiency	National water policies and integrated water resources management; water-related hazards management	Financial, human resources and physical barriers; integrated water resources management; synergies with other sectors
Agriculture (WGII 10.5, 13.5; Table 10.8)	Adjustment of planting dates and crop variety; crop relocation; improved land management, e.g. erosion control and soil protection through tree planting	R&D policies; institutional reform; land tenure and land reform; training; capacity building; crop insurance; financial incentives, e.g. subsidies and tax credits	Technological and financial constraints; access to new varieties; markets; longer growing season in higher latitudes; revenues from 'new' products
Infrastructure/ settlement (including coastal zones) (WGII 3.6, 11.4; Tables 6.11, 17.1)	Relocation; seawalls and storm surge barriers; dune reinforcement; land acquisition and creation of marshiands/wetlands as buffer against sea level rise and flooding; protection of existing natural barriers	Standards and regulations that integrate climate change considerations into design; land-use policies; building codes; insurance	Financial and technological barriers; availability of relocation space; <i>integrated</i> <i>policies and management; synergies with</i> <i>sustainable development goals</i>
Human health {WGil 14.5; Table 10.8}	Heat-health action plans; emergency medical services; improved climate-sensitive disease surveillance and control; safe water and improved sanitation	Public health policies that recognise climate risk; strengthen health services; regional and international cooperation	Limits to human tolerance (vulnerable groups); knowledge limitations; financial capacity; upgraded health services; improved quality of life
Tourism {WGII 12.5, 15.5, 17.5; Table 17.1}	Diversification of tourism attractions and revenues; shifting ski slopes to higher attitudes and glaciers; artificial snow-making	Integrated planning (e.g. carrying capacity; linkages with other sectors); financial incen- tives, e.g. subsidies and tax credits	Appeal/marketing of new attractions; financial and logistical challenges; potential adverse impact on other sectors (e.g. artificial snow-making may increase energy use); revenues from 'new' attractions; involvement of wider group of stakeholders
Transport {WGII 7.6, 17.2}	Realignment/relocation; design standards and planning for roads, rail and other infrastructure to cope with warming and drainage	Integrating climate change considerations into national transport policy; investment in R&D for special situations, e.g. permafrost areas	Financial and technological barriers; availability of less vulnerable routes; improved technologies and integration with key sectors (e.g. energy)
Energy (WGII 7.4, 16.2)	Strengthening of overhead transmission and distribution infrastructure; underground cabling for utilities; energy efficiency; use of renewable sources; reduced dependence on single sources of energy	National energy policies, regulations, and fiscal and financial incentives to encourage use of alternative sources; incorporating climate change in design standards	Access to viable alternatives; financial and technological barriers; acceptance of new technologies; stimulation of new technologies; use of local resources

Note:

Other examples from many sectors would include early warning systems.

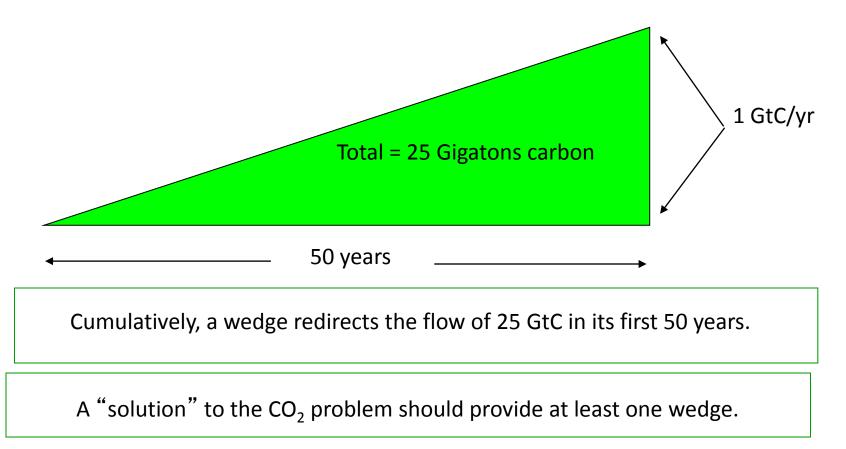

IPCC Synthesis Report, 2008.

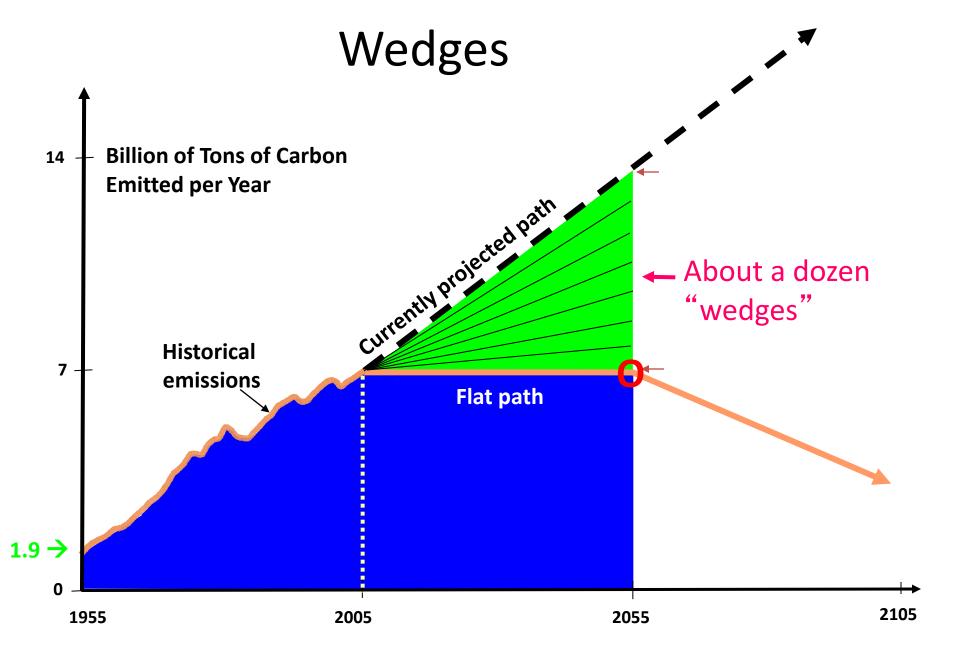
Climate Change 2008: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Table 4.1, IPCC, Geneva, Switzerland. Used with permission.


Past Emissions

The Stabilization Triangle

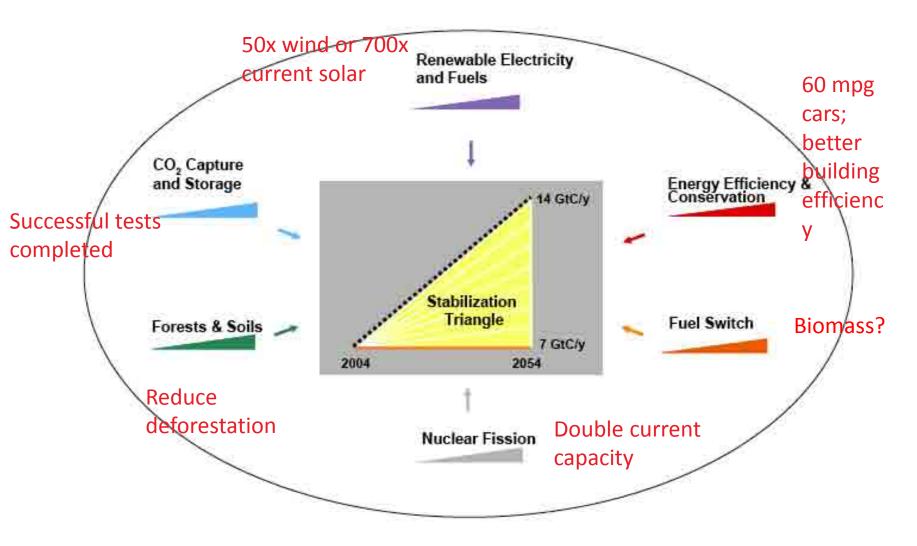
After Socolow and Pacala




What is a wedge and does it help us think about this problem?

24

What is a "Wedge"?


A "wedge" is a strategy to reduce carbon emissions that grows in 50 years from zero to 1.0 GtC/yr. The strategy has already been commercialized at scale somewhere.

After Socolow and Pacala

A Range of Future Choices

There are no silver bullets but there is much silver buckshot. Why do some economists object to the wedge concept? What will it take to realize a few wedges?

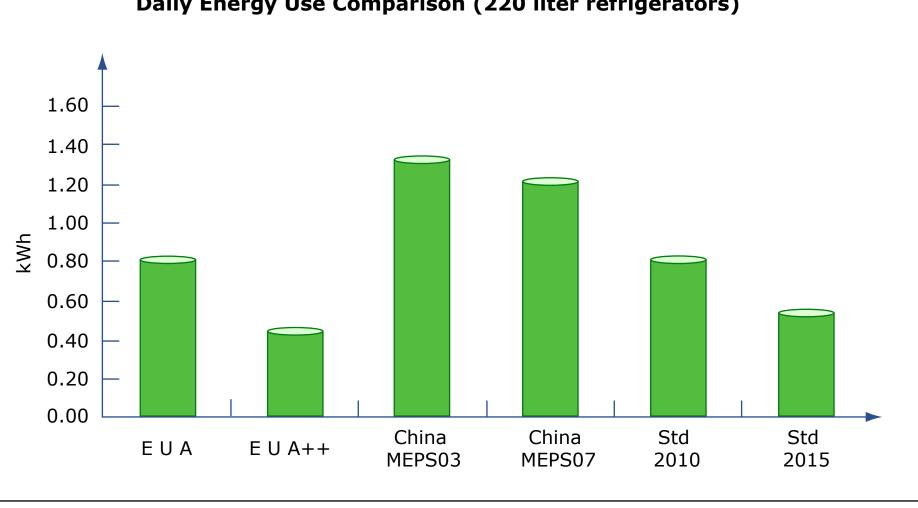
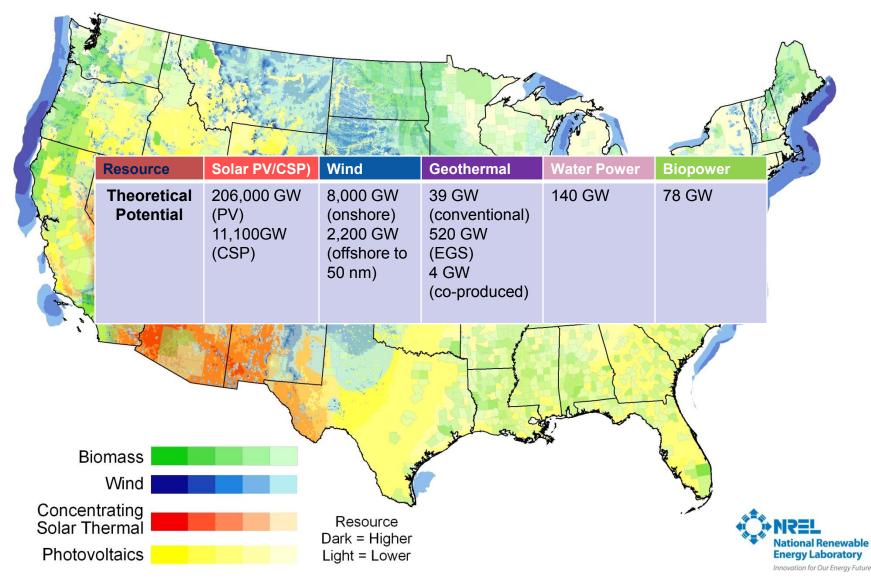

After Socolow and Pacala

Table 4.2 Selected examples of key sectoral mitigation technologies, policies and measures, constraints and opportunities. {WGIII Tables SPM.3, SPM.7}

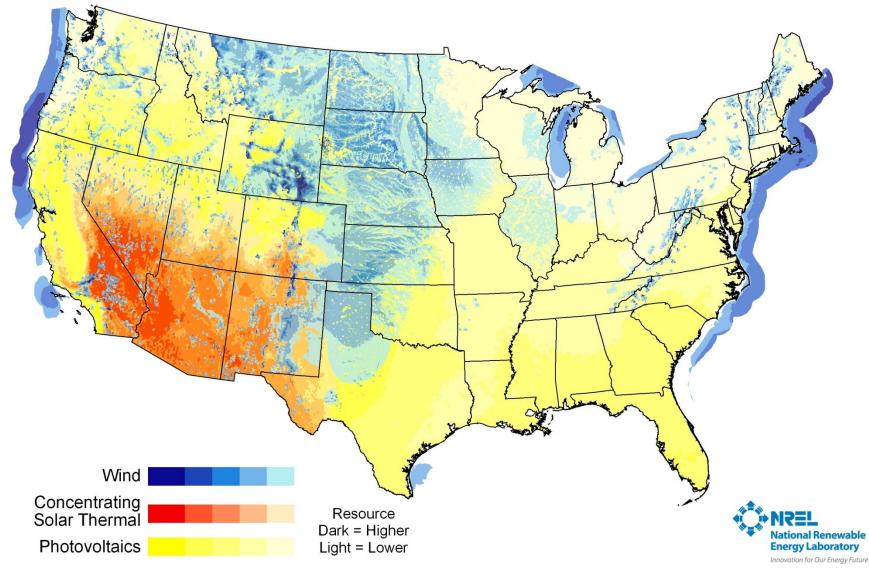
Sector	Key mitigation technologies and practices currently commercially available. Key mitigation technologies and practices projected to be commercialised before 2030 shown in italics.	Policies, measures and instruments shown to be environmentally effective	Key constraints or opportunities (Normal font = constraints; <i>italics = opportunities</i>)
Energy Supply {WGIII 4.3, 4.4}	Improved supply and distribution efficiency; fuel switching from coal to gas; nuclear power; renewable heat and power (hydropower, solar, wind, geothermal and bioenergy); combined heat and power; early applications of carbon dioxide capture and storage (CCS) (e.g. storage of removed CO, from natural gas); CCS for gas, biomass and coal-fired electricity generating facilities; advanced nuclear power; advanced renewable energy, including tidal and wave energy, concentrating solar, and solar photovoltaics	Reduction of fossil fuel subsidies; taxes or carbon charges on fossil fuels	Resistance by vested interests may make them difficult to implement
		Feed-in tariffs for renewable energy technologies; renewable energy obligations; producer subsidies	May be appropriate to create markets for low- emissions technologies
Transport (WGIII 5.4)	More fuel-efficient vehicles; hybrid vehicles; cleaner diesel vehicles; biofuels; modal shifts from road transport to rail and public transport systems; non-motorised transport (cycling, walking); land-use and transport planning; second generation biofuels; higher efficiency aircraft; advanced electric and hybrid vehicles with more powerful and reliable batteries	Mandatory fuel economy; biofuel blending and $\rm CO_2$ standards for road transport	Partial coverage of vehicle fleet may limit effectiveness
		Taxes on vehicle purchase; registration, use and motor fuels; road and parking pricing	Effectiveness may drop with higher incomes
		Influence mobility needs through land-use regulations and infrastructure planning; investment in attractive public transport facilities and non-motorised forms of transport	Particularly appropriate for countries that are building up their transportation systems
Buildings (WGIII 6.5)	Efficient lighting and daylighting; more efficient electrical appliances and heating and cooling devices; improved cook stoves, improved insulation; passive and active solar design for heating and cooling; alternative refrigeration fluids, recovery and recycling of fluorinated gases; integrated design of commercial buildings including technologies, such as intelligent meters that provide feedback and control; solar photovoltaics integrated in buildings	Appliance standards and labelling	Periodic revision of standards needed
		Building codes and certification	Attractive for new buildings. Enforcement can be difficult
		Demand-side management programmes	Need for regulations so that utilities may profit
		Public sector leadership programmes, including procurement	Government purchasing can expand demand for energy-efficient products
		Incentives for energy service companies (ESCOs)	Success factor: Access to third party financing
Industry {WGIII 7.5}	More efficient end-use electrical equipment; heat and power recovery; material recycling and substitution; control of non-CO ₂ gas emissions; and a wide array of process-specific technologies; advanced energy efficiency; CCS for cement, ammonia, and iron manufacture; inert electrodes for aluminium manufacture	Provision of benchmark information; performance standards; subsidies; tax credits	May be appropriate to stimulate technology uptake. Stability of national policy important in view of international competitiveness
		Tradable permits	Predictable allocation mechanisms and stable price signals important for investments
		Voluntary agreements	Success factors include: clear targets, a baseline scenario, third-party involvement in design and review and formal provisions of monitoring, close cooperation between government and industry
Agriculture (WGIII 8.4)	Improved crop and grazing land management to increase soil carbon storage; restoration of cultivated peaty soils and degraded lands; improved rice cultivation techniques and livestock and manure management to reduce CH ₄ emissions; improved nitrogen fertiliser application techniques to reduce N ₂ O emissions; dedicated energy crops to replace fossil fuel use; improved energy efficiency; <i>improvements of crop yields</i>	Financial incentives and regulations for improved land management; maintaining soil carbon content; efficient use of fertilisers and irrigation	May encourage synergy with sustainable development and with reducing vulnerability to climate change, thereby overcoming barriers to implementation
Forestry/forests (WGIII 9.4)	Afforestation; reforestation; forest management; reduced deforestation; harvested wood product management; use of forestry products for bioenergy to replace fossil fuel use; tree species improvement to increase biomass productivity and carbon sequestration; improved remote sensing technologies for analysis of vegetation/soll carbon sequestration potential and mapping land-use change	Financial incentives (national and international) to increase forest area, to reduce deforestation and to maintain and manage forests; land-use regulation and enforcement	Constraints include lack of investment capital and land tenure issues. Can help poverty alleviation.
Waste (WGIII 10.4)	Landfill CH, recovery; waste incineration with energy recovery; composting of organic waste; controlled wastewater treatment; recycling and waste minimisation; biocovers and biofilters to optimise CH, oxidation	Financial incentives for improved waste and wastewater management	May stimulate technology diffusion
		Renewable energy incentives or obligations	Local availability of low-cost fuel
		Waste management regulations	Most effectively applied at national level with enforcement strategies

IPCC Synthesis Report, 2008.

Climate Change 2008: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Table 4.2, IPCC, Geneva, Switzerland. Used with permission.



Daily Energy Use Comparison (220 liter refrigerators)


Image by MIT OpenCourseWare.

U.S. Renewable Resources

Current ≈ 3000 GW

Variable Renewable Resources

Solar Resource

Meeting all of U.S. demand with current PV technologies would require about 100-200 m2 per person (average).

Variable source

Storage?

SmartGrid?

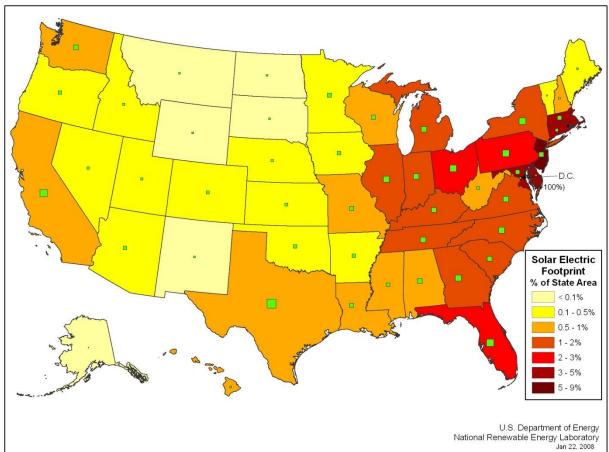
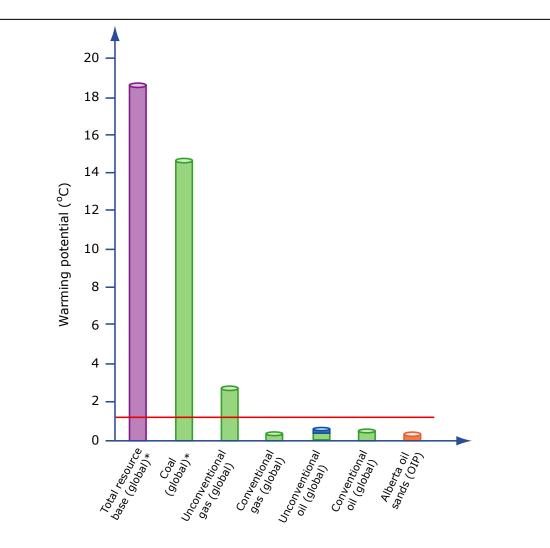



Image courtesy of DOE.

(With biomass, it requires 7000-9000 m2/person, or about 50% of the state area). What other factors make biomass

³² controversial?

National Renewable Energy Laboratory

Need for carbon capture and storage?

Central estimate of the potential for warming of the different fossil-fuel resources

The red line indicates the limit of 2.0 $^{\circ}$ C warming from pre-industrial times agreed to under the Copenhagen Accord. Note, that here we only consider the effects of anthropogenic carbon dioxide. The potential for warming associated with proven Alberta oil-sand reserves is indicated as a barely visible sub-component (shown in blue) of unconventional oil (global). The potential warming of the total Alberta oil-sands oil-in-place (OIP) is shown in orange. *The carbon-climate response method is not valid for emissions above about 20×10^{17} g C, so these figures are not valid climate change estimates, but are included for comparison.

Image by MIT OpenCourseWare.

This image has been removed due to copyright restrictions. Please see the image on page http://www.nationalgrid.com/corporate/About+Us/climate/CCS2/.

Snake Oil or Solution?

$$\begin{split} & Mg_2SiO_4 \\ Mg_olivine + 2CO_2 &= \frac{2MgCO_3}{magnesite} + \frac{SiO_2}{quartz} \\ & Mg_2SiO_4 \\ Mg_olivine + \frac{CaMgSi_2O_6}{CaMg-pyroxene} + 2CO_2 + 2H_2O \\ & = \frac{Mg_3Si_2O_5(OH)_4}{serpentine} + \frac{CaCO_3}{calcite} + \frac{MgCO_3}{magnesite} \\ \end{split}$$
[2b]

This image has been removed due to copyright restrictions. Please see the image on page http://www.travelforboomers. com/wp-content/upl oads/2012/05/Green-sand-beach1.png.

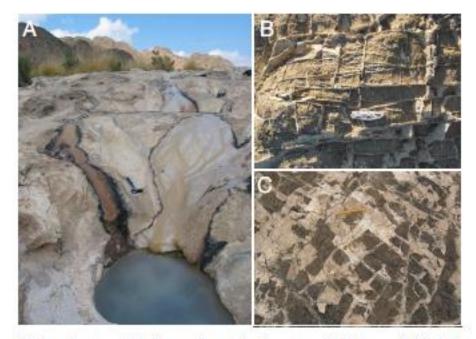
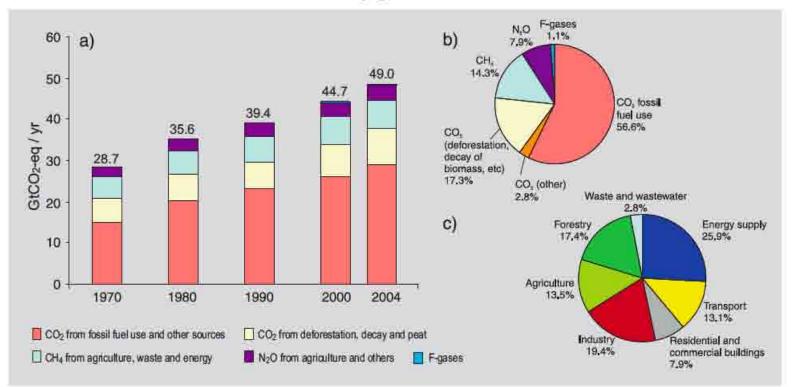



Fig. 1. Photographs of travertine and carbonate veins in Oman. (A) Actively depositing travertine near the village of Falaij (22.846°N, 58.056°E) with rock hammer for scale, altered peridotite in the background. (B) White carbonate veins weathering out in positive relief in altered peridotite at "Duck" (22.815°N, 58.838°E) with pocket knife for scale. (C) White carbonate veins in altered peridotite north of the village of Batin (22.925°N, 58.671°E) with pencil for scale.

Olivine beaches everywhere?

Courtesy of National Academy of Sciences, U. S. A. Used with permission. Source: Figure 1 in http://www.pnas.org/content/105/45/17295.figures-only. Copyright © 2008 National Academy of Sciences, U.S.A.

Global anthropogenic GHG emissions

Figure 2.1. (a) Global annual emissions of anthropogenic GHGs from 1970 to 2004.⁵ (b) Share of different anthropogenic GHGs in total emissions in 2004 in terms of CO_2 -eq. (c) Share of different sectors in total anthropogenic GHG emissions in 2004 in terms of CO_2 -eq. (Forestry includes deforestation.) [WGIII Figures TS.1a, TS.1b, TS.2b]

Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Figure 2.1, IPCC, Geneva, Switzerland. Used with permission.

This image has been removed due to copyright restrictions. Please see Figure 1 of the paper Shindell et al. "Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security". *Science* (2012).

Clean-burning stoves: benefits for health and air quality as well as climate

This image has been removed due to copyright restrictions. Please see the image on page <u>http://www.zomppa.com/wp-content/uploads/2012/02/Global-Alliance-for-Clean-Cookst</u> <u>oves-Poster-2.jpg</u>

> This image has been removed due to copyright restrictions. Please see the image on page <u>http://www.rockflower.org/v</u> /vspfiles/assets/images/dfstove3.jpg

'Methane Only': Technical measures for methane emissions

- 1. Extended recovery of **coal mine** gas
- 2. Extended recovery and flaring (instead of venting) of associated gas from **production of crude oil and natural gas**
- 3. Reduced **gas leakage** at compressor stations in long-distance gas transmission pipelines
- 4. Separation and treatment of biodegradable **municipal waste** through recycling, composting and anaerobic digestion
- 5. Upgrading primary **wastewater treatment** to secondary/tertiary treatment with gas recovery and overflow control
- 6. Control of methane emissions from **livestock**, mainly through farm-scale **anaerobic digestion** of manure from cattle and pigs with liquid manure management
- 7. Intermittent aeration of continuously flooded rice paddies

'BC Tech': Technical measures for black carbon

- Replacing traditional coke ovens with modern recovery ovens, including the improvement of end-of-pipe abatement measures (in developing countries)
- 2. Replacing **traditional brick kilns** with vertical shaft kilns and Hoffman kilns where considered feasible (in developing countries)
- 3. Diesel particle filters for road vehicles and off-road mobile sources (excluding shipping)
- 4. Particle control at **stationary engines**
- 5. Improved stoves in developing countries in residential sector

Let's discuss...

This image has been removed due to copyright restrictions. Please see the image on page http://www.thebreakthrough .org/blog/wedges.JPG MIT OpenCourseWare http://ocw.mit.edu

12.340 Global Warming Science Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.