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Prof. Peter Stone


Section 4: Water Vapor Budget 

Water Vapor Distribution 

First let us look at the distribution of specific humidity, q. The seasonal mean

distributions of [ q ] in g/kg, are given in Figure 12.4a of Peixoto and Oort (1992). We

note:

1) ρH2O / ρair , i.e., the mass mixing ratio, ranges from ~ 10-2 in low latitudes near the


ground to ~ 10-3 at high latitudes or high altitudes.

2) The distribution closely resembles that of [T], because q is strongly controlled by the

Clausius-Clapeyron Equation:
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Therefore, for example, if we let T = T + T', and assume T' ! T, and choose T = mean 
surface temperature = 288 oK, then 
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∴ a T'  of ±11o C ⇒  a doubling or halving of qs, and the temperature variations are 
much more important than p variations. This constrains q to fall off rapidly with height 
and latitude. 
3) The scale height of q is ~ 250 mb ~ 2.5 km near the ground. E.g., if T' = −Γz  with 
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q falls off more rapidly than qs, because the relative humidity (r = q/qs) decreases with 
height. (See Figures 16 and 17 in Lorenz (1967)). It is near 80% at the surface and near 
40% at 500 mb. However, the qs change with height dominates the change in q. 

More generally, looking at these same figures, we note 
1) r < 1 . 
2) seasonal changes in r are ! changes in q, because of the Clausius-Clapeyron 

equation. (Simple climate models often approximate r = constant.) 
3) r is a minimum in the subtropics. 

The seasonal changes are illustrated in Figure 12.4a of Peixoto and Oort (1992). The 
seasonal changes are a maximum in mid and high latitudes, because the T changes are 
largest there, and are a maximum near the ground, since the moisture content is a 
maximum there. The maximum seasonal excursions are ~ ±3 g / kg -- e.g., at 40N, 1000 
mb; q ranges from ~ 5 g / kg in January to ~ 11 g / kg in July. 

Peixoto and Oort (1983) have looked at longitudinal variations in q. The longitudinal 
variations are smaller than the latitudinal variations (~ 1/3 as large) so q does tend to be 
zonal. The zonal variations are primarily associated with the deserts. The largest anomaly 
is over the Sahara, where q is about 60% of the mean zonal value at the same latitudes 
( q *min ≅ 0.6[q] ). 

Equations and Definitions 

Let ρ = density of air, q = specific humidity (grams of water vapor per kilogram of air). 
Then the conservation law for water vapor is

∂ !(ρq) + ∇ ⋅ ρqv = −C + F

∂t q ,


where F = ∇ ⋅ ρD∇q ≅ ∂ (ρD 
∂q) .q ∂z ∂z 

Fq represents molecular diffusion, and C = the net local condensation rate per unit 
volume, i.e., condensation minus evaporation. Because of mass conservation, 

∂ρ !+ ∇ ⋅ (ρv) = 0, 
∂t 

we can rewrite the conservation equation as 
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∂q + v 
! ⋅ ∇q = 

dq = − 
C Fq ;+ 

∂t dt ρ ρ 

now it is convenient to use pressure coordinates: 

∂u ∂v ∂ω since + + = 0, 
∂x ∂y ∂p 

we have ∂q + 
∂ (uq) + 

∂ (vq) + 
∂ (ωq) = − 

C + 
Fq . 

∂t ∂x ∂y ∂p ρ ρ 

Now we consider the balance averaged over t: 

∂q q(T) − q(0) .= 
∂t T 

We can neglect this for an annual mean because of periodicity (neglecting climate 

change, q(T) = q(0)) or for a seasonal extreme, where by definition ∂q = 0.  For other 
∂t 

situations we can neglect this term if, for example, it is small compared to the advective 
term, e.g., the meridional flux term: 

∂ (vq) ~ 
| v || q | ;

∂y Ly 

(N.B., the eddy flux dominates the total transport.) Taking v ~ 10 m/s, Ly ~ 3000 km, 

we can neglect ∂q / ∂t  if T ! 
Ly 3000 km ~ 3×105 sec ~ 4 days.  E.g., even for an~ 
v 10 m / s 

equinox monthly average it can be neglected as a first approximation. 

If we now also average zonally and apply the condition of periodicity, and integrate 
vertically from [p] = p  to p = 0, and apply the boundary condition that ω = 0 on p = 0,s

we obtain: 

ps ps 

[ ∫ ∂
∂ 

y
(vq)dp] − [ω q ] = −[ ∫ (C 

ρ
− 
F
ρ 
q )dp]. s s


0 0


We further approximate that the storage of water in liquid or solid form in a unit column 
is very small compared to the rate of precipitation, P, or evaporation, E, at the surface per 
unit area. Typical values for the storage of water in a column of the atmosphere are ~ 0.2 
g/cm2 which equals ~ 0.2 cm of precipitable water. For comparison, typical values of P 
and E are ~100 cm/yr ~ 0.3 cm/day. Thus atmospheric storage can be neglected for 
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averaging periods long compared to one day. We also neglect the time mean horizontal 
variations of ps (~ 3% error). If we invoke hydrostatic equilibrium, we can integrate the 
diffusion term: 

ps

q
dp = g ∫ F dz = −gE. ∫ F

0 

ρ 
q

0 ps 

And by definition, if water storage in the atmosphere is negligible, then the net 
condensation term when integrated just gives us the precipitation: 

p

∫ 
s C surface


dp = −g ∫ Cdz = gP.

ρ0 ∞ 

Therefore our balance equation reduces to 

∂ p

∫
s 

[vq] dp = g[E − P]. 
∂y 0 

This states that the net divergence of water vapor from a unit column must be balanced 
by a net excess of evaporation over precipitation at the surface as illustrated in the 
diagram.

 p = 0 

[vq]dp ∫ [vq]dp ∫

 E p
 p = ps 

It is valid for annual mean states, seasonal extremes, and other averaging periods T ! 4 
days, i.e., T > 1 month. 

Annual Balance in Latitude belts 

(i) Transports 

First we look at the transports. Using our earlier formalism, we can break[vq] into 3 
contributions: 
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[vq] = [v][q]+ [v * q*]+ [v'q '] 
total = MMC +    SE +   TE  . 

Peixoto and Oort (1983) give the vertically averaged contributions to[vq]calculated from 
5/63 – 4/73 (10 years). The integration was from 1000 to 250 mb, and the analysis was 
for 7-levels: 1000, 950, 900, 850, 700, 500, and 300 mb. (The vertical distributions are 
trivial – they all peak in the lowest 100 mb of the atmosphere, near the top of the 
planetary boundary layer, and fall off rapidly above that because of the Clausius-
Clapeyron equation.) The following table gives Peixoto and Oort’s results for the 

mean[vq] , i.e., 1 p

∫
s 

[vq]  dp,  in (m/sec) (g/kg) – i.e., multiply by 10-1 to get cgs units. 
ps 0 

Annual Mean Moisture Fluxes in Atmosphere

Units: (m/sec) (g/kg)


10S 0 10N 20N 30N 40N 50N 60N 70N 
[v][q] 1.9 .8 -2.0 -1.1 .4 .4 .3 0 -.1 
[v * q*] -.1 -.1 0 .4 .3 .1 .1 .1 0 
[v'q '] -.5 0 .5 .8 1.3 1.5 1.3 .9 .5 
total 1.3 .8 -1.5 0 2.0 2.0 1.7 1.0 .4 

We see that the MMC dominates in low latitudes, TE’s dominate in high latitudes, and 
SE’s only give a minor contribution. The directions of the MMC and TE transports are 
easy to understand. Since q is concentrated near the ground, the MMC transports are 
dominated by the lower branches of the cells, and we have an equatorward transport by 
the Hadley cells, a much smaller poleward transport by the Ferrel cell, and an even 
smaller equatorward transport by the polar cell. The transient eddies are generally 
associated with warm air moving poleward and cold air moving equatorward. Since the 
warm air tends to be more moist (the Clausius-Clapeyron relation), the TE’s have a net 
poleward transport of moisture. 

To look at the balance, we have to compute the divergence of the above fluxes, which in 
spherical coordinates are equal to 

1 
⎤φ+ 

2 
Δφ ps1 ⎡

⎢cosφ ∫ [vq] dp⎥ 
cosφΔy ⎣ 0 ⎦φ− 

1 Δφ 
2 

where Δy is the distance corresponding to Δφ , Δy = a Δφ . If we divide by g and express in 
cm/year, then we can compare directly with[E − P] in cm/year. This comparison has been 
done by Peixoto (1972). However, he only computed[vq]from data from one year (1958, 
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the IGY) from about 450 stations (mostly in the Northern Hemisphere), and mostly from 
4 pressure levels (1000, 850, 700, and 500 mb – note, this is not bad for q statistics). Thus 
we will supplement his values for the divergence of[vq]with the divergence calculated 
from Peixoto and Oort’s 1983 data set, which is much more complete. 

(ii) Precipitation 

The P and E figures we will take from Baumgartner and Reichel (1976), which is a 
synthesis of many different analyses. In general the precipitation data is from historical 
data, and is subject to one great uncertainty: good P data over the oceans are lacking. 
Ocean precipitation rates are taken primarily from coastal and island observing stations. 
Analyses of precipitation measurements from ships show substantial local differences: for 
example, in the north Atlantic, where there are many ship observations, rates ~ 30% less 
have been found. Of course errors in zonal averages will be much less. A possible source 
of error in the ocean precipitation rates is that there may be systematic differences in 
rainfall over land and ocean – e.g., it may be greater over land because of the stronger 
diurnal heating. Thus coastal and island precipitation rates may not be typical of the 
oceans. Another source of error is the high degree of local variability in precipitation 
rates: rates measured show very little correlation when the station separation is >! 100 km. 
Therefore even over land measured precipitation rates may not give good mean values 
characteristic of area averages. 

There have been more modern attempts to create precipitation climatologies. However 
they are also problematic. In the case of re-analyses, so far precipitation is not one of the 
assimilated data fields, so the precipitation is determined by the model. Thus the analysis 
at any given time has precipitation produced by the model in its forecast from the 
previous analysis time, usually 6 hours earlier. The model’s precipitation is dependent on 
sub-grid scale parameterizations which are very uncertain. That they are problematic is 
seen in Figure 2 in Andersson et al. (2005). The analyzed P (at t = 0) is too large, as one 
can tell from Figure 2a which shows that one day later the tropical atmosphere has too 
low a relative humidity. As the forecast continues the precipitation decreases (Figure 2c), 
but the relative humidity does not improve (Figure 2b). Thus the precipitation rates are 
not acceptable. Note that the excess precipitation in the analysis gives a Hadley cell 1 day 
later (Figure 2d) which is stronger than the analysis, another indication that the analysis P 
is too strong. 

Because of the problems with the re-analyses, another approach has been taken, i.e., 
using satellite data to infer precipitation. (See Adler et al. 2003). Primarily microwave 
and infra-red emissions are used, but the algorithms that are used to convert this data to 
precipitation must be calibrated against ground-based radar and rain-gauge 
measurements. The main advantage of this approach is that it gives continuous global 
coverage. This approach has been used by the Global Precipitation Climatology Project 

1 o 1 o 

(GPCP) to produce monthly mean precipitation data on a 2 × 2 grid. Figure 14 in
2 2 

Adler et al. (2003) shows a comparison of the GPCP output with local rain-gauge 
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measurements. The large scatter tells us that at best this approach can only be used for 
long term means. But even then, there is still a bias as indicated. 

Figure by MIT OCW. 

The above figure compares the GPCP product for annual mean zonal mean precipitation 
with earlier (ground-based) analyses like those used by Peixoto and Oort. We have 
superimposed the Baumgartner and Reichel (1975) Northern Hemisphere values on the 
Adler et al. plot. We see that there is no appreciable difference. 

(iii) Evaporation 

The situation with regard to E is even worse. Very few direct measurements of 
evaporation are available, and these are nowhere near sufficient for establishing 
climatological means. Therefore E must be calculated. Over land E is calculated as the 
residual between P and run-off. (Storage can be neglected for annual means.) Run-off is 
calculated from the volume of river and stream flows, etc, and has its own uncertainties. 
The method used over oceans is to calculate E locally from the formula 

E = ρcu(q − q) = ρcuq (1− r) s s 
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whereρ is the density of air, qs is the saturation vapor pressure at the ocean temperature, 
and q and u are the observed (mean) humidity and wind speed at a standard level above 
the ground – e.g., 10 meters, or the level of ship observations. c is a phenomenological 
coefficient. In recent decades c has been determined from field experiments, by fitting the 
formula for E to actual measurements of E. This yields a mean value

c ≅ 1.2 ×10−3 ±10% . 

The main source of error in calculating E from the formula is that c is not a constant – 
e.g., under calm conditions (u → 0) c becomes very large, i.e., E ≠ 0. When the formula is 
applied to climatological data, another source of error is the lack of good data for u. 
Variations in u occur on very small spatial and time scales and are generally not 
accurately measured. [E] errors, like those in [P], are probably ~ 25%. 

(iv) The Balance 

The table below summarizes the values of P, E, and the dynamical flux divergences in 
cm/year for various latitude belts. 

Annual Mean Moisture Balance in the Atmosphere

Unit: cm/year


0-10N 10-20N 20-30N 30-40N 40-50N 50-60N 60-70N 
[E]1 125 128 111 97 64 45 28 
[P]1 189 112 68 76 87 84 51 

[E − P]1 -64 16 43 21 -23 -39 -23 
div ! vq 2 -48 32 44 -2 -16 -25 -23 
div ! vq 3 -75 30 48 26 -27 -36 -19 

Sources: 
1. Baumgartner and Reichel, 1975, 
2. Peixoto and Oort, 1983, 
3. Peixoto, 1972. 

In checking the balance, we see that there is another source of error: E – P represents the 
difference between two noisy fields, and thus is even noisier. For example, if we take the 
errors in P and E to be 10%, and random, then between 30 and 40N the error in P is ± 10, 
in E ± 8, and in [E − P] ± 13. Therefore the disagreement with div ! vq  from Peixoto and 
Oort is only two times the probable error. In light of these errors the agreement with the 
dynamical divergences is satisfactory. In fact the estimate of [E − P]  obtained from the 
dynamical data is probably the most accurate one. The differences between Peixoto’s 
earlier and Peixoto and Oort’s later results are probably due to the small size of Peixoto’s 
earlier data sample. 
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The above Table reveals the dominant features of the hydrological cycle, which can be 
diagrammed as follows:

 Hadley Cell Transport Transient Eddy Transport

 net precipitation net evaporation net precipitation

 tropics sub-tropics mid and high latitudes 

The return flows below the surface necessary to complete the cycle are of course 
accomplished by rivers, ocean currents, and subterranean run-off. The dynamical 
transports explain why the relative humidity is a minimum in the subtropics (see Figures 
16 and 17 in Lorenz (1967)). 
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