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Section 9: Numerical Models 

Phillips Numerical Experiment: We are going to discuss Phillips’ (1956) original 
numerical experiment in some detail. This initial experiment did not use the primitive 
equations, but made a number of analytical approximations so as to make the problem 
tractable for mid 1950’s computers. He used the Boussinesq approximation, in which 
thermodynamical inhomogeneities are neglected except in the buoyancy term, and he 
used the β-plane approximation, in which all curvature effects are neglected except for a 
linearization of the variations in the coriolis term, 

ƒ = 2Ωsinθ ≅ ƒo + βy 

owhere y is the meridional coordinate, ƒo = 2Ωsinθ o , β = 
2Ωcosθ 

, θ o = some typical
R 

mid-latitude, Ω  = rate of rotation, R = radius of earth. (This also neglects the vertical 
component of the rotation vector.) In addition, he assumed hydrostatic equilibrium, an 
approximation which is still used in General Circulation Models (GCMs) (although the 
first two approximations are not). We will take these approximations as granted. 

Also he assumed quasi-geostrophic motion, i.e., 

c 
ƒo L 

, with a Burger Number, µ = O 1( ) , where0 < Ro ! 1 , Ro = 

αgH2 ∂Θ 

N2H2 ∂z ∂Θ ∂Θ 
µ = 

ƒ 2 L2 ƒ 2 L2 , ΔT = typical vertical θ variation ~ H 
∂z

, 
∂z 

= the basic state= 
o o 

stratification. 

H L
In non-dimensional form the equations are (scale u, v by c; w by Ro c ; t by ; x,y by

L c 
L; z by H; θ by RoΔT ; p by αρ ogHΔTRo , where p is the deviation from the static 
pressure) 

∂π ∂π ∂π 
u = −µ , = θ ,

∂y
, v = µ 

∂x ∂z 
∂θ ∂θ ∂θ ∂

+ u + v + w = Q ,
∂t ∂x ∂y ∂z 

where θ  is the potential temperature perturbation = Θ − Θ , and π  is the hydrodynamic 
Exner Function; and 
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∂w ∂ ⎛ ∂v ∂v ∂v ⎞ ∂ ⎛ ∂u ∂u ∂u ⎞ 
∂z 

= bv + 
∂x ⎝⎜ ∂t 

+ u 
∂x 

+ v 
∂y⎠⎟ 

− 
∂y ⎝⎜ ∂t 

+ u 
∂x 

+ v 
∂y⎠⎟ 

+ F 

βLwhere b = 
ƒo Ro 

, Q is diabatic heating, and F is a friction term. (N.B. we have assumed 

F,Q = O(Ro) .) The w equation can be re-written in terms of the vorticity, ζ , 

∂v ∂u
ς = − :

∂x ∂y 

∂w ∂ς ∂ς ∂ς ∂v ∂v ∂u ∂u ∂v ∂u 
= bv + + u + v +

∂z ∂t ∂x ∂y ∂x ∂y ∂y ∂x ∂y ∂y 
∂u 
∂x 

∂v 
∂x 

+ + − + F 

∂w dς d ∂ ∂ ∂ 
= + u + v∴ = bv + + F , where .

∂z dt dt ∂t ∂x ∂y 

The two level approximation is a further approximation to the above equations, which 
simplifies the vertical variations. For this approximation see Charney and Phillips, 
(1953). 

We divide the atmosphere into layers, as shown in the diagram below, with equal 
1

spacings, Δz = .
4 

1 0 
3/4 1 
1/2 2 
1/4 3 
z = 0 4 

“4” is ground level and “0” the top of the atmosphere. (We are neglecting topography.) 
∂w

Now we evaluate our u, v and equations at levels “1” and “3”. For all terms not
∂z

∂ ∂
involving a ,  this merely means adding a subscript “1” or “3”. The only term is

∂z ∂z 
∂w 

,  and we approximate it by ∂w wo − w2 ;  and ∂w w2 − w4≅ ≅
∂z ∂z z − z2 ∂z z2 − z4 

; 
1 o 3 

However, our boundary conditions are w0 = w4 = 0;  Also since we have used 
1

dimensionless variables, z0 = 1, z2 = , z4 = 0.
2 
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∂w ∂w 
= −2w2,  and∴ = +2w2 . 

∂z ∂z
1 3 

∴ we obtain the following equations for levels 1 and 3: 
(N.B. we are taking µ = constant, but we could allow it to have different values at 
different levels.) 

∂π1 ; v3 = µ 
∂π3 ; u1 = −µ 

∂π1 ; u3 = −µ 
∂π3 ;v1 = µ 

∂x ∂x ∂y ∂y 

⎛ dζ⎞ 
⎝⎜ dt ⎠⎟ 

+ bv1,  and−2w2 = 
1 

⎛ dζ⎞ 
+2w2 = 

⎝⎜ dt ⎠⎟ 
+ bv3  . 
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Finally we evaluate our energy and H.E. equations at level 2: 

θ2 = 
∂π π1 − π3 = 2(π1 − π3 );  Also ∂θ 

=  specified constant, and we chose≅

∂z

2 
z3 − z1 ∂z

2


∂θ ∂Θ ∂Θ 
= 1 , i.e., ΔT = H . Thus we have= H

∂z ∂z ∂z
2 2 

⎛ ∂ ∂ ∂ ⎞
⎠⎟ 

(π1 − π3 ) + w2 = Q2 .2 
⎝⎜ ∂t 

+ u2 ∂x 
+ v2 ∂y 

Now we have 7 equations, but 9 unknowns: u1,u2 ,u3,v1,v2 ,v3,π1,π3,  and w2 . (We can 

find θ2  from the H.E. equation, θ = 2(π1 − π ) .) To get around this difficulty we make2 3 

the simple approximations 
1 1 

u2 = 
2 (u1 + u3 ), v2 = 

2 (v1 + v3 ) . 

Thus the two-level model is nothing but a crude two-point numerical integration of the 
equations with respect to z. Consequently, there would not have been much point to 
using the more accurate quasi-Boussinesq equations, since they would differ only in the 

∂π 
presence of a coefficient depending on z in the = θ  equation.

∂z 

Also, note that we could not have avoided introducing some such approximations as the 
above ones for u2  and v2  by adding the equations evaluated at different levels, because 
there are always more unknowns than equations, and we can only obtain a determinate 
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set by introducing some arbitrary relations like those above. Also note that if we had not 
used the geostrophic approximation, the 7 equations used above would not have been 
determinate, even with the two assumed relations for u2  and v2 . Thus the two-level 
model is simplest and most useful when we make the quasi-geostrophic approximation. 

To analyze his experiment, Phillips looked at the energy cycle. For a quasi-geostrophic 
two-level model the conversions and energies are: 

1 2 2
KM 2 

+ dy= ∫ (⎡⎣u1 ⎤⎦ ⎡⎣u3 ⎤⎦ ) 
1

KE = ∫ ⎡⎣u1 *
2 +v1 *

2 +u3 *
2 +v3 *

2 ⎤⎦dy
2 

PM = 2µ∫ ⎡⎣π1 − π3 ⎤⎦ 
2
dy 

PE = 2µ∫ ⎣⎢
⎡(π1 * −π3 *)2 

⎦⎥
⎤dy 

C PM ,KM ) = 2µ − π3 dy( ∫ ⎡⎣w2 ⎤⎦ ⎡⎣π1 ⎤⎦ 

C K ,K u u * v * u u * v * dy( E M ) = −∫ ⎝⎜
⎛
⎡⎣ 1 ⎤⎦ ∂

∂ 

y 
⎡⎣ 1 1 ⎤⎦ + ⎡⎣ 3 ⎤⎦ ∂

∂ 

y 
⎡⎣ 3 3 ⎤⎦⎠⎟

⎞ 

C P( E ,KE ) = 2µ∫ ⎡⎣w2 * (π1 * −π3 *)⎤⎦dy 

C P( M ,PE ) = 4µ∫ ⎡⎣π1 − π3 ⎤⎦ ∂
∂ 

y 
⎡⎣v2 * (π1 * −π3 *)⎤⎦dy 

Note that in this simple model there are very simple relations between the conversions 
and the total eddy fluxes in the space domain. 

Phillips used the above equations as the basis for a numerical integration to see if he 
could simulate the general circulation of the atmosphere. This calculation is particularly 
interesting because the manner in which he carried it out, and the analysis of the 
energetics, give us a possible way of explaining the general circulation in terms of cause 
and effect. 

Since he was going to include finite amplitude effects, he was interested in time scales 
longer than those appropriate to an adiabatic model, which in general is only valid for t ~ 
3 days. Thus he had to include dissipative effects, which are not important over periods 
of a few days, but, being cumulative, are important over periods of a few weeks. 

For example, as Jeffries showed, the atmospheric zonal winds, if not maintained by 
eddies, would be dissipated in t ~ 12 days; and changes due to radiative exchange are ~ 
2°/day, which, being cumulative, will lead to temperature changes comparable to changes 
due to advection, which are ~20°/day, in t ~ 10 days. Consequently in the vorticity 
equations, Phillips represented the dissipation by 
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⎛ ∂2 ∂2 ⎞ ∂2ζ
F = A n v ⎝⎜ ∂x2 + 

∂y2 ⎠⎟
ζ n + ν

∂z2 
n 

For Av he used the empirical estimate Av ~ 109 cm2 
. However in a two layer modelsec 

∂
it is not possible to evaluate a term, and ∴he did the following: he assumed that

∂z2

most of the vertical stress occurred near the ground, and could be assumed proportional 
to the magnitude of the velocity at the ground: 

∂2ζ ∂2ζ
Thus ν ≅ 0,  and ν = −kζ4 .


∂z2 ∂z2


1 3 

3 1
ζ4  was determined by linear extrapolation from layers 1 and 3, i.e., ζ4 = ζ3 − ζ1 .

2 2 
Phillips chose k = 4x10−6s−1 , i.e. a damping time of about 3 days. 

In the energy equation, he included a similar diffusion term, 

+ = 2A + − πQ = Av ⎝⎜
⎛ 
∂
∂
x

2

2 ∂
∂
y

2

2 ⎠⎟
⎞ 
θ2 v ⎝⎜

⎛ 
∂
∂
x

2

2 ∂
∂
y

2

2 ⎠⎟
⎞ (π1 3 ) 

(i.e. he neglected vertical diffusion) with AT = Av, and a radiation term, 
H

Q = − 
Cp 

y
2yo 

where y is a meridional coordinate with y = −yo  being the equator, y = +yo  being the 

pole, and H is the mean heating for −yo < y < +yo . The value of H and the linear 
dependence on y are chosen so as to give a crude approximation to the observed radiative 
heating and cooling rates in the atmosphere. Phillips took H = 2 joules/103kg/sec. The 
addition of these terms means that there are now also generation and dissipation terms in 
the energy equations. 

Note that both the radiative heating and the vertical lapse rate of the model are specified a 
priori. These quantities are actually dependent themselves on the resulting motions, so 
that by specifying them to have observed values Phillips is really making a consistency 
calculation to see what circulations arise under these specified conditions. Note that 
condensation and the hydrological cycle are omitted. 

Phillips then integrated these equations in time, numerically, over the rectangular region 
0 < x < L, −yo < y < yo . As boundary conditions, he required periodicity in x – i.e. 

ƒ L ( )  etc. The equations are 10th order in y, and Phillips broke them up into [ ]( ) = ƒ 0
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and ( )* equations so that they became 20th order. ∴ 5 boundary conditions, applied at 
y = ±yo , and at levels 1 and 3, are sufficient. v = 0 ⇒  v* = 0, [v] = 0 are two of them. 

∂ π
In addition Phillips specified [u] = 0 (which implies 

⎡⎣ ⎤⎦ = 0 ) so there is no forcing of
∂y 

[u] at the boundaries. Finally he specified 
∂u * 

= 
∂2 ⎡⎣u⎤⎦ = 0 . These last two are

∂y ∂y2 

arbitrary, but we note that that they are fairly weak boundary conditions, not unlike the 
observed u’s in the atmosphere. A grid of 17(y) x 16(x) points was used. L was taken = 
6000km, so eddies larger than this could not develop, and yo = 5000km so 

2yo = 10000km =  equator to pole distance. 

Since the coefficients of the equations are independent of x, if the initial conditions are 
independent of x, no x dependence will develop – i.e. no eddies. Thus perturbations are 
necessary to give rise to the eddies (characteristic of instability problems). Therefore 
Phillips carried out the time integration in two steps. First he started with an isothermal 
atmosphere at rest and a time step Δt = 1day. As a result no eddies formed and a 
symmetric Hadley cell developed, which reached quasi-equilibrium after 130 days (see 
figures). This circulation is presumably the circulation that the atmosphere would have 
on a β − plane if we could “filter” out the eddies. (Realistically the heating function Q 
would also change if the eddies are removed.) Note however that on a sphere momentum 
conservation would limit how far the Hadley Cell would penetrate into high latitudes. 

Figure by MIT OCW. 

This circulation is qualitatively what one expects for a simple sideways convection 
problem, with zonal motions created by the coriolis force. In this regime at t = 130 days, 

the energy conversions, in units of W
m2 , are G PM ) = 5.3, D PM ) = 0.6, ( ( 
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C P ,K ) = 0.05 , D K ) = −0.02.  Thus the system is not in a true equilibrium. The( M M ( M 

unegative dissipation of KM  is because the extrapolated surface wind ( )  is negative,4

analogous to the surface easterlies accompanying the Hadley Cell in low latitudes in the 
real atmosphere. Warm air rising in low latitudes and cool air sinking in high latitudes is 
creating KM  from PM , and the motions are predominantly zonal because of the coriolis 
force. 

For the second step, at t = 130 days, Phillips introduced a random (non-symmetric) 
perturbation. 

Figure by MIT OCW. 

At first KE decreased, for 5 days, as dissipation smoothed out the initial perturbation. 
Then a single eddy with wave-length L started to grow, and for the next 20 days the mean 
flow was irregularly perturbed by this eddy. The resulting flow patterns are remarkably 
like weather maps. Strong meridional eddy velocities, a 3 celled mean circulation, and 
surface easterlies and westerlies develop: 

Contours of surface zonal velocity, u0.

Figure by MIT OCW.
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Eventually the integration broke down because of truncation errors, and so the integration 
was stopped after 31 days and the energetics analyzed for the means over days 5-26, the 
eddy period. The results are shown in the diagram below. The generation (QM) and 
dissipation (D) terms are included. 

Figure by MIT OCW. 

The energy units are 105J/m2 and the conversion units are W/m2 ≅ 105J/m2/day. The bar 
denotes the time average. Unfortunately, Phillips’ definitions of these terms differs from 
what eventually become standard (he averages zonally first, instead of in time first) and 
∴we cannot compare directly with observations. Nevertheless we can see that the 
qualitative behavior is similar to the real atmosphere (note that the energy conversions in 
a 2 level model are less ambiguous than in a P.E. model), i.e. 

1) Diabatic radiative heating generates PM ; 
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2) Warm air moving north and cold air south (a net eddy heat transport northward) 
generates PE  from PM ; 

3) Warm air rising and cold air sinking in zonal planes generates KE  from PE ; 
∂u

4) Eddy transport of momentum into the jet ( u * v *  correlated with ) generates
∂y 

KM  from KE ;

5) Warm air sinking and cold air rising in meridional planes (the Ferrel cell)


generates a small amount of PM  from KM .


Phillips repeated the experiment with Av = 0 . The qualitative behavior was unchanged, 
although the integration blew up more rapidly. 

Thus we get one possible interpretation of the general circulation. The Hadley cell we 
expect to be driven by differential heating is baroclinically unstable to asymmetric 
perturbations (which are always present due to topography, etc.) and the asymmetric 
eddies which arise supply the conversions outlined above. The conversions also show 
vacillations. Comparing the eddy regime with the Hadley regime, we see that KM  has 
been increased, and of course the total K, KM + KE , is increased even more since KE = 0 
in the Hadley regime. Since PM  has hardly changed, we see that the “efficiency” of the 
eddy regime at generating kinetic energy is almost twice as great, which is not surprising 
since it has more degrees of freedom. Also we see that the direction of the C P ,K( M M ) 
conversion has been reversed – i.e., the Ferrel cell heat transport downward exceeds the 
upward transport by the two direct cells in low and high latitudes in the eddy regime. 
This seems to agree with atmospheric observations (see Oort & Peixoto, 1974), although 
this conversion is particularly difficult to measure. 

Solomon and Stone model (2001): Solomon and Stone used a model more sophisticated 
than Phillips’, but still quite simplified compared to a GCM, to look at the equilibration 
problem which Phillips was not able to address. Their model was also a quasi-
geostrophic β -plane model, but it has much higher resolution in the vertical – 17 levels, 
16 layers with Δp = 62.5mb  -- and also it relaxed the quasi-geostrophic assumption of 
fixed static stability and calculated it interactively. Based on the Stone and Nemet (1996) 
analysis, these changes are important to resolve the different regimes in the vertical, and 
to get the baroclinic adjustment due to the vertical eddy heat flux. The equation they 
solved for the mean static stability, θ s p( )  in quasi-geostrophic notation, was 

! o 

∂
∂ 

t 
θ = − 

∂
∂ 

p (w*θ* ) + 
⎝⎜
⎛ p

p ⎠⎟
⎞ 

k 

c
Q"

p

 ,s 
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where ( ) *θ*  is no!  is a horizontal average over the whole domain as before. Thus w 
! ⎡!longer neglected. Note that θ = θ! + θ ' , w! = 0  and w 'θ ' = ⎣⎢w

*θ* ⎤
⎦⎥ . The model is dry. 

They also used drag laws for the surface fluxes of SH and momentum, and included the 
following eddy heat and momentum viscosities in the boundary layer: 

3
⎛
 ⎞
p 

po 

2m , p = surface pressure.sec o ν = κ = 5
⎜⎝
 ⎟⎠


Also a high order friction is included, F = ν∇6u ! , to remove enstrophy at small scales. 

Radiative heating/cooling is simply represented by a Newtonian cooling law, 

θ − θ 
Q = e , τ = 40 days,

τ 
θ = θ ( ) + θ y  chosen such thatp ( ) , with θ e ve he ve

= 
⎧
⎪
⎨ 

⎫
⎪
⎬


K
∂T
 -7.0
 , in troposphere e km ,

∂z ⎪⎩
 ⎪⎭
0,  in stratosphere (top 4 layers) 

and with L = channel width = 10,000 km, and a domain of 0 ≤ y ≤ L,  in the troposphere 
they chose 

y − 
L 
2 

L 
2

 for 
L 3L 
≤ y ≤θ = −21.5K sin π , and constant elsewhere. This distribution ishe 4
 4


illustrated below. 

Figure by MIT OCW. 
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The specified surface temperature is equal to θ e  at z = 0. The meridional gradients in the 
stratosphere are positive and one tenth as strong. The channel is cyclic and 21,040km 
long. The resolution is ~300km in x,y. 

∂T
In true R.E. e would approximately equal –10K/km in mid-latitudes, and –7K/km is

∂z
meant to include the effect of some moist convection. 

A standard model run is carried out with parameter choices appropriate to mid-latitude 
northern winter. It was conducted in a fashion similar to Phillips’ experiment. The 
symmetric state is allowed to develop for 20 days. After 20 days a 3D perturbation with 
zonal wave numbers 1-9 is introduced. Fig. 8 in Solomon and Stone (2001) shows the 
evolution of the perturbation potential vorticity in all zonal wave numbers after the 
perturbation was introduced. We see initial exponential growth in a variety of wave 
numbers, i.e. instability, with wave number 6 growing most rapidly, followed by wave 
number 5. Eventually they saturate, and there is a fluctuating equilibrium in which wave 
numbers 4 and 5 dominate (note the logarithmic scale). 

Fig. 5 in Solomon and Stone (2001) shows the evolution of the meridional gradient of the 
potential vorticity, in units of β . Recall that q is a quasi-conserved quantity, i.e., if 
Q = F = 0 , q acts like a tracer, and any mixing would be expected to eliminate gradients 

⎧
⎨
⎩ 

in q, i.e., the instabilities will mix q. Also note that in the initial symmetric state in the 
∂θ 

boundary layer the turbulent mixing implies ~ 0 , while in the troposphere we have a
∂z 

statically stable radiative-convective equilibrium (RCE). With ⎡⎣u⎤⎦yy
 neglected, we have: 

ƒ 2 ∂⎡⎣u⎤⎦ 
= β 1+

⎧⎪β 1⎨= 
s 

⎫⎪
⎬


⎫
⎬
⎭
ρ 

1
−

⎪⎩

∂
 h ∂h ∂z( )
 o 
hρ −
 , where h = , and h is proportional toq

βN2∂z H
 ∂zy s ⎪⎭

the slope of isentropes. h decreases with height in the lower troposphere and then levels 
off. Thus the third term is positive, and ∴qy  is generally positive in the symmetric state. 
The symmetric state is still evolving when the eddies are introduced and the effect of the 
eddies only becomes apparent after about day 12. Since qy > 0 , the only source for 
instability is the temperature gradient at the ground, thus the initial instabilities are 
classical baroclinic instabilities with n = 6 dominating. Furthermore we see that they do 
mix q, and virtually eliminate qy  in the lower troposphere, i.e., near the steering level, 
where the amplitude of the eigenmodes is largest. Both the meridional and vertical eddy 
heat fluxes make important contribution to this homogenization. 

But what happens in the equilibrated state? Fig. 3 in Solomon and Stone (2001) shows 
how the static stability and meridional temperature gradients are changed from the RC 
equilibrium state by the eddies, along with observations. Qualitatively the changes are 
realistic. Both the vertical and meridional eddy heat fluxes are dominated by wave 5. 
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But how is wave 5 maintained? Stability analysis shows that the zonal mean equilibrated 
state is stable. However stability analysis of the individual waves show that wave 4 when 
it has large amplitude, is unstable, with the instability being dominated by wave 6. 
However this wave saturates at low amplitude (see Fig. 12 in Solomon and Stone (2001)) 
and hands its energy off to larger waves, particularly wave 5. The result is a strong 
anti–correlation of waves 4 and 5, as shown in the same figure. 

Note that this model is still very simple compared to the real world. However, it 
illustrates that how equilibrium is maintained may not involve classical baroclinic 
instabilities. 

Evaluation of Atmospheric GCMs: 

The primary limitation of the models is that there are important small scale processes that 
cannot be spatially resolved even with the fastest computers available, and thus they must 
be parameterized. In particular, there is no agreement on what constitutes a proper 
representation of moist convection and clouds, and virtually every GCM uses different 
approximations. The result is that the models differ substantially in their simulations of 
the atmospheric heat balance. 

For example, Figure 1 in Gleckler (2005, Geophys. Res. Lett., 32, L15708) shows the 
wide range of performance of different GCMs that participated in the Atmospheric Model 
Intercomparison Project (AMIP), both AMIP I and AMIP II. All the models are 
integrated for 10 years with the lower boundary conditions over the oceans (sea-surface 
temperatures and sea-ice distributions) specified from observations (1979-1988). The 10 
year average surface heat fluxes between atmosphere and oceans were then used to 
calculate the implied ocean northward heat transport, as in Trenberth and Caron (2001). 
As shown in Figure 1 of Gleckler (2005), the results are rather poor. For example, the 
average peak poleward ocean heat transport in the Southern Hemisphere was ~0.2 to 0.3 
PW in both AMIP I and AMIP II, whereas observational analyses indicate it should be 
~1.5 PW. Note that there was virtually no improvement from AMIP I to AMIP II, in 
spite of about 10 years of effort to improve the models. 

Fig. 3 in Stone and Risbey (1990, GRL, 17, 2173) illustrates the dependence of model 
vertical heat fluxes on sub-grid scale parameterizations. Changing the moist convection 
scheme changes the large scale (resolved) vertical heat flux by 50%. 

In light of the above, it is not surprising that when many Atmospheric GCMs are coupled 
to an ocean GCM they cannot simulate the current climate. Typically the ocean 
circulation collapses, the tropics warm up, high latitudes cool off, the North Atlantic is 
filled with sea-ice, etc. To get around this many modelers use flux adjustments. First the 
Atmospheric and Ocean GCMs are run separately with the surface T’s specified from 
observations for the current climate. (In the case of ocean GCMs they are strongly 

Tobserved − T 
withconstrained by using as a surface heat flux boundary condition Hs = 

τ
τ small. Note that this is an incorrect boundary condition since it implies Hs = 0  if the 
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model reproduces the observed surface T.) The atmosphere and ocean models’ 
“required” fluxes are generally different. For example, if 
HA = heat flux into the ocean as simulated by the AGCM, 
and HO = heat flux into the ocean as required by the OGCM, then 

generally ΔH = HO ≠ 0 ; in fact often ΔH = O H ) . Thus when the models are− HA ( A 

coupled, frequently ΔH  is added to HA  before the heat flux is put into the ocean, i.e., an 
artificial source (sink) of heat is added at the interface between the atmosphere and 
ocean, so as to force the coupled model to reproduce the current climate. Similar 
procedures are followed for the moisture flux and sometimes for the momentum flux. 
These “adjustments” are then held fixed in climate change experiments. 

The main rational for these adjustments, particularly the adjustments of the heat flux, is 
that two important feedbacks (the water vapor and ice-albedo-temperature feedbacks) are 
sensitive to temperature. Thus these feedbacks will not be simulated accurately unless 
these adjustments are used to force the model to simulate the current climate. However, 
the adjustments do not in general correct the problem which causes the mismatch in the 
fluxes in the first place (Marotzke and Stone, 1995, JPO, 25, 1350). Mismatches in the 
surface heat and moisture fluxes are magnified because there are positive feedbacks 
between the poleward transports in the atmosphere and oceans (Nakamura et al., 1994, J. 
Climate, 7, 1870). Many recent models have simulated surface temperatures that are 
stable enough that they can be run in climate experiments without flux adjustments, but 
they still generally have drifts in the ocean, particularly in salinity – e.g., see Figs. 4c, 4d 
and 5 in Boville and Gent (1998, J. Climate, 11, 1115). 

Different models also give different results in climate change experiments. The 
sensitivity of a climate model is generally described by how much its global mean surface 
temperature increases when the CO2 concentration in the atmosphere doubles and the 
system is allowed to reach equilibrium. The IPCC (2001) quoted a range of climate 
sensitivities of 2 to 5C when atmospheric GCMs are coupled to mixed layer ocean 
models, with no interactive ocean dynamics. The differences are primarily due to 
differences in cloud feedback (see below). 

Fig. 9.3 in IPCC (2001) summarizes results from coupled Atmospheric/Ocean GCMs for 
a 1% per year increase in CO2. Again note the diverse results. The differences are 
caused not only by different climate sensitivities, but also by different rates of mixing of 
heat into the deep ocean. Note the natural variability apparent in the figures. Fig. 3 in 
Forest, et al. (2006, Geophys. Res. Lett., 33, L01705) compares modern coupled GCM 
performances on these two key factors. The rate of heat uptake in the deep ocean is 
measured by the global mean of an effective diffusion coefficient which describes how 
rapidly heat anomalies are mixed below the surface mixed layer by all oceanic processes. 
The heat uptake differs because of differences in parameterization of sub-grid scale 
mixing. The rate of heat uptake differs by more than a factor of two between models. 
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W m2 . 

Analyses of differences in atmospheric model feedbacks: 
(references: Cess et al., 1989, Science, 245, 513-516 and Colman, 2003, Clim. Dyn., 20, 
865-873). 

Let G = climate forcing = −ΔR = change in TOA net radiative flux out of the climate 
system = ΔI − ΔQ 1( − α)  where ΔQ 1( − α)  = change in absorbed short wave flux and 
ΔI = change in emitted long wave radiation. 

If G is small enough that the response is linear, then 
1

ΔTs = λG , and λ = 
ΔI ΔQ 1( − α)

−
ΔT ΔT s s 

Where λ  is the climate sensitivity parameter. For example, if the emissivity and albedo 
are constant, then 
ΔQ 1( − α)

= 0 , ΔI d (εσT4 ) = 3.3 W/m2/K for the current climate, and≅
ΔT ΔT dT s s 

λ ≅ 0.3K (Note that G is positive, i.e., the flux out of the system is increased 

when it is warmer.) 

Cess et al carried out experiments to compare the climate sensitivity for 14 different 
GCMs. They were perpetual July experiments with specified SSTs and sea-ice 
temperatures at the lower boundary (like AMIP). The surface T’s were then changed by 
±2C , and the differences produced in ΔI  and ΔQ 1( − α)  were used to calculate λ . 
(Note that ice albedo-T feedback has been eliminated.) The data was also used to 
calculate λ  using just F and Q averaged for the clear areas. Call this sensitivity λ c . The 
results are shown in Table 2 of Cess et al. (1989). 

We see that there is a large range of values for λ , i.e., very different sensitivities, a range 
1

of about 2 times, as in Fig. 3 From Forest, et al. (2006). However, λ , which
2 c 

presumably is mainly affected by water vapor feedback, is much more consistent (see the 
small standard deviation). In fact, the difference between λ  and λ c  is directly related to 
changes in the cloud forcing: 

CF = R − Rclear ; 

∴ΔCF = R − R = G − G c c 

ΔT ΔT ⎛ 1 1 ⎞ ⎛ λ ⎞ 
= 

λ c

s −
λ 

s = λG 
⎝⎜ λ c 

− 
λ⎠⎟ 

= G 
⎝⎜ λ c 

− 1 
⎠⎟ 
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c 

λ ΔCF 
;  e.g. for a warming, G > 0  and ∴ΔCF > 0 ⇒  an enhanced sensitivity∴ = 1+

λ G 
compared to clear conditions. Recall CF > 0 implies clouds warm, so ΔCF > 0 ⇒ 
enhanced warming, i.e., a positive feedback. Since λ  varies considerably between 
models, whereas λ c  does not, we can conclude that the different model climate 
sensitivities are primarily due to different cloud feedbacks. 

Colman (2003) gives a more up-to-date comparison of model feedbacks, but the 
conclusion is the same. In his analysis, he distinguishes between feedbacks due to 
changes in atmospheric water content, in lapse rates, and in ice/snow cover as well as in 
clouds—see his figure 1. If the changes are small enough, then the feedbacks add 
linearly. The changes in the first two are strongly anti-correlated, and thus are often 
added together and referred to as the total water vapor feedback. (Water content and 
lapse rate are both strongly controlled by the Clausius-Clapeyron equation; thus, when 
the saturated q increases, q increases and the lapse rate decreases, and this accounts for 
the anti-correlation between these two quantities.) The anti-correlation causes the sum of 
the two feedbacks to be robust (see Fig. 1 in Colman, 2003) and thus λ c  is also robust in 
the models. There is substantial variation in the ice-albedo feedback in the models, but 
this feedback is relatively small compared to the total water vapor feedback, and to the 
model-differences in cloud feedback (again see table 1 in Colman, 2003). 
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