
Chapter 2 

From laminar to turbulent flows 

Turbulent flows can often be observed to arise from laminar flows as the Reynolds 
number is increased1 . The transition to tubulence happens because small disturbances 
to the flow are no longer damped by the flow, but begin to grow by taking energy from 
the original laminar flow. This natural process is easily visualized by watching the 
simple stream of water from a faucet (or even a pitcher). Turn the flow on very slow 
(or pour) so the stream is very smooth initially, at least near the outlet. Now slowly 
open the faucet (or pour faster) and observe what happens, first far away, then closer 
to the spout. The surface begins to exhibit waves or ripples which appear to grow 
downstream. In fact, they are growing by extracting energy from the primary flow. 
Eventually they grow enough that the flow breaks into drops. These are capillary 
instabilities arising from surface tension, but regardless of the type of instability, the 
idea is the same –infinitesimal disturbances have grown to disrupt the simplicity of 
the laminar flow. In this lecture we investigate how this transition from laminar to 
turbulent dynamics occurs. 

Laminar flows are solutions of the Navier-Stokes equations in the limit when nonlin
earities can be neglected. This situation corresponds to the Stokes approximation; 
the flow is given by a balance between external forcing (mechanical or thermodynam
ical) and dissipation. The corresponding velocity field is entirely predictable and has 
the same regularity properties as the applied external forces. 

As the Reynolds number is increased, nonlinearities are no longer negligible. There 
is a critical Reynolds number, above which the system bifurcates toward completely 
new solutions. These solutions correspond to breaking of symmetries of the origi
nal flow. For example a steady flow submitted to time independent forcing becomes 
time periodic. Usually the state resulting from a first bifurcation is still very regular. 

1In this lecture Reynolds number is used to identify whatever nondimensional number is appro
priate to characterize the onset of turbulence in the problem at hand. 
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When the Reynolds number is increased even further, the flow that emerged after the 
primary bifurcation can itself become unstable to new modes breaking new symme
tries. The set of bifurcation continues until the global dynamics of the flow becomes 
very complicated, i.e. turbulent. 

The transition from simple to complex behavior is observed in models as simple as 
deterministic maps. Thus in the next section we derive a map based on a loose anal
ogy to the Navier-Stokes equation. A study of solutions of the map will provide an 
introduction to the problem of the onset of complexity and chaos in simple deter
ministic systems. These results will provide an introduction to the problem of onset 
of turbulence. How can irregular and apparently stochastic solutions appear in fluid 
flows that are governed by deterministic equations? 

2.1	 The logistic map as a poor man’s Navier-Stokes 
equation 

Following Frisch we introduce a discrete map that mimics some of the properties of 
the Navier-Stokes equations. A sort of a poor man’s Navier-Stokes equation. We 
begin with the incompressible form of the NavierStokes equations, 

u + F ,	 (2.1) ut + u · �u = −�p + Re−1�2 

� · u = 0.	 (2.2) 

We now express the sloutions in terms of the Fourier representation of u, 

u(x, t) = ai(t)e ik·x .	 (2.3) 
i 

This resulting infinite system of ordinary differential equations (ODEs) for the Fourier 
coefficients is known as a Galerkin projection of the Navier-Stokes equations; e.g., 

ȧi = − Aijkaj ak − Re−1|k|2 ai + Fi. (2.4) 
jk 

Equation (2.4) is simple to understand. Every mode ai represents a component of 
the velocity field with a lengthscale |k|. The velocity field at each lengthscale can 
be changed through nonlinear interaction with other modes, through linear damping 
or through forcing Fi. The nonlinear interaction are quadratic and their strength is 
controlled by the coefficients Aijk. Damping is inversely proportional to the length-
scale and thus it is more efficient for small-scale modes. A detailed derivation of 
equation (2.4) is given in chapter 3 of Salmon’s book. 

In order to keep the problem simple let us remove all but a single arbitrary wave 
mode. This procedure is called a Galerkin truncation. This results in an equation of 
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the form,


ȧ = −Aa2 − Re−1|k|2 a, (2.5) 

i.e. an evolution equation for one mode forced by a quadratic nonlinearity and damp
ing. This derivation is not formally correct. A careful expansion of the Navier-Stokes 
equation would show that a mode cannot interact nonlinearly with itself. In other 
words Aiii = 0. We ignore the issue for the moment. The only justification for 
equation (2.5) is that it has a quadratic nonlinearity and dissipation, much alike 
the Navier-Stokes equation and it might be a useful paradigm to study the onset of 
complex behavior in a simple deterministic system. 

It is straightforward to solve (2.5) numerically. Here we will employ a simple forward 
Euler single-step, explicit time integration procedure. This leads to, 

an+1 

τ 
− an 

= −Aa2 
n − Re−1|k|2 an, (2.6) 

where τ is an arbitrary discrete time step parameter. We now rearrange the equation 
as, 

an+1 = τAan 
1 − Re−1τ |k|2 

− an . (2.7) 
τA 

This map can be reduced to a well studied example, if we require, 

1 − Re−1τ |k|2 

= 1, (2.8) 
τA 

which implies that, 

τA = 1 − Re−1τ |k|2 . (2.9) 

This in turn permits us to write (2.6) as, 

an+1 = 4 1 − Re−1τ |k|2 an(1 − an) = ran(1 − an), (2.10) 

which is the well known logistic map. 

It is easily seen that as Re →∞, r 1 from below. Since a(1 − a) has a maximum →
at 1/4 for a ∈ [0.1] we see that we should rescale r by a factor of 4 to obtain that the 
range of values for r is is between zero and four, just as in the logistic map. It is also 
worth observing that r depends on the wavevector magnitude, and on the numerical 
time step parameter. In particular, we see that the product of these factors must be 
less than Re in order for r > 0 to hold. This implies that as the wavevector magnitude 
increases, the time step size must decrease, just as would certainly be the case in order 
to maintain stability of an explicit time-stepping method such as forward Euler. 
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We will show that the logistic map displays broadband spectrum in time, nonlinearity, 
unpredictable behavior, and time reversibility. However it is derived assuming a single 
lengthscale and it cannot display any spatial structure. Thus the logistic map is poor 
man’s Navier-Stokes equation and cannot display turbulent behavior. However it is a 
useful tool to study how a deterministic system can produce chaos and unpredictable 
behavior. 

2.1.1 Linear solutions of the logistic map 

We start by studying linear solutions of the logistic map. The variable an represents 
the amplitude of the velocity at time nτ . For convenience we will now switch from 
an to xn to indicate the mode amplitude. The logistic map is a one dimensional map 
of the form xn+1 = F (xn), 

xn+1 = rxn(1 − xn). (2.11) 

The iteration of one dimensional maps is easy to see graphically: if we plot y = F (x) 
and y = x, the iterations are given by successive steps between these two curves, 

y = F (xn), xn=1 = y. (2.12) 

Successive iterations from a given initial values are given by successive operations of 
the map F , an operation known as functional composition, 

x1 = F (x0), (2.13) 

x2 = F (x1) = F (F (x0)), (2.14) 
. . . (2.15) 

xn = F (xn−1) = F (F . . . F (x0)). (2.16) 

We use the matlab function cobweb.m to study the properties of the map. The 
intersection xf of y = F (x) with y = x is a fixed point of the iteration, if, 

F (xf ) = xf . (2.17) 

We can easily answer the question of whether an initial condition close to xf ap
proaches the fixed point under iteration (when we call the fixed point stable) or 
moves away from it (unstable fixed point) by linearizing the evolution about xf : 
write x = xf + δx and then using a Taylor expansion with F �(x) the derivative of the 
function, 

xn+1 = xf + δxn+1 = F (xf + δxn) ≈ F (xf ) + δxnF �(xf ) (2.18) 

so that 

δxn+1 = F �(xf )δxn (2.19) 
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and |δxn| will increase on successive iterations for F �(xf ) > 1. Thus the fixed point 
is stable for F �(xf ) < 1 and is unstable for F �(xf ) > 1. This procedure is the map 
equivalent of the linear stability analysis of solutions of the Navier-Stokes equations. 
In 12.803 we considered the linear stability analysis of shear flows. In that case we 
considered the stability as a function of external parameters like the shear and its 
curvature. Here we will study the stability of fixed points for different Reynolds 
numbers. 

2.1.2 Bifurcations and the onset of chaos in the logistic map 

In the logistic map for small values of r there is only one stable fixed point xf and 
almost all initial conditions lead to an orbit that converges to the fixed point (x = 0 
and x = 1 being exceptional initial conditions). These solutions correspond to the 
laminar flows at small Reynolds numbers. Nonlinearities are subdominant. However 
things change as we increase r. What happens when xf becomes unstable (which 
happens at r = 3)? 

The first bifurcation 

As the map parameter r is changed, the character of the long time solution dramat
ically changes, from a fixed point to a time dependent solution. These changes are 
called bifurcations. For values of r slightly larger then 3, the solution converges to an 
orbit which alternately visits two values x1 and x2: this is the discrete time version of 
a limit cycle or periodic orbit (here period two). The second iterate function y = F 2 

yields three intersections with the line y = x. It is easy to check that at two of 
these the magnitude of the slope |dF 2/dx| is less than unity, i.e. there are two stable 
fixed points of F 2, and these correspond to x1 and x2. The third fixed point of F 2 is 
unstable: xf is of course an unstable fixed point of F . These issues are illustrated by 
the matlab functions cobweb.m and logistic fp.m. Try to run them using r = 3.2. 

The second bifurcation 

Set r to r = 3.5 and look at the iterations of F . The period two orbit has gone 
unstable, and the trajectory converges to a period four orbit. We have seen that the 
period two orbit is simple (a fixed point!) in F 2 . We can understand the second 
bifurcation by studying the fixed points of F 4 . The instability of the period two orbit 
is seen to be associated with the slope of F 4 becoming greater than unity, and again 
two new fixed points of F 4 develop. 

Further bifurcations 

The analysis of bifurcations gets more and more awkward as r increases. Hence we 
switch to numberical exploration. But keep in mind that numerics can find attractors 
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but miss the unstable structures. With r slightly bigger than 3.54, the population 
will oscillate between 8 values, then 16, 32, etc. The lengths of the parameter inter
vals which yield the same number of oscillations decrease rapidly; the ratio between 
the lengths of two successive such bifurcation intervals approaches the Feigenbaum 
constant, 

δ = lim 
rn − rn−1 

= 4.669 . . . (2.20) 
n→∞ rn+1 − rn 

All of these behaviors do not depend on the initial population. This is the so-called 
period-doubling bifurcation. 

The bifurcations that occur, and the different types of orbits, are well shown by 
the bifurcation map. This is constructed with the parameter r along the abscissa, 
and all values of x visited (after some numbers of iterations to eliminate transients) 
plotted as points along the ordinate. A fixed point orbit over a range of r appears 
as a single curve, which splits into two curves at the bifurcation to the period two 
orbit etc. Chaotic dynamics, where the orbit visits an infinite number of points 
(otherwise the orbit would repeat, and therefore be periodic) appears as bands of 
continua of points (subject to limitations of how many points are actually plotted in 
the implementation). 

The bifurcation diagram of the logistic map shows that simple systems can have an 
amazingly rich bifurcation structure. This complexity in the logistic map was first 
studied by May in the context of population dynamics. You can create a bifurcation 
map with the matlab function logistic bif.m. 

The onset of chaos 

At r = 3.569946 . . . the orbits become very irregular and we can no longer see any 
oscillations. Slight variations in the initial population yield dramatically different 
results over time. These are signatures that the orbits have become cahotic. Notice, 
however, that periodic windows mysteriously appear here and there as we further 
increase r. These are sometimes called islands of stability. The largest window is 
near (3.8284, 3.8415) where there is a period three orbit. For slightly higher values of 
r oscillations flicker between 6 values, then 12 etc. There are other ranges which yield 
oscillation between 5 values etc.; all oscillation periods do occur. These behaviours 
are again independent of the initial value. 

At r = 4, the large admissible value for r, the map is fully chaotic. The iterations 
appear completely random, and the values eventually fill up the whole interval [0, 1]. 
This chaotic motion can be completely understood by making a transformation of 
variables. Define, 

xn = sin2(πzn/2). (2.21) 
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Figure 2.1: The complete orbit diagram, which is the plot of the map’s attractor as 
a function of r. This amazing diagram is as beautiful as it is mysterious. If you look 
at it more closely, you will find that lying just above the periodic windows in the 
chaotic region are small copies of the whole orbit diagram. Thus this picture has fine 
structures at arbitrarily small scales. 
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The iteration of z for r = 4 is then just,


zn+1 =
2zn, 0 ≤ zn ≤ 1/2 

(2.22) 
2 − 2zn, 1/2 ≤ zn ≤ 1 

This is known as the tent map. Successive values of zn from a random initial value are 
as random as a coin toss (and in fact in binary representation answering the question of 
whether the n-th value is to the right or left of 0.5 just gives the binary representation 
of the initial value, which is random for a random initial value). Beyond r = 4, the 
values eventually leave the interval [0, 1] and diverge for almost all initial values. 

It is interesting to consider the temporal spectrum of orbits of the logistic map for 
different values of r. At the appearance of the period two orbit, the spectrum has a 
single peak at f = 1/2. As r increases, period doubling bifurcations generate new 
peaks at sub-harmonics f/2, f/4 and so on. Notice that the appearance of sub-
harmonics is quite different from the appearance of super-harmonics (2f , 4f , . . .) 
as a result of quadratic nonlinearities. Finally, at the onset of chaos the number of 
excited harmonics becomes large and the spectrum appears to be broadband. 

2.2 Chaos and sensitivity to initial conditions 

The orbits of the logistic map become very erratic when r = 4. But what do we mean 
by the orbits being chaotic? The onset of chaos is defined by a ”sensitive dependence 
on initial conditions”, i.e. orbits with similar initial conditions diverge exponentially 
fast. The sensitive dependence on initial conditions can be made quantitative by 
generalizing the idea of instability of a fixed point. Equation (2.19) can in fact be 
used for the expansion of a small separation at any xn, 

δxn+1 = F �(xn)δxn, (2.23) 

so that the product of the derivatives at successive iterations gives us the expansion 
(or contraction) of the separation between the iterates of nearby points. 

More precisely we start with initial conditions x0 and x0 +Δx and ask for the distance 
between the n-th iterates, which we expect to grow as, 

|δxn| = Δxe nλ(x0) , (2.24) 

where λ(x0) is the so-called Lyapunov exponent for the initial condition x0, i.e. 

F n(x0 + Δx) − F n(x0) 
Δx


=

dF n(x0) 

dx0 
.
 (2.25)


1
 1

λ(x0) = lim lim log

n→∞ 
lim log


Δx 0 n n→∞ n
→

For systems like the logistic map for r = 4 the limit exists and is independent of the 
initial condition x0 for almost all initial conditions (e.g. not those points exactly on 
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unstable periodic orbits), and will be denoted λ and called the Lyapunov exponent 
of the map. The derivative can be evaluated by the chain rule in terms of derivatives 
of F at the intermediate iterations, 

dF n(x0) 
= F �(xn−1)F �(xn−2) . . . F �(x1)F �(x0). (2.26) 

dx0 

Thus we can compactly write, 
λ = �log |F �|�, (2.27) 

where the average � � is over the iterations of the map. A positive value of λ corre
sponds to the difference between closely spaced initial conditions growing (on average 
exponentially) with iteration i.e. to sensitive dependence on initial conditions. Thus 
a positive Lyapunov exponent is a signature of chaos, and may be used as a defining 
criterion. The Lyapunov exponents of the logistic map are shown as a function of r in 
figure 2.2. Positive values of λ appear forlarger values of r. The occasional negative 
dips correspond to the islands of stability. 

r λ Comments 

1 0 − 0.005112 . . . start stable fixed point 
3 −0.003518... start stable 2-cycle 
3.449489743... −0.003150... start stable 4-cycle 
3.56994571869 +0.001934... start of chaos (Dewdney, 1988) 
3.828427125... −0.003860... start stable 3-cycle 
3.9 +0.7095... back into chaos 
4 +0.6931... end of chaos 

(2.28)


2.3 Routes to chaos 

The logistic map is a useful example to study the onset of chaos in a deterministic 
system as a function of an external parameter like the Reynolds number r. The 
question arises as to whether the bifurcation patterns that leads to the onset of chaos 
is typical of other systems, or whether it is an oddity of the logistic map. For the 
moment we restrict the discussion to maps and low order dynamical systems (i.e. 
systems described by a small number of ordinary differential equations). We will 
extend the discussion to turbulent flows at the end of the lecture. 

Despite the richness and complexity in the orbits generated by maps and dynamical 
systems, it turns out that the routes to chaos are quite universal and can be broadly 
grouped in three classes: the period doubling route, the intermittency route, and the 
quasi-peridoc route. The logistic map is an example of a map that follows the first 
route. 

9 



Figure 2.2: The bifurcation diagram together with the corresponding Lyapunov ex
ponents for the logistic map. 
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Period doubling route (Feigenbaum, 1978) 

The system loses stability through period-doubling, pitchfork bifurcations. The sys
tem undergoes a cascade of such period-doublings until at the accumulation point 
one observes aperiodic behaviour, but no broad-band spectrum. Note also, that if 
one has seen three bifurcations, a fourth bifurcation becomes more probable than a 
third after only two, etc. This route to chaotic behavior has been observed in heat 
transport by convection. 

Intermittency route (Pomeau & Maneville, 1980) 

The system loses stability through intermittency, i.e. chaos appears intermittently 
within an otherwise regular trajectory. There are no clear cut precursors for this route 
although it is characterized by long periods of periodic motion with bursts of chaos. 
The logistic map shows transition to chaos through intermittency for r = 3.8282 just 
below the period three window. Intermittent behavior generally happens close to a 
saddle-node bifurcation. 

Quasi-periodic route (Ruelle & Takens, 1971) 

In this route to chaos, there are a number of periodic orbits with irrationally related 
frequencies that lead to chaos. The system loses stabilty through Hopf bifurcations. 
Assume that a system with a steady state solution loses its stability, as some control 
parameter is varied, through a Hopf bifurcation (ie. a pair of complex eigenvalues 
crosses the imaginary axis). The steady state becomes oscillatory. Assume that 
this happens three times in succession and that the three newly created modes are 
essentially independent - then chaos may occur. The precursor is the existence of 
quasi-periodic motions. 

The power spectrum will exhibit one, then two, and possibly three independent ba
sic frequencies. When the third frequency is about to appear simultaneously some 
broad-band noise will appear – this is then regarded as chaotic. Evidence is from 
Taylor-Couette vortices in fluid flow between rotating cylinders and in Rayleigh-Bnard 
convection. 

2.4 A statistical description of chaos 

The previous examples suggest that trajectories of maps and dynamical systems are 
predictable when orbits are fixed points or periodic oscillations. After the onset of 
chaos, instead, there seem to be little hope to predict the details of the trajecto
ries. This situation is similar to what happens in the study of fluid flows. When the 
Reynolds number is small, solutions are linear and predictable. At large Reynolds 
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Figure 2.3: Intermittency route to chaos in the logistic map for r = 3.8282. Part of 
the orbit looks like a stable period three cycle, as indicated by the blue circles. But 
this is spooky since the period three orbit no longer exists! We are seeing the ghost 
of the three cycle. 
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numbers, the flow becomes erratic and exact solutions cannot be found neither an
alytically, nor numerically. Does it mean that a theory of turbulence is beyond our 
reach? 

Let us consider the logistic map with r = 4, in the strongly chaotic regime. The 
map displays broadband spectrum in time, nonlinearity, unpredictable behavior, and 
time irreversibility (Fig. 2.4). However the histogram of the positions x assumed by 
the orbit is quite predictable (Fig. 2.4). In the chaotic regime the histograms show a 
predictability that does not emerge in individual trajectories. The histogram always 
converge toward the same distribution, regardless of initial conditions. Why does 
the histogram of the logistic map converge to a limit solution? Why a deterministic 
system such as a map has a regular statistical behavior? We do not have complete 
answers to these equations, but progress is being made. The current understanding 
is that maps in the chaotic regime collapse on a strange attractor which is a gener
alization of the fixed points and periodic orbits in the linear regime. The structure 
of strange attractors is very complex. That is why trajectories are so erratic and 
difficult to predict. However ensemble of trajectories reflects the mean structure of 
the attractor and can be predicted. 

In this section we derive a statistical description of the logistic map. The goal is to un
derstand the difference between the trajectory-based description and the histogram-
based description. First we need to determine the evolution equation for the histogram 
P (v), also known as the probability distribution function, so that we can observe the 
recurrence relation Pn+1(v) = UPn(v). The distribution function Pn+1(v) after n + 1 
iterations is obtained by the action of the operator U on Pn(v), which is the distri
bution function after n iteration of the map. The operator U acts on functions and 
it is known as the Perron-Frobenius operator. 

We can derive the Perron-Frobenius operator for the logistic map. We have already 
shown that by making the change of variables, 

xn = sin2(πzn/2), (2.29) 

the logistic map with r = 4 becomes, 

zn+1 =
2zn, 0 ≤ zn ≤ 1/2 

(2.30) 
2 − 2zn, 1/2 ≤ zn ≤ 1 

which is known as the tent map, because of the shape of its graph. We can easily 
write the Perron-Frobenius operator for the tent map, � � � � ��

1 v v 
Pn+1(v) = Pn + Pn 1 − . (2.31) 

2 2 2 

As a consequence of the form of the Perron-Frobenius operator, if Pn is constant 
equal to P0, then Pn+1 is also equal to P0. The uniform distribution P = P0 is 
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Figure 2.4: A trajectory and the histogram for the logistic map with r = 4.
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the equilibrium distribution. The uniform distribution is indeed the final state that 
one obtains by running numerical integrations of the tent map. Thus the statistical 
description predicts a result that cannot be derived from simple inspection of the 
deterministic equation. 

How do we know that the equilibrium distribution is obtained for any set of initial 
conditions? In order to solve arbitrary initial value problems, we need the full set of 
eigenfunctions and eigenvalues of the Perron-Frobenius operator. These eigenfunc
tions can be used to represent any arbitrary initial condition. The eigenfunctions for 
the tent map belong to a family of polynomials called the Bernoulli polynomials. The 
eigenfunctions are found by solving the problem, 

P (v) = λ UP (v). (2.32) 

In the example of the tent map, we find that the all eigenfunctions but the uniform 
distribution have λ ≤ 1. For example an eigenfunction is given by, 

2 
P (v) = v 2 − 2v + . (2.33) 

3 

This eigenfunction has an eigenvalues λ = 1/4. The uniform distribution P = 1 is 
the only eigenfunction with eigenvalue λ = 1. Thus all eigenfunctions other than 
the uniform distribution decay in time. And the uniform distribution emerges as the 
asymptotic state. 

It is left as an exercise to relate the probability distribution of the tent map to that 
of the poor man’s Navier-Stokes map, and show that it correctly predicts what we 
found by numerical integrations of the map. 

2.5 Turbulence and chaos 

It is finally time to go back to fluid dynamics and try to relate the lessons of chaotic 
maps to the description of turbulence. 

2.5.1 Transition to turbulence 

Lessons from the dynamical system approach 

Up to the discovery of chaos in simple deterministic systems, studies on the onset 
of turbulence dealt with linear and, very rarely, with weakly non-linear evolution of 
external disturbances. The first physical model of laminar-turbulent transition is due 
to Landau and it is reported in the fourth volume of the course on Theoretical Physics 
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(Landau and Lifshitz, 1971). According to this model, as the Reynolds number is 
increased, the system undergoes a infinite series of Hopf bifurcations. Each bifurcation 
causes the velocity field to oscillate with a new frequency fi, until for sufficiently large 
i the motion appears chaotic. In this picture the unpredictability of turbulence arises 
because each new frequency fi is associated with a new phase φi and, for large i, it 
becomes progressively difficult to keep track of all oscillations. 

The Landau transition scenario is, however, untenable because a few incommensu
rate frequencies do not generate positive Lyapunov exponents. And the sensitive 
dependence on initial conditions is a trademark of turbulent flows. This character
istic feature is now known as the butterfly effect. Thus the transition to turbulence 
is probably best understood in terms of the routes to chaos observed in maps and 
simple dynamical systems. 

Shortcomings of the dynamical system approach 

Should we then conclude that the onset of turbulence is analogous to the onset of 
chaos? Unfortunately the story is more complicated. Dynamical systems arise from 
the projections of the full Navier-Stokes dynamics on a very limited number of spatial 
scales. The onset of chaos in those system is then forced to remain confined to few 
spatial scales. Experiments suggest that the onset of turbulence in real flows is 
associated with broadband spectra both in time and in space. It is very difficult to 
set up experiments where there is transition to chaos with the appearance broadband 
spectrum in time, without an increase in the number of the spatial degrees of freedom. 
Only by carefully designing experiments in closed environments, can one observe the 
routes to chaos described above in real flows. For the moment, we must conclude that 
the theory of dynamical systems and chaos provides useful insights in the world of 
turbulence, but it is not the whole story. We will return to this issue in the discussion 
of turbulent convection. 

2.5.2 Statistical description of turbulence 

The logistic map is a useful tool to illustrate some important characteristics of tur
bulent flows. However it is pathological in at least two ways, 

•	 The logistic map explores the full available space [0, 1]. Typically turbulent sys
tems are dissipative and collapse on an attractor with fractal structure (at least 
for finite-dimensional systems). This limitation can be overcome considering 
two dimensional maps. 

•	 Natural systems tend to have more than one attractor. Thus the equilibrium 
statistical properties are not fully predictable. 
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Furthermore there are technical issues that have not been solved for the Navier-
Stokes equations. We do not know if solutions exist for all times for arbitrary initial 
condition. We do not know how to write the equivalent of the Perron-Frobenius 
operator. 

Further reading:

Frisch, chapter 1-3

Strogatz, chapter 10

Tritton, chapter 24
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