12.842 / 12.301 Past and Present Climate Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Pleistocene Ice Age Cycles 0-2.65 ma

12.842 Lecture 7 Fall 2008

Some images have been removed in this lecture notes due to copyright restrictions.

Pleistocene Glaciations

Image courtesy of NOAA.

Image removed due to copyright restrictions. Citation: See image in Petit, et al. (1999) in Kump(2002) *Nature*, 419:188-190. • Urey (1947) calculated that the oxygen isotope fractionation between calcium carbonate and water should be temperaturedependent. $\Box D$

$$\delta^{18}O = 1000 \left[\frac{R_{sample}}{R_{s \tan dard}} - 1 \right]$$

• Epstein (1953) grew molluscs in the laboratory and empirically determined the O18-T relationship:

Figure by MIT OpenCourseWare.

• Emiliani (1955 and other papers) analyzed foraminifera from piston cores from the deep sea, and made temperature estimates:

\bullet He found multiple cycles of cold and warm periods during the past ${\sim}500{,}000$ years.

- 2. This work created quite a stir, and quickly was criticized on several grounds:
 - a. It violated the prevailing 4-ice-age theory from continental geology.
 - b. Meteorologists though that the tropical temperature change seemed excessive.
 - c. Micropaleotologists thought that their micropaleontological work (<u>G. menardii</u> stratigraphy) contradicted with O-18 record.
 - d. Biologists (e.g. Bé) argued that foraminiferal ecological shifts may have altered the depth habitat of organisms (and hence temperatures).
 - e. The time scale (based on ²³⁰Th/²³¹Pa) was criticized.
 - f. Various statistical errors were pointed out.

Rayleigh distillation of oxygen isotopes

Vapor pressure = f(T)

(Clausius-Clapeyron equation, exponential with increasing T)

At 25°C, the vapor pressure of $H_2^{16}O$ is 0.9% higher than $H_2^{18}O$

Imagine a 50-50 mixture of liquid $H_2^{16}O$ and $H_2^{18}O$, equilibrated with the vapor phase at 25°C. Separate the vapor from the liquid:

$\delta^{18}O = -9\%_0$	T=25°C
1009	1000
H ₂ ¹⁶ O	H ₂ ¹⁸ O

Rayleigh equation:
$$\frac{R}{R_0} = f^{\alpha - 1}$$

Cool the vapor to 20°C; allow liquid to condense from vapor:

$$\delta^{18}O = -11\% \text{ T}=20^{\circ}C$$

$$745 \quad 737$$

$$H_2^{16}O \quad H_2^{16}O$$

$$264 \text{ H}_2^{16}O \quad 263 \text{ H}_2^{18}O$$

 R_0 = initial isotope ratio

R = isotope ratio after cooling

f = fraction of water condensed

 α = isotope fractionation factor

Cumulative Rayleigh Isotope Distillation as a function of temperature

<u>Observed</u> δ^{18} O - surface temperature relationship

Note: this line is <u>not</u> the relationship predicted by the Rayleigh distillation curve. It includes many other effects: evaporationprecipitation cycles, cloud-T / surface-T relationships; multiple sources of water vapor at different temperatures, etc.

Figure by MIT OpenCourseWare.

Because they flow, glaciers are filled from their summits:

Figure by MIT OpenCourseWare.

Effect of glaciation on the oxygen isotope composition of the ocean

Isotope Mass Balance Equation:

 $M_{o}\delta_{o} + M_{i}\delta_{i} = M_{t}\delta_{t}$

Sea-level estimates from drilling submerged coral terraces

Earth's Orbital Geometry:

The Milankovitch Hypothesis & the Pacing of Pleistocene Ice Ages

Milankovitch Hypothesis: Historical Perspective

<u>What</u>: Astronomical theory of Pleistocene ice ages.

How: Varying orbital geometry influences climate by changing seasonal & latitudinal distribution of solar radiation incident at top of atmosphere (insolation).

Milestones: Hypothesis

- <u>Croll (1864, 1875)</u>: Proposed that variations in seasonal influx of energy--the cumulative affect of eccentricity, obliquity & precession--could trigger large climate response.
- <u>Milankovitch (1920, 1941)</u>: Combined laws of radiation with planetary mechanics to derive insolation curves as function of time (600 kyr) and latitude. Concluded summer insolation at high N. lat. (65°N) critical to growth/decay of ice sheets. "The Milankovitch Hypothesis".

The Seasons

(edge view)

The seasons in an elliptical orbit

(oblique view, exaggerated eccentricity)

Eccentricity of Present Earth Orbit Around Sun (to Scale)

Obliquity (tilt)

ε

Higher obliquity leads to higher <u>summer</u> insolation at high latitudes (and slightly less at low latitudes). Obliquity varies between ~21.8° and 24.4°; at present the obliquity is 23.44°. Affects the latitude of the tropics and the arctic circle. Period is ~41,000 years, and is relatively regular. Think of this as part of a solar system angular momentum oscillator (angular momentum conserved in solar system, but with transfers between objects)

Obliquity change re-apportions radiation between polar regions and tropics

Precession

Precession frequency depends on angular momentum and torque P = 25,700 years

Eccentricity amplitude-modulates precession parameter

Eccentricity amplitude-modulates precession

Periodic changes in orbital geometry modulate solar radiation receipts (insolation)

Insolation at 65°N, June 21

Integrated over a half-year centered on summer, obliquity dominates high latitude insolation and precession dominates lower latitude insolation

Did increasing Northern Hemisphere summer insolation cause the end of the last ice age?

Milankovitch Hypothesis: Milestones & Support

- Kullenberg (1947): Invented deep-sea piston coring.
 →Recovery of long, continuous climate records possible.
- <u>Emiliani (1955)</u>: Pioneered use ¹⁸O/¹⁶O ratio of fossil foraminifera in sediment cores as climate (temp.) proxy.
- <u>Olausson (1965); Shackleton (1967)</u>: Interpret foram δ^{18} O changes as whole-ocean isotopic shifts caused by ice sheet growth/decay.
- 1960's: Recognition of magnetic stripes on ocean floor (geomagnetic field reversals) as global stratigraphic markers.
- Johnson (1982); Shackleton et al (1990): Use astronomically-driven insolation variations (E, T, P) to derive timescales for deep-sea cores.

→Accurately predict age of Brunhes-Matuyama (B/M) magnetic reversal, 780-790 kyr BP. (K/Ar dates for B/M incorrectly placed it at 730 kyr BP.)

- <u>Baksi et al (1992)</u>: 40 Ar/ 39 Ar date for B/M = 783 kyr BP.
- Raymo (1997): Multiple δ^{18} O records on 'simple' timescale supports link between N. Hemisphere summer insolation and glacial terminations.

 \rightarrow <u>Strong support for astronomical influence on climate.</u> (The magnitude of which remains debated...) Absolute chronology and its importance to testing the Milankovitch Hypothesis

- Carbon-14 dating: 0-25 kyr BP (where reliable "initial C14" calibrations exist)
- Layer counting in sediments and ice cores: 0-40 kyr BP varves, density bands, annual dust cycles (but do you miss some bands or see two where only one should be?)
- 234 U -> 230 Th ingrowth in corals and speleothems: 0-250,000 kyr BP
- 40 K -> 40 Ar dating of basalts at magnetic reversals

How do we estimate a time scale for a marine sediment core or ice core?

- We measure depth and assume it is an increasing function of the age of the deposit (stratigraphy).
- For sediments <25 kyr BP containing appropriate carbonate or organic) fossils, we can measure the ¹⁴C content and determine the age from the atmospheric radicarbon calibration.
- We can determine the δ^{18} O of carbonate fossils and correlate the features to sea level events of known age (from ²³⁰Th-²³⁴U dating).
- For sediments with appropriate magnetic minerals, we can measure the magnetic alignment and determine the position of known (⁴⁰Ar/³⁹Ar dated) magnetic reversals.
- In-between these known dates, we must interpolate using some plausible (but unprovable) scheme.

Oxygen isotopes compared to summer insolation at 65°N

SPECMAP stack. Note terminations (rapid deglaciations)

Image removed due to copyright restrictions.

Citation: Figure 5. Berger, Andre L. *Milankovitch and Climate*. Kluwer Academic Publishers, June 1984, 544 pages. ISBN: 902771777X.

1. Why is climate response in 100-kyr band so strong? **Observation:** High correlation of δ^{18} O cycles with astronomically-driven radiation cycles at E, T & P frequencies suggests causal link in all 3 bands.

Problem: Amplitude of insolation change ($\sim 0.2\%$) is $\sim 10x$ smaller than in T,P bands.

Possible Solution: E modulates climatic effect of P. High E favors NH glaciation when P causes NH summer to occur at maximum Earth-Sun distance (i.e., Imbrie et al, 1993).

2. <u>Why do glacial cycles switch from 41-kyr to 100-kyr</u> period ~700 kyr BP?

Possible solution: L/T cooling trend, perhaps from tectonically-driven decrease in atmospheric CO_2 , facilitates NH ice sheet growth beyond a critical threshold during insolation minima. These large ice sheets drive climate through feedbacks internal to the climate system (geo-, cryo-, atmo-, hydro-sphere).

3. Why do full glacial Terminations, and ensuing interglacial periods, occur ~430 and ~15 kyr BP when E is very low?

-Possible solution: 100-kyr cycle of orbital inclination (Muller and MacDonald, 1995).

-Caveat: no obvious mechanism linking climate to inclination.

Milankovitch Hypothesis Challenges:

100-kyr Cycle Problems

Pleistocene Ice Age Cycles

Image removed due to copyright restrictions. Citation: Raymo, M. E., W. F. Ruddiman, N. J. Shackleton, and D. W. Oppo. *Evolution of Atlantic-Pacific* $\delta^{13}C$ gradients over the last 2.5 m.y. EPSL 97 (1990): 353-368. Earth's orbit also oscillates in and out of orbital plane every ~100 kyr:

Image removed due to copyright restrictions. Citation: Muller and MacDonald. *Nature* 377 (1995): 107-108. 1. Why is climate response in 100-kyr band so strong? **Observation:** High correlation of δ^{18} O cycles with astronomically-driven radiation cycles at E, T & P frequencies suggests causal link in all 3 bands.

Problem: Amplitude of insolation change ($\sim 0.2\%$) is $\sim 10x$ smaller than in T,P bands.

Possible Solution: E modulates climatic effect of P. High E favors NH glaciation when P causes NH summer to occur at maximum Earth-Sun distance (i.e., Imbrie et al, 1993).

2. <u>Why do glacial cycles switch from 41-kyr to 100-kyr</u> period ~700 kyr BP?

Possible solution: L/T cooling trend, perhaps from tectonically-driven decrease in atmospheric CO_2 , facilitates NH ice sheet growth beyond a critical threshold during insolation minima. These large ice sheets drive climate through feedbacks internal to the climate system (geo-, cryo-, atmo-, hydro-sphere).

3. Why do full glacial Terminations, and ensuing interglacial periods, occur ~430 and ~15 kyr BP when E is very low?

-Possible solution: 100-kyr cycle of orbital inclination (Muller and MacDonald, 1995).

-Caveat: no obvious mechanism linking climate to inclination.

Milankovitch Hypothesis Challenges:

100-kyr Cycle Problems