14.12 Game Theory – Final (Answers) 12/21/2007

Prof. Muhamet Yildiz

Instructions. This is an open book exam; you can use any written material. You have two hour and 50 minutes. Each question is 25 points. Good luck!

- 1. There are two siblings, who have inherited a factory from their parents. The value of the factory is v_i for sibling i, where (v_1, v_2) are independently and uniformly distributed over [0, 1], and each of them knows his or her own value. Simultaneously, each i bids b_i , and the highest bidder wins the factory and pays his own bid to the other sibling. (If the bids are equal, the winner is determined by a coin toss.) Note that if i wins, i gets $v_i b_i$ and j gets b_i .
 - (a) (5 points) Write this as a Bayesian game. **Answer:** $N = \{1, 2\}; T_i = [0, 1];$ the CDF is $F(v_j | v_i) = v_j; A_i = [0, \infty);$

$$u_i(b_1, b_2, v_1, v_2) = \begin{cases} v_i - b_i & \text{if } b_i > b_j \\ b_j & \text{otherwise} \end{cases}$$

- (b) (10 points) Compute a symmetric, linear Bayesian Nash equilibrium.Answer: See Part c.
- (c) (10 points) Find all symmetric Bayesian Nash equilibrium in strictly increasing and differentiable strategies.

Answer: We are looking for an equilibrium in which each type v_i bids $b(v_i)$ for some increasing differentiable function. The expected payoff from bidding b_i for a type v_i is

$$U(b_i|v_i) = (v_i - b_i) b^{-1}(b_i) + \int_{b^{-1}(b_i)}^{1} b(v_j) dv_j$$

Hence, the first-order condition for the best response is

$$-b^{-1}(b_i) + (v_i - b_i) / b' (b^{-1}(b_i)) - b_i / b' (b^{-1}(b_i)) = 0.$$

This must be satisfied at $b_i = b(v_i)$:

$$-v_{i} + (v_{i} - 2b(v_{i}))/b'(v_{i}) = 0.$$

That is,

$$v_i = v_i b'(v_i) + 2b(v_i).$$

The unique solution to this differential equation is

$$b\left(v_{i}\right) = v_{i}/3.$$

(This is of course also the unique linear symmetric BNE.)

2. Find a perfect Bayesian Nash equilibrium of the following game:

- 3. Alice and Bob are bargaining using alternating offers, Alice making offers at t = 0, 2, 4, ... and Bob making offers at t = 1, 3, 5, ... The set of consumption pairs depends on the date. When Alice makes an offer, the set of possible consumption pairs is $X_A = \{(x, y) : ax + by \leq 1\}$ where a > 1 > b > 0 and x and y are the consumptions of Alice and Bob, respectively. When Bob makes an offer that set is $X_B = \{(x, y) : x + y \leq 1\}$. At each date t, proposer offers a pair (x, y) of cosumption from the available set at t, and the responder either accepts the offer, ending the game with payoff vector $(\delta^t x, \delta^t y)$, or rejects the offer, in which case we proceed to the next date. If they never agree, each gets 0.
 - (a) (20 points) Find a subgame perfect equilibrium of this game.

Answer: We are looking for a SPE in which Alice always offers (x_A, y_A) and Bob always offers (x_B, y_B) , and these offers are accepted. Given that he will get y_B in the next period, Bob must accept an offer (x, y) iff $y \ge \delta y_B$. Therefore, Alice must offer the best pair $(x, y) \in X_A$ for Alice with $y \ge \delta y_B$. That is,

$$ax_A + by_A = 1 \tag{1}$$

$$y_A = \delta y_B. \tag{2}$$

Similarly, Alice accepts (x, y) iff $x \ge \delta x_A$, and Bob offers (x_B, y_B) with

$$x_B + y_B = 1 \tag{3}$$

$$x_B = \delta x_A. \tag{4}$$

(If you came up here, you will get 15.) We need to solve these equation system. By substituing (2) and (4) in (4), we obtain

$$\delta^2 x_A + y_A = \delta$$

Together with (1), this yields

$$x_A = \frac{1 - b\delta}{a - b\delta^2}$$

$$x_B = \delta x_A = \frac{\delta (1 - b\delta)}{a - b\delta^2}$$

$$y_B = 1 - x_B = \frac{a - \delta}{a - b\delta^2}$$

$$y_A = \delta y_B = \frac{\delta (a - \delta)}{a - b\delta^2}.$$

- (b) (5 points) What happens as $\delta \to 1$? Briefly interpret.
 - Answer: Clearly, x_A and x_B converge to $x^* = (1-b)/(a-b)$, and y_A and y_B converge to $y^* = (a-1)/(a-b)$. We could find this limit without solving the equations. At $\delta = 1$, the equations (2) and (4) become $x_A = x_B$ and $y_A = y_B$. That is, the solution converge to the intersection (x^*, y^*) of the boundaries of X_A and X_B . In usual bargaining, the shares converge to equal splitting, and this is interpreted as fairness of the outcome. This example shows that the conclusion is fragile. Take $a = 1 + \varepsilon$ and $b = 1 k\varepsilon$ where $\varepsilon \to 0$. Then the available sets are approximately as in the original model. But the limit solution is now $x^* = k/(k+1)$ and $y^* = 1/(k+1)$, i.e. depending on k it can be anywhere on the boundary.
- 4. There is a seller, who can produce a consumption good. There is also a buyer who would get

$$u(x,p) = \frac{1}{2}x(2\theta - x) - px$$

if he buys x units of good at price p, where $\theta \in [0, 1]$. There are n periods: 0, 1, 2, ..., n-1. Buyer can trade at only one period. If he buys x units at period t for price p, then his utility is $\delta^t u(x, p)$ and the seller utility is $\delta^t px$ where $\delta \in (0, 1)$ is known. In each period t, Seller sets a price p_t , and if he has not traded yet, the buyer decides whether to buy. If he decides to buy, then he also decides how much to buy, x_t , and the game ends. Otherwise, we proceed to next period. If they do not trade at any period, there will be no trade and each gets 0.

- (a) (5 points) Assuming θ is commonly known, for n = 2, apply backward induction to find a subgame-perfect equilibrium.
- (b) (5 points) Assuming θ is commonly known, for arbitrary n, apply backward induction to find a subgame-perfect equilibrium.

Answer: Since the game ends when the consumer buys, he buys the optimal quantity for him i.e. $\max_x u(x, p)$. Compute that the optimal quantity is $x(p) = \theta - p$, and the buyer's payoff is $(\theta - p)^2/2$. Note that if the buyer demands x(p), then the optimal price is $p^* = \theta/2$. The following is the outcome of backward induction. In the last period, the buyer buys at every price p and buys x(p) amount, and the seller offers price $p^* = \theta/2$. At n-1, the buyer rejects the prices p with $(\theta - p)^2 < \delta\theta^2/4$, i.e., $p > \bar{p} \equiv \theta - \sqrt{\delta\theta}/2$. Clearly, At any price $p \leq \bar{p}$, the

buyer accepts the price and buy x(p). Since $\bar{p} > p^*$, the seller offers p^* at n-1 too. The behavior at any $t \leq n$ is as in the period n-1.

(c) (15 points) Take n = 2. Assume that seller does not know θ , i.e., θ is private information of the buyer, uniformly distributed on [0, 1]. Find a strategy of the buyer that is played in a perfect Bayesian Nash equilibrium. (Hint: There exist functions $x_0(p_0, \theta)$, $x_1(p_1, \theta)$, and a cutoff $\theta_0(p_0)$, such that given p_0 the types $\theta \ge \theta_0(p_0)$ buy $x_0(p_0, \theta)$ units at t = 0 and the other types wait for period 1, when each type θ buys $x_1(p_1, \theta)$ units if he has not traded yet.) 14.12 Economic Applications of Game Theory Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.