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Agenda 

• Games with incomplete information 
• Bayes-Nash Equilibrium 
• Extensive form games 
• Perfect Bayesian Equilibrium 
• Rational Herding 

Reading: Osborne Chapter 9; EK Chapter 16 
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Incomplete Information 

Strategic situations often involve uncertainty 
• Uncertainty about others’ preferences 
• Uncertainty about others’ availabe strategies 
• Uncertainty about others’ information 

Possibility of learning a˙ects incentives 

Examples: 
• Bargaining (how much is opponent willing to pay?) 
• Auctions (how much do others value the object?) 
• Market competition (what costs do my competitors face?) 
• Social learning (What can I infer from others’ choices?) 
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An Example 

You (player 1) and a friend are trying to coordinate a meeting 
place (say, the mall or the library) 
• Di˙erent preferences over the two options 

M L 

M (2, 1) (0, 0) 

L (0, 0) (1, 2) 

Two pure strategy equilibria, one mixed 

Now, suppose you are unsure whether your friend wants to meet 
or avoid you 
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Example, continued 
To model this, we assume your friend (player 2) has one of two 
possible types 
• One type wants to meet, the other wants to avoid 

Suppose the two types are equally likely, two possible payo˙ 
matrices 

M L M L 

M (2, 1) (0, 0) M (2, 0) (0, 2) 

L (0, 0) (1, 2) L (0, 1) (1, 0) 

Your friend knows which game is played, but you do not 
• What are the strategies? 
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Example, continued 

Idea: Use Nash Equilibrium in an expanded game 
• Think of each type of player 2 as a separate player 

Equivalently, form conjecture about behavior in each possible 
state, and maximize expected utility given the conjecture 

Consider the profile (M, (M, L)) 
• Player 1 goes to the mall 
• Player 2 goes to the mall in state 1 and the library in state 2 

Clearly a best response for player 2 
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Example, continued 

Now check for player 1 

Since both states are equally likey, 

1 1
E[u1(M, (M, L))] = · 2 + · 0 = 1 2 2 

If player 1 chose L instead, the expected payo˙ is 

1 1 1
E[u1(L, (M, L))] = · 0 + · 1 = 2 2 2 

Hence, the profile (M, (M, L)) is a (Bayes) Nash Equilibrium 
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Example, continued 

Note meeting at the library, player 2’s preferred outcome, is no 
longer part of an equilibrium 
• Consider the profile (L, (L, M)) 

Again, clearly a best response for player 2 

A similar calculation shows player 1 earns 12 by playing L, but 
earns 1 by deviating to M 

The profile (L, (L, M)) is not a Bayes Nash Equilibrium 
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Bayesian Games 

More formally... 

Definition 
A Bayesian game consists of 
• A set of players N 

• A set of actions (pure strategies) Si for each player i 
• A set of types �i for each player i 
• A payo˙ function ui(s, �) for each player i 
• A (joint) probability distribution p(�1, �2, ..., �n) over types 

Note payo˙s depend on vector of actions and vector of types 
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Bayesian Games, continued 

We maintain the assumption that the probability distribution p is 
common knowledge 
• Players agree on the prior probability of di˙erent type vectors 

Very strong assumption, but very convenient 
• Avoid having to deal with hierarchies of beliefs 

Definition 
A pure strategy for player i is a map si : �i ! Si prescribing an 
action for each type of player i. 
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Bayes’ Rule 

Recall types are drawn from the prior distribution p(�1, �2, ..., �n) 

On observing one’s own type �i, can compute conditional 
distribution p(�−i | �i) via Bayes’ rule 

Player i evaluates expected payo˙ according to the conditional 
distribution: Z 

Ui(si
0 , s−i, �i) = ui(si

0 , s−i(�−i), �i, �−i)dp(�−i | �i)
�−i 

Evan Sadler Incomplete Information 11/33 



Bayes’ Rule, continued 

Quick review, basic definitions, events A and B: 
• Probability of events P(A) and P(B) 
• Conditional probabilities P(A |B) and P(B |A) 
• Joint probability P(A \B) 

Definition of conditional probability: 

P(A \B)
P(A |B) = 

P(B) 

Probability that A is true given B 

If events are independent, then P(A \B) = P(A) · P(B) and 
P(A |B) = P(A) 
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Bayes’ Rule, continued 

Can also express conditional probabilities in terms of one another 
• Write Ac for the complement of A 

• Have P(Ac) = 1 − P(A) 

Using P(B) = P(A) · P(B |A) + P(Ac) · P(B |Ac), we have 

P(A) · P(B |A)
P(A |B) = 

P(A) · P(B |A) + P(Ac) · P(B |Ac) 

More generally, for any countable partition {Ai}n
i=1, we have 

P(Ai) · P(B |Ai)P(Ai |B) = P n · j=1 P(Aj) P(B |Aj) 
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Bayes Nash Equilibrium

Definition (Bayes Nash Equilibrium) 

i

Bayes Nash equilibrium is a Nash equilibrum of the expanded 
game in which player i’s pure strategies are maps from �i to Si
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, we have 
The profile ̇  is a pure strategy Bayes Nash Equilibrium if for all 
i 2 N and all �i 2 � Z 

ui(si,
0 s−i(�−i), �i, �−i)dp(�−i | �i) ˙i(�i) 2 argmax 

s0i2Si �−i



Existence of Bayes-Nash Equilibrium

Theorem 
In any finite Bayesian game, a mixed strategy Bayes Nash 
equilibrium exists 

Theorem 
Consider a Bayesian game with continuous strategy spaces and 
types. If the strategy and type sets are compact, and payo˙ 
functions are continuous and concave in own strategies, then a 
pure strategy Bayes Nash equilibrium exists. 

Proofs based on Kakutani’s fixed point theorem are essentially 
identical to what we did a few weeks ago. 
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Example: Incomplete Information Cournot

Two firms produce an identical good at constant marginal cost 

Inverse demand is P (Q), where Q is the total quantity 

Firm 1 has marginal cost c that is common knowledge 

Firm 2’s marginal cost is private information 
• Cost cl with probability � and ch with probability 1− �, cl < ch

Game has two players and two states (l and h), actions 
qi 2 [0,1) 
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Example: Incomplete Information Cournot
Payo˙s for the two players are 

u1(q1, q2, t) = q1(P (q1 + q2)− c) 

u2(q1, q2, t) = q2(P (q1 + q2)− ct),
where t 2 {l, h} is firm 2’s type 

� � �Can think of strategy profile as a triple (q1, ql , qh) 

Three best response functions 

B1(ql, qh) = argmax q1 (�P (q1 + ql) + (1− �)P (q1 + ql)− c) 
q1�0 

Bl(q1) = argmax ql (P (q1 + ql)− cl) 
ql�0 

Bh(q1) = argmax qh (P (q1 + qh)− ch) 
qh�0 
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Example: Incomplete Information Cournot
1, ql , q

1)− q 1)� 

�� 

� 

Bayes Nash equilibria are triples (q ) such that � 
h

B1(q �� 
l , q h) = q � 1, Bl(q � 

l , Bh(q � 
h = q 

If we take P (Q) = �−Q, then the solution is 

� q1 
1 = (�− 2c + �cl + (1− �)ch)3

1 1− � = (�− 2cl + c)− (ch − cl)3 6 
� ql

1 � = (�− 2ch + c) + (ch − cl)3 6
� qh

� 
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Note q , type with lower cost produces more l > qh
� 



Example: Incomplete Information Cournot
In the game with complete information, the Nash equilibrium 
involves players producing 

1 
qi = (�− 2ci + cj)3

With incomplete information, firm 2 produces more than this 
when its cost is ch and less when its cost is cl

This is because firm 1 produces a moderated output 
• When firm 2 has cost ch, firm 1 produces less than it would if

it knew ch, so firm 2 gets to produce a bit more
• When firm 2 has cost cl, firm 1 produces more than it would if

it knew cl, so firm 2 gets to produce a bit less
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Dynamic Games with Incomplete Information

We often need to think about information in dynamic settings in 
which players learn about the environment over time 
• Look at extensive form games, explicit order of moves

As before, we use information sets to represent what players 
know at each stage 

Will also refine away non-credible threats, as in subgame perfect 
equilibria 
• New solution concept: Perfect Bayesian Equilibrium
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Example

Selten’s Horse: 
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Dynamic Games with Incomplete Information

Definition 
A dynamic game of incomplete information consists of 
• A set of players N

• A sequence of histories {ht}, each assigned to a player or
nature

• An information partition (which histories are in an information
set)

• A set of pure strategies Si for each player i (must include
action for each information set)

• A set of types �i for each player i
• A payo˙ function ui(s, �) for each player i
• A joint probability distribution p(�1, ..., �n) over types
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Strategies and Beliefs

A belief system µ gives a probability distribution over nodes in 
each information set 
• In Selten’s horse, player 3 needs beliefs about whether the left

or right node was reached

A strategy is sequentially rational if, given beliefs, no player can 
improve her payo˙ by deviating at any stage of the game 

A belief system is consistent if it is derived from equilibrium 
strategies using Bayes’ rule 
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Strategies and Beliefs

For instance, in Selten’s horse, if player 1’s strategy is D, then 
we must have µ3(left) = 1 

If player 1 chooses D with probability p and player 2 chooses d
with probability q, then Bayes’ rule implies 

µ3(left) = p 

p+ (1− p)q

What if p = q = 0? The consistency requirement has no bite, 
any belief is valid 
• If an information set is not reached on the equilibrum path,

beliefs are unrestricted
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Perfect Bayesian Equilibrium

Definition 
In a dynamic game of incomplete information, a perfect Bayesian 
equilibrium is a strategy profile ̇  and a belief system µ such that 
• The profile ̇  is sequentially rational given µ
• The belief system µ is consistent given ̇

Relatively weak solution concept, often refined by restricting 
o˙-path beliefs

Theorem 
In any finite dynamic game of incomplete information, a (possibly 
mixed) perfect Bayesian equilibrium exists. 
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Social Learning

An important set of questions in network economics: 
• How much do people learn from social connections?
• Can interactions aggregate dispersed information?
• How does network structure influence what people learn?

One approach: observational learning 
• Often observe choices that other people make
• People base choices on information
• We might infer information from these choices

A simple Bayesian model gives rise to rational herding 
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Observational Learning

This image is in the public domain. 

What can we infer about the deli? 
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The Classic Herding Model

Two equally likely states of the world � 2 {0, 1}

Agents n = 1, 2, ... sequentially make binary decisions xn 2 {0, 1}

Earn payo˙ 1 for matching the state, payo˙ 0 otherwise 

Each agent receives a binary signal sn 2 {0, 1}

Signals i.i.d. conditional on the state: 

1
P(sn = 0 | � = 0) = P(sn = 1 | � = 1) = g > 2
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How a Herd Forms

Suppose agents observe the actions of all who move earlier 

First agent chooses x1 = s1

Second agent can always justify following signal 

If first two match, third agent copies... 
• ...and so does everyone else

We end up in a herd 
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Some Observations

Action produces an informational externality 
• Agents do not internalize the value of the information they

provide to others

Coarse information is key 
• Observing beliefs instead of actions leads to very di˙erent

result

Herding is not sensitive to the signal structure 
• Define public belief qn = P˙(� = 1 |x1, x2, ..., xn−1)
• The public belief is a martingale and must converge
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Rational Herding
Theorem 
In any PBE of the social learning game, a herd forms with 
probability one. The herd is incorrect with strictly positive 
probability. 

We require some basic results on martingales 
• A martingale is a stochastic process X1, X2, ...Xt, ... such that
E[Xt |X1, ..., Xt−1] = Xt−1

• Belief processes are always martingales

Theorem (Martingale Convergence Theorem) 
Suppose {Xt}t2N is a real-valued martingale and there exists a, b
such that a � Xt � b for all t. Then limt!1 Xt exists almost 
surely. 
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Proof of Theorem
Recall the public belief process qn = P˙(� = 1 | x1, x2, ..., xn−1) 
• This is a martingale

By the martingale convergence theorem, limn!1 qn exists almost 
surely 

If player n chooses 1 (0), then qn � (�)2
1

• If there are infinitely many switches, only possible limit point is
1
2

If qn−1 is close to 12 , then n will follow private signal 
• This implies qn will reflect a new signal
• Inconsistent with convergence to 2

1
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Next Time

Next time we will enrich the model 
• Instead of observing entire history, player n observes some

neighborhood B(n)
• Generalize the signal structure

Will also look at a non-Bayesian approach to learning and opinion 
dynamics 
• Based on belief-averaging procedure from DeGroot (1974)
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