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Problem Set #8 - Solutions 

14.30 - Intro. to  Statistical Methods in Economics 

Tnst,ri~ctor:Konrwd Menzel 

Due: Tuesday, April 28, 2009 

Question One: Law of Large Numbers and Central Limit 
Theorem 

Probably the two most important concepts that you will take away from this course are 
the Law of Large Numbers and the Central Limit Theorem and how they allow us to  use 
averages to  learn about the world around us. 

I. State the Law of Large Numbers (please, just copy it down from the lecture notes). 

Solution to 1: Suppose X I , .  . . , Xn is a sequence of i.i.d. draws with IEIXi] = p 
and Var(Xi) = a2 < oo for all i. Then for any E > 0 (typically a small value), 
the sample mean satisfies 

lim P(IXn- pI > E) = 0 
n 

We say that X, converges in probability to  p. 

2. Explain what the Law of Large Numbers tells us about the average of an i.i.d. (inde-
pendent, identically distributed) sample of the random variable X with mean p and 
variance a2. 

Solution to  2: The law of large numbers tells us that the density of the average of 
an i.i.d. sample of a random variable X will be concentrated in an "epsilon ball" 
of radius E. Or, more rigorously, for any E > 0, if we take an infinite sample of a 
random variable, the density of its mean will be concentrated a t  p. 

Suppose you wanted to  know the unemployment rate for residents of Cambridge during April 
2009. The "unemployed" are defined as "Persons 16 years and over who had no employment 
during the reference week, were available for work, except for temporary illness, and had 
made specific efforts to find employment sometime during the 4-week period ending with 
the reference week. Persons who were waiting to be recalled to a job from which they had 
been laid off need not have been looking for work to  be classified as unemployed." (Source: 
http://www.econmodel.com/classic/terms/ur.htm .) 

Suppose you utilize a phone survey to sample the random variable X = l(Emp1oyed) 
where I(-) is the indicator function for whether someone is employed. 

http://www.econmodel.com/classic/terms/ur.htm


1. Write down an estimator, &, of the unemployment rate, a, which is the fraction of the 
labor force that is unemployed. Is your estimator a Method of Moments estimator for 
a Bernoulli random variable? 

Solution to 1: The estimator of choice would be & = & c%,Xi. This estimator 
is a Method of Moments estimator which uses the mean of the distribution of Xi, 
which is a Bernoulli random variable since it only takes on the values 0 and 1. 

2. Describe how the Law of Large Numbers applies to the estimator by stating what (at 
least three) conditions are required to hold about X in order for your estimator to 
be consistent (by the Law of Large Numbers you copied down from the lecture notes 
above). 

Solution to 2: The law of large numbers applies to this estimator since it is an 
average. In other words, as we survey more and more people, our estimator, 
ii +P a, where a is the true unemployment rate. The three conditions that we 
need are that the sample is (1) a collection of i.i.d. random variables (2) with 
finite mean and (3) finite variance. 

3. For each condition you wrote down, comment on the plausibility of the assumption 
holding with respect to the unemployment rate. 

Solution to 3: Condition (1): The i.i.d.-ness of our sample can be implemented 
via a random phone survey. However, if we just select a "convenience sample" of 
people that happen to walk by 77 Mass. Ave. at  noon, we'll probably not have a 
representative sample of the population (i.e. our sample wouldn't be independent 
or identically distributed). 
Condition (2): The finite mean condition is guaranteed by the random variable 
being bounded between 0 and 1. 
Condition (3): The finite variance condition is similarly guaranteed since a Bernoulli 
random variable has variance of p ( l  -p) where p is the probability of drawing a 
1and is bounded between 0 and 1. 

Now we're going to take a closer look at  the Central Limit Theorem. 

1. State the Central Limit Theorem (please, just copy it down from the lecture notes). 

Solution to 1: Suppose X I , .  . . , Xn is a random sample of size n from a given 
distribution with mean p and variance a2< oo. Then for any fixed number x, 

We say that fixnconverges in distribution (some people also say "converges in 
law") to a normal with mean pand variance a2,or in symbols: 



2. Explain what the Central Limit Theorem tells us about the average of an i.i.d. (inde-
pendent, identically distributed) sample of the random variable X with mean p and 
variance a2. 

Solution to 2: The Central Limit Theorem (CLT) tells us that the average of an 
i.i.d. sample (random sample) of a random variable X will converge in distribution 
to a Normal. This means that no matter what distribution X was, we will be be 
able to compare its average to the Normal distribution. 

3. Describe how the Central Limit Theorem applies to the estimator you wrote down for 
the unemployment rate by stating what (at least three) conditions are required to hold 
about X in order for your estimator to be asymptotically normally distributed. Are 
these conditions different from those required for the Law of Large Numbers to apply? 

Solution to 3: Since the unemployment rate estimator is just the average of a ran-
dom sample of the Bernoulli random variable of whether someone is unemployed 
or not, we know that its distribution will be Normal. The three conditions that 
are necessary to hold are the same as for the Law of Large Numbers (LLN) to 
hold: (1)i.i.d. random sample, (2) finite mean, and (3) finite variance. 

4. Write down the distribution that your estimator converges to as N cc, where N is 
the number of people you surveyed. 

Solution to 4: We write: 

O(d.- a) +d N(0, a( l  - a) ) .  

5. Write down an estimator for the variance of X .  Briefly comment on the assumptions 
required of the random variable Y = X2 in order for your estimator to be consistent. 

Solution to 5: One estimator of the variance of X would be to make use of the 
variance identity Var(X)  = E[X2]- E[XI2 to construct an estimator using the 
two Method of Moments estimators for the first and second noncentral moments: 

Equivalently, we could use the sample analog to the variance using our estimator 
of the unemployment rate and write: 

- N 

For either of these estimators, we need IE[X2]< cc which is entirely reasonable 
for this example, since X is bounded. However, we also need the variance of the 
variance to be bounded: Var((X - a)') = E[(X - a)4]- IE[(X- a)']' < cc. A 
sufficient condition for this to hold is E[X4]< cc. The nice thing about Bernoulli 
random variables is that 0 < IEIXk+']= E[Xk]< 1 for k > 1. So, in general, we 

- -

can easily bound all of the moments of the Bernoulli random variable. 



6. Now, use the fact that X is a Bernoulli random variable to write down a different 
estimator of the variance of X as a method of moments estimator (i.e. a function of your 
consistent estimator of the unemployment rate). Although the formula looks different, 
are these two estimators numerically identical? Do they need the same assumptions 
to hold for the Law of Large Numbers to apply? 

Solution to 6: Since X is a Bernoulli random variable, we can remember that the 
variance is p(1 -p), where p is the probability of drawing a success or 1 for the 
random variable. A different estimator would be: 

For the Bernoulli random variable, the two estimators are, in fact, numerically 
identical. However, as we used the fact that X2 = X for a Bernoulli random 
variable (i.e. l2= 1 and 0' = 0) in the fourth equation, this result will not 
generally hold for other random variables, although we may be able to similarly 
construct Maximum Likelihood Estimators from Method of Moments estimators. 
As should be expected, since the two estimators are numerically identical, they 
certainly will need the same assumptions to hold for the Law of Large Numbers 
to apply. 

7. Use your estimators for the average unemployment rate and the variance of X :  How 
many people do you need to call if you want your estimator of a to be within 0.002 
(i.e. 0.2% unemployment) with 95% probability? (Assume that since unemployment 
rose from 8.1 to 8.5 from February to March that your expectations are that it will 
rise to 8.7 in April.) 

Solution to 7: This is just a similar power calculation as we did for the last 
problem set where we more rigorously note the conditions necessary for the CLT 
to apply (recognize that it is just an approximation): 



Recognizing that & is just an average, we just plug in the relevant pieces to  the 
above CLT approximation and the estimators: 

where we need to  use our expectations of the unemployment rate this month of 
E[&]= 0.087 to  get an estimate of the variance. Alternatively, we could use 
March's unemployment rate (8.5%) to  get an estimate of the variance. We'll use 
both and see how the sample size differs: 

To see whether the Current Population Survey (CPS), which measures unemploy- 
ment, is using a large enough sample each month, I investigated their website: 
"Each month, 2,200 highly trained and experienced Census Bureau employees in- 
terview persons in the 60,000 sample households for information on the labor force 
activities (jobholding and jobseeking) or non-labor force status of the members of 
these households during the survey reference week (usually the week that includes 
the 12th of the month)." (Source: http://www.bls.gov/cps/cps~htgm.htm.)Thus, 
with 60,000 households, the CPS likely obtains the working status of more than 
75,000 people that are in the labor force in order to  get a tight margin of error on 
their monthly unemployment statistics. However, since they oversample certain 
demographics in order to  say things about subpopulations, they may need even 
more households to obtain a precise estimate of overall unemployment. 
It  should be noted, however, that under usual economic circumstances, where un-
employment rates hover around 5.0%, a 0.2% margin would only require a sample 
of 45,619. Thus, higher unemployment rates actually make precision harder for 
the CPS, since the same level of precision in unemployment rate estimates re- 
quires much larger sample sizes (up until 50% unemployment where the variance 

http://www.bls.gov/cps/cps_htgm.htm


of a Bernoulli random variable is maximized). 
Thus, any time you ever use the unemployment rate for statistical analyses, you 
should remember that these are all measured with error! We don't know the ex-
act unemployment rate, but only know it within a reasonable (-0.2%) margin of 
error! This means that even if we estimate the unemployment rate to be 8.7% in 
April with our sample of 75,000 people, we actually can't be absolutely certain 
that unemployment has gone up from our 8.5% (with a margin of error of about 
0.2%) from our estimate of if 8.7% (also with a margin of error of about 0.2%). 
So, understand the statistics! :) 

Question Two: Unbiasedness v. Consistency 

First, what is the difference between unbiasedness and consistency? Second, prove that 
the sample average, kc:,Xi, is an unbiased estimator of a sample of N i.i.d. random 
variables, XI,...,XN,where E[Xi] = p. Third, show that it is a consistent estimator of p 
under one additional assumption and give the assumption that you need to make. 

Solution: Per the notes, "An estimator Q = XI, ...,X,) is unbiased for 9 if Eo, [Q] = Bo 
for all values of 00." The definition of consistency follows: "For a sample XI,...,X,, we 
say that 6 is a consistent estimator for 9 if as we increase n ,  the estimator converges 
in probability to Oo, i.e. for all E > 0, 

for all values of OO." 
Thus, unbiasedness is a finite-sample argument which says that the average (expected) 
result of an estimator is equal to the true parameter. Consistency, on the other hand, 
says that an estimator will converge to the true parameter as n t co. Consistency 
is sometimes referred to as "asymptotic unbiasedness," although unbiasedness in finite 
samples is not required for consistency. In other words, any bias goes to zero as n + co. 
Proving that the sample average is unbiased is the same thing we've proved time and 
time again: 

Showing that X, +p p just requires a LLN to apply. The only additional assumption 
we need is Var(X)  = a2 < co.With this, we can invoke the LLN and state, for e > 0: 

lim pP (lXn < 6) = 1 
n-00 

which gives us consistency of the sample mean, x,. 



Question Three: Avoiding Vocabulary Ambiguity 

Avoid ambiguity in your understanding and use of similar terms. 

1. Define the term "statistic." Is a statistic a random variable? 

Solution to 1: A statistic is a function of a sample (data) XI, ...,X,. And, a 
function of random variables is also a random variable. 

2. Define the term "estimator." Is an estimator a random variable? What's the difference 
between an estimator and a statistic? Or is this just semantics? 

Solution to 2: An estimator e of 0 is a statistic (i.e. a function of XI, ...,X,), 
8 = 6 ( x I ,...,X,). An estimator is a random variable since it is a statistic which 
is also a random variable. Further, an estimator is a statistic which has a par-
ticular population parameter 0 which it is intended to estimate. Thus, there is a 
difference, although generally the two will be interchanged outside of economics. 

3. Define the term "realization" of an estimator. 

Solution to 3: A realization of an estimator is the evaluation of the estimator 
using a realization of a sample (or a collection of draws from the random variables 
XI,...,X,. This is also called an estimate. 

4. Define the term "estimate." 

Solution to 4: An estimate is the realization of an estimator (the function of the 
realizations of the sample). 

5. Define the "standard deviation" of a random variable, X. 

Solution to 5: The standard deviation of a random variable is d v a r . ( x ) .  

6. Define the "standard error" of an estimator, Q(x). 

Solution to 6: The standard error of an estimator is the standard deviation of the 

estimator: J*. So, we can think of the standard error as the standard 

deviation of the random variable (estimator) B(x). 

Question Four: The Delta Method 

Give the standard error of the estimator oz = kzz1Zf for a standardized random variable 
Z with standardized kurtosis IE[Z4]= h4. Assume that N is "large." (Hint: What is the 
asymptotic distribution of o,?) 



Solution: The standard error of the estimator Qzis just its standard deviation, but we 
just derive the variance first: 

This gives us a standard error of JVar(Bz) = @. And, since Qzis just an average, 

oZ is Normally distributed. 

Now, perform a change of variables to obtain the standard error of the estimator ox = 

$ c%,(x~- ,LL)~for a random variable X with IE[X]= p,  Var(X)  = 02,and standardized 
kurtosis "[(X-/"I4] = 64 

u4 

Solution: The standard error of Qxis very straightforward to obtain. Since X is just 
a location-scale transformation of 2, we just need to use the inverse transformation 
a2  + p = X which gives us the transformation a2Qz= 0 ~ :  

We want to verify this more rigorously: 

Thus, the standard error is = 02@. 



A more general version of obtaining the distribution of transformations of random variables 
that are normally distributed is called the Delta Method: Wikipedia: Delta Method. How-
ever, for this simple, univariate transformation, you should be able to just use the methods 
you've already learned about transformations of random variables. 

Question Five: Maximum Likelihood Estimators 

Maximum likelihood estimators are very commonly used in economics. 

1. Give the likelihood function of a sample of N i.i.d. Poisson random variables, XI,...,X N .  

Solution to 1: We have the joint density f (xl,...,XN) = nzlf(xi)where f(xi)= 

The likelihood function is precisely this joint density:x! 

2. Give the log-likelihood function and simplify. 

Solution to 2: The log-likelihood function is simply the log of the density: 

= -A +xi log (A)- log (xi!) 

= - N A  + log (A)xxi -xlog (xi!) 

3. Take the first order conditions and solve for the maximum likelihood estimator of A. 

Solution to 3: We differentiate the log-likelihood function: 

N N 

ac(Alx) = A + 1 0  (A) x -C log (xi!)ax i=l i=l 

http://en.wikipedia.org/wiki/Delta_method


4. How does the MLE from (3) compare to the Method of Moments (MOM) estimator 
from lecture? 

Solution to  4: The Method of Moments estimator from lecture was exactly 
the same estimator. Thus, the MLE for X is just the sample average. An al-
ternative estimator using the second noncentral moment of the Xi's could be 

1 Ni=J x ~ ~ I x : - h ~ .,=,xi . Do you think this estimator is unbiased? Con-
sistent? However, since it isn't the MLE, it probably is not the most efficient 
estimator (i.e. var(K) > var(K)) .  




