## LECTURE 6: COASE AND CAP-AND-TRADE

Lecture 5 14.42/14.420 Hunt Allcott MIT Department of Economics

### Knowledge Check

- I want to see how the class is doing on understanding Pigouvian taxes.
  - We will do a quick "Knowledge Check."
  - This will be part of your class participation score.
- Please sit in the front
- Begin at 2:35.
- You must hand this paper to me before 2:38:00 by my computer clock.
- I will not accept papers after that time.

#### **Administrative Notes**

- Problem Sets:
  - Mean 35.1 out of 40
  - Standard deviation: 5.2
  - Available in Jennifer's mail folder.
- March 1: Case Study of the Acid Rain Program (Discussion)
- March 3<sup>rd</sup>: Visit to MIT power plant
- March 10<sup>th</sup>: Topics in Cap-and-Trade (Formal Theory)
- No section tomorrow (Jennifer is out of town)
- I will not hold office hours the next two weeks (I am out of town)

## Coase and Cap-and-Trade

- Today:
  - The Cheshire Transaction and the Coase Theorem
  - Cap-and-Trade

#### **The Gavin Power Plant**



Photo by Jeff Lovett on Flickr.

- Owned by American Electric Power (AEP)
- 2.6 GW
  - Enough power for 2 million people
- Original Cost: \$650 million (nominal)
  - Replacement cost: ~\$3 billion (\$nominal 2011)
- FGD Installed 1994/1995
  - Total cost: \$700 million.
- SCR Installed 2001
  - Controls NOx emissions
  - Byproduct: Sulfur Trioxide
  - Total cost was probably ~\$260 million

#### Greenpeace 1984 Protest

Image removed due to copyright restrictions.

#### The Cheshire Transaction

- Property owners receive 3.5x assessed value
  - Outside village: 2x assessed value
- Renters receive \$5k for each year lived in Cheshire, up to \$25k.
- Must sign a health waiver prohibiting them from suing AEP for future health problems
  - Must also sign a confidentiality agreement
- Cheshire residents over age of 71 able to remain in homes rent free until death.
- Original population: 221. Current population: <20</li>
- Total settlement disbursed by AEP: \$20 million
  - Attorneys take about 1/3 of settlement money
  - More info:

http://www.cheshiretransaction.com/powerplant/sub/cng.html

#### Boots Hern

- "The 82 year-old Boots claims she's got a mind of her own. She owns prime real estate in Cheshire, nearly two acres of riverfront between Gavin and other villagers. Under the original buyout proposal Boots was offered \$242,700, not even half as much as others with less property. She is furious that the "Johnny-comelatelys" will get more than her.
  - She is not going to sell, unless her demands are met.
- Boots Hern remained a Cheshire Resident until her passing in February 2008. After the buyout, she became a council member and even the mayor of Cheshire."
  - http://www.cheshiretransaction.com/town/sub/ccharacters.html

# Was the Cheshire Transaction "a Good Thing?"

## Takeaways from Cheshire/Gavin

- The property owners had the right to "more clean air than they had in 2001."
  - We know this because AEP transferred them money
  - We do not know exactly how much more they implicitly had the right to.
- The efficient pollution control decision was made
  - We know this because AEP could have abated instead of compensating
  - This ignores CO2 and other remaining externalities
- The efficient housing allocation probably did not obtain
  - Transfers were a subsidy to movers
  - Too many people probably moved.
- Sometimes it's not obvious who "should" initially have the property right.

#### The Coase Theorem

- Now imagine that AEP Gavin's control costs were low, and the efficient outcome would be to install additional control equipment.
- Would it matter whether we granted the "right to clean air" to the town or to AEP?

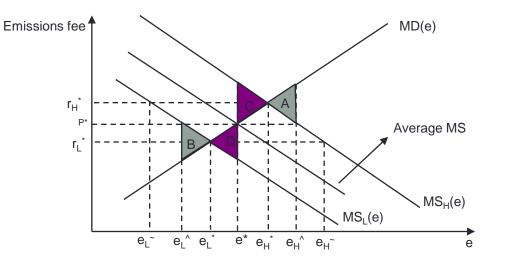
### The Coase Theorem

- Assume a world in which some producers are subject to externalities generated by others.
- Assume also:
  - Perfect information
  - Consumers and producers are price takers
  - There is a costless court system for enforcing agreements
  - Profits and utility maximized
  - No income or wealth effects
  - No transactions costs
- Then:
  - If there are property rights, the efficient allocation will obtain
  - The initial assignment of rights does not matter for efficiency

#### Cap-and-Trade

- A "cap-and-trade" program implements the Coase Theorem at large scale.
  - Allocate a number of "rights to pollute," i.e. "permits" or "allowances."
  - The total number of permits is the "cap."
- Coase Theorem: (Under the stated conditions), the initial allocation of rights does not matter.
- The lowest-cost allocation of emission abatement will be achieved.

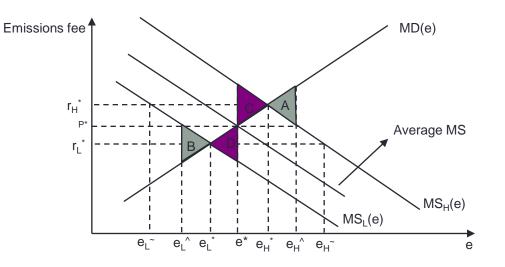
### Example: U.S. Acid Rain Program


- Concern during 1980s about acid rain
- Clean Air Act Amendments of 1990: reduce annual sulfur dioxide emissions from 20 to 10 million tons.
  - Covered facilities: large power plants, refineries, and steel mills.
- Allocate nearly 10 million rights to existing polluters
  - Auction some others
- Responses:
  - Larger plants put on Flue Gas Desulfurization (FGD, or "scrubbers")
  - Smaller plants switched to low-sulfur coal.
  - Some plants did neither.

## Theoretical Equivalence of Prices and Quantities

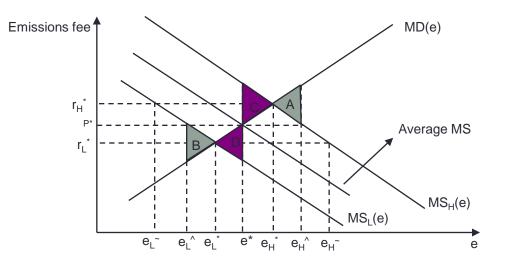
• Do policymakers use quantities or prices more? Why?

#### Prices vs. Quantities (Weitzman 1974)


#### **Regulation with Unknown Control Costs**



Consider a regulator who can use permits or fees and knows the MD function but not the firm's cost structure. There is one firm and it knows its own MS function.


- The grey triangles represent deadweight loss from price regulation
- The purple triangles represent deadweight loss from quantity regulation.
- In the absence of uncertainty, we would have efficiency regardless of fees or permits.
- If the regulator chooses e\*, then e\* is emitted regardless of the cost curves;
- If the regulator chooses  $p^*$ , then  $e_l^{\wedge}$  or  $e_{H^{\wedge}}^{\wedge}$  will be emitted.

#### **Regulation with Unknown Control Costs**



- Consider the high cost world:
  - Now e<sub>H</sub><sup>\*</sup> is optimal.
  - Imposing e<sup>\*</sup> gives a deadweight loss (triangle C) because not enough pollution is produced— $MS_H > MD$  at e<sup>\*</sup>.
  - Imposing p\* gives a deadweight loss (triangle A) because too much pollution is produced—MS<sub>H</sub> < MD.</li>
- A similar analysis holds for the L firm.

#### **Regulation with Unknown Control Costs**



- Depending on the slope of the MS and MD functions, we can obtain cases where quantity regulation is relatively better or worse— Mentally rotate the MD function clockwise around (e\*,p\*) and notice that the loss from a fee is reduced and the loss from a quantity regulation is increased; as the MD curve approaches horizontal, the optimal choice changes.
- $\rightarrow$  A similar result can be obtained by rotating MS curves clockwise.

#### Prices vs. Quantities with Uncertainty

- **Proposition** (Weitzman 1974):
- With uncertainty over MCs of emissions, quantity regulations are preferred if MD are more steeply sloped than MS from emissions.
- Emission fees are preferred if MS are more steeply sloped than MD.

#### Market Power in Emissions Markets

- One of the assumptions of the Coase Theorem was that "producers and consumers are price takers."
- What if one firm is a large share of the emissions market?
- How does the story depend on initial allocations?
- Last class, we decided that we didn't want to grandfather permits to entrants, because this would be a subsidy that induces supra-optimal entry. How does this affect that story?

#### Takeaways

- Today we covered perhaps the two most fundamental papers in environmental economics: Weitzman (1974) and Coase (1960).
- Coase Theorem:
  - · Nice theoretical result about how property rights give the efficient outcome
  - Transactions costs keep it from being applicable
  - Policy implication: assign property rights and keep transactions costs low!
- Cap-and-Trade
  - Theoretically equivalent to taxes
  - Different expected welfare gains under uncertainty
  - (In practice) different distributional consequences
- Next class: Policy Application: U.S. Acid Rain Program
- Read:
  - Schmalensee et al 1998
  - Stavins 1998
  - <u>http://online.wsj.com/article/SB10001424052748704258604575360821005676554.html#articleTabs%3Darticle</u>
  - <u>http://www.epa.gov/airmarkets/progress/ARP09\_2.html</u>
  - <u>http://www.epa.gov/airmarkets/progress/NBP\_2.html</u>

14.42 / 14.420 Environmental Policy and Economics Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.