

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

SP.772 FINAL EXAMINATION

WEDNESDAY, MAY 11, 2005

INSTRUCTIONS: You have three hours to complete this exam. There are 230 total possible
points. Good luck.

Name:

Java Basics: Expressions and Statements (10 points).. 2
Compiling and Executing Java Code (20 points) ... 3
Methods (25 points) .. 5
Writing a Basic Class (35 points) ... 6
Inheritance, Access Control, and Field Modifiers (35 points).. 8
Implementing an Interface (40 points).. 10
Exceptions (25 points) .. 12
I/O and Parsing (25 points) ... 13
Swing (15 points).. 14
APPENDIX: Specifications of Selected Java Classes ... 15

public abstract class InputStream extends Object .. 15
public abstract class OutputStream extends Object .. 15
public abstract class Reader extends Object .. 16
public abstract class Writer extends Object .. 16
public class StringTokenizer extends Object implements Enumeration 17

Java Basics: Expressions and Statements (10 points)

1. (4 pts) Given the declaration int x = 9, what is the value of the following expressions?

x / 3.0 / 6 * 2 =

14 % (x / 5 + 1) =

--x + ++x =

--x == x++ =

1

0

17

true

2. (6 pts) Rewrite the following code segment using if-else statements. Assume that
grade has been declared as a type char.

switch (grade) {
 case 'A':
 System.out.println("Excellent");
 case 'B':
 System.out.println("Good");
 case 'C':
 System.out.println("OK");
 default:
 System.out.println("Let's talk");
}

if (grade == ‘A’) System.out.println(“Excellent”);
if (grade == ‘A’ || grade == ‘B’) System.out.println(“Good”);
if (grade == ‘A’ || grade == ‘B’ || grade == ‘C’)
System.out.println(“OK”);
System.out.println(“Let’s talk”);

Other solutions possible. Full credit given for semantically correct solutions.
5 points for correctly translating as if there were break statements.

Partial Credit:
+5 – Realize there are no break statements

2

Compiling and Executing Java Code (20 points)

The questions in this section refer to the incorrect Echo program below. The Echo program
accepts arguments from the command line and prints them (echoes them) to the screen. Line
numbers are included for your reference and are not part of the program code. You may find it
helpful to read all of the questions before beginning this section.

1 public class Echo {
2
3 public static void main(String[] args) {
4 print(args);
6 }
7
8 static void print(String[] greetings) {
9 for (int i = 0; i <= args.length; i++)
10 System.out.print(greetings[i] + " ");
11 return true;
12 }
13 }

1. (4 pts) The Echo program will not compile as written; there are two compile-time errors
in the body of the print method. Correct these errors by rewriting the body below.

static void print(String[] greetings) {

}

for (int i = 0; i <= greetings.length; i++)
 System.out.print(greetings[i] + “ “);
return; // may omit line entirely

Assume you corrected the errors and want to run the program.

2. (2 pts) What do you name the file (what do you save the file as)?

 Echo.java

3

3. (2 pts) What command do you type to compile class Echo (from the command
prompt)?

javac Echo.java

4. (2 pts) What is the name of the file created when you compile class Echo?

Echo.class

5. (2 pts) Now that it is compiled, what command can you type to run the program?

java Echo

When you run it, the Java interpreter gives the following run-time error:

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 0
 at Echo.print(Echo.java:10)
 at Echo.main(Echo.java:4)

6. (2 pts) Which line (number) is actually responsible for the error?

9

7. (4 pts) Correctly rewrite this line:

for (int i = 0; i < greetings.length; i++)

Assume you save the changes, recompile, and run your program successfully.

8. (2 pts) What command do you type to run the program and produce the following output:
This test is hard

java Echo This test is hard (with quotation marks okay)

4

Methods (25 points)

The questions refer to the program Quiz below.

public class Quiz {

 public static String[] mystery(String[] args) {
 int i = 0;
 while (i < (args.length + 1)/2) {
 String hold = args[i];
 args[i] = args[args.length - (++i)];

 args[args.length - i] = hold;
 }
 return args;
 }

 public static void main(String[] args) {
 String[] postMystery = mystery(args);

 for (int i = 0; i < postMystery.length; i++) {
 System.out.print(postMystery[i] + " ");
 }
 }
}

1. (10 pts) What does the mystery method do?

2. (15
beha

p

 }
reverses the array args [in constant space]

pts) Write a side-effect free implementation of mystery with the same signature and
vior, as started below. (Hint: your implementation should not mutate its argument.)

ublic static String[] mystery(String[] args) {

String[] newArray = new String[args.length];

for (int i = 0; i < args.length; i++)
 newArray[args.length – 1 – i] = args[i];

return newArray;

Solution must be different from code provided.
Full credit for any semantically correct solution.

Partial Credit:
+3 – correct return type
NO other partial credit.

5

6

Writing a Basic Class (35 points)

1. (5 pts) On the next page begin a class that will represent a football team in a package called

football. We want to be able to access the class FootballTeam from any package.

2. (4 pts) Add fields for the following properties, which cannot be accessed outside of the class.

name of the team
number of wins
number of losses

3. (4 pts) Write a constructor that accepts the name of the team, the number of wins, and the number

of losses as arguments and sets the class properties to those values. This constructor should be
accessible from any package.

4. (4 pts) Write a second constructor that takes only the name of the team as an argument. This

constructor should set the name of the team to the argument and the set the number of wins and
losses to 0. (Hint: The body of this constructor should be one line and it should call the first
constructor.) This constructor should be accessible from any package.

5. (4 pts) Write methods that return the name of the team, the number of the wins, and the number

of losses. These methods should be accessible from any package.

6. (4 pts) Next write a method to increase the numbers of wins by 1 and another method to increase

the number of losses by one. These methods should only be accessible from inside the
football package.

7. (4 pts) Write a method that returns true when a team has a “good record,” meaning the team has

more wins than losses. This method should be accessible from any package.

8. (6 pts) Finally, add a main method to the FootballTeam class. In the main method,
construct a FootballTeam named "AITI" with 3 wins and 5 losses. Call the method that
returns true when the team has a good record and print out the result. Now make three calls to the
method that increases the number of wins by 1. Lastly, call the "good record" method again and
print out the result.

7

/** Question 1 (5 pts)
 * -2 for no package statement
 * -2 for no public keyword
 * -1 for misspelled or mis-capitalized class or package name.
 **/
package football;

public class FootballTeam {

 /** Question 2 (4 pts)
 * -2 if any field is not private
 * -2 if type of any field is wrong

 **/
 ing name; private Str
 wins; private int
 private int losses;

 /** Question 3 (4 pts)
 * -1 missing public keyword
 * -1 wrong parameter types or number
 * -2 for incorrect body
 **/
 public FootballTeam (String name, int wins, int losses) {
 this.name = name;
 this.wins = wins;
 this.losses = losses;
 }

 /** Question 4 (4 pts)
 * -1 missing public keyword
 * -1 wrong parameter types or number
 * -2 for incorrect body
 **/
 public FootballTeam (String name) {
 this(name, 0, 0);
 }

 /** Question 5 (4 pts)
 * -2 if any method has wrong signature
 * -1 if any method missing
 * -1 for wrong body(s)

 **/
ng getN return name public Stri ame() { ; }

 getWins() return wins; public int { }
 public int getLosses() { return losses; }

 /** Question 6 (4 pts)
 * -2 if any method has wrong signature
 * -2 for wrong body(s)
 **/
 win(wins++; } void) {
 void lose() { losses++; }

 /** Question 7 (4 pts)
 * -2 for wrong signature
 * -2 for wrong body
 **/
 public boolean hasGoodRecord() {
 return (wins > losses);
 }

 /** Question 8 (6 pts)
 * -2 for wrong signature
 * -4 maximum for failure to follow specifications
 **/
 public static void main(String[] args) {

 FootballTeam aiti = new FootballTeam("AITI", 3, 5);

System.out.println(aiti.hasGoodRecord());

for (int i = 0; i < 3; i++)

aiti.win();

 System.out.println(aiti.hasGoodRecord());

}

}

8

Inheritance, Access Control, and Field Modifiers (35 points)

The first four questions reference three error-free Java files, which are printed on the next page:
Shape.java, Rectangle.java, and Square.java. Each is in a separate package.

1. (5 pts) Add import statements to the files so that they compile.

2. (8 pts) Add a field to the Square class to count the number of Squares created in the

program.

3. (10 pts) Implement the Square constructor, remembering to update your count variable from

question 14.

4. (12 pts) Referencing your completed classes, circle the output of the following code

segments or circle "error" if the code would generate a compiling or execution error.

Square s = new Square(3);
System.out.println(s.toString());

square rectangle error

Rectangle r = new Square(3);
System.out.println(r.toString());

square rectangle error
Shape p = new Square(3);
System.out.println(p.toString());

square rectangle error

Square s = new Square(3);
System.out.println(s.area());

3 9 error
Rectangle r = new Rectangle(3, 3);
System.out.println(r.area());

3 9 error

Shape p = new Shape(3, 3);
System.out.println(p.area());

3 9 error

5. Shape.java

package shapes;

//to do: Add import statement, if necessary.

/** -1 for putting an import statement here **/

public interface Shape {
 public int area();
}

Rectangle.java

Square.java

package squares;

//to do: Add import statement, if necessary.
/** -1 for failing
import rectangles;

to import package rectangles **/

/** -1 for fail
import shapes;

ing to import package shapes **/

public class Square extends Rectangle implements Shape {

 //to do: Declare field to count number of squares created
 /** Question 14 (8 pts)
 * -2 if count not private
 * -4 if keyword static is missing
 * -2 if type is not int
 **/
 private static int count = 0;

 public Square(int size) {

 //to do: Implement constructor; remember to update count field
 /** Question 15 (10 pts)
 * -5 for wrong call to superclass constructor
 * -5 for not updating the global counter
 **/
 super(size, size);
 count++;
 }

 public String toString() { return "square"; }
}
package rectangles;

//to do: Add import statement, if necessary.
/** -2 for failing to import package shapes **/
import shapes;

public abstract class Rectangle implements Shape {

 private int width, height;

 public Rectangle(int width, int height) {
 this.width = width;
 this.height = height;
 }

 public int area() { return width * height; }

 public toString() { return "rectangle"; }
}

9

10

Implementing an Interface (40 points)

1. Write a class that implements the Queue interface, as shown below. A queue is a data

structure that accepts data and then returns it in the order in which it was received (first-in,
first-out order). Items are added to the tail of the queue and removed from the head.

public interface Queue {

 public int size(); //Returns number of objects in queue
 public boolean isEmpty(); //Returns true if queue is empty

 //Adds an item to the tail of the queue
 public void enqueue(Object o);

 //Removes and returns the item from the head of the queue
 public Object dequeue();

}

Your queue implementation must be accessible and usable from any package. However, any
attempt to extend your class should produce a compile-time error.

A queue may be used as follows:

Sample main method

public static void main(String[] args) {
 Queue line = new AITIQueue();
 line.enqueue(“Hello”);
 line.enqueue(“World”);
 System.out.println(line.dequeue());
 System.out.println(line.dequeue());
}

Output

Hello
World

//3 pts for “implements Queue”
//3 pts for keyword final
public final class QueueClass implements Queue {

//3 pts for private field
//3 pts for correct initialization
//either
private List myQueue = new ArrayList();

in declaration or in a no-argument constructor.

 ctor //2 pts for a public constru
 public QueueClass() {}

 //2 pts for correct signature

//3 pts for semantically
public int size() {

 correct body

 return myQueue.size();
}

//2 pts for correct signature
//3 pts for semantically correct
public boolean isEmpty() {

body

 return (myQueue.size()==0);
}

//2 pts for correct signature
//6 pts for semantically correct body
public void enqueue(Object o) {
 myQueue.add(o);
}

//2 pts for correct signature
//6 pts for semantically correct
public Object dequeue() {

 body

 if (!isEmpty())

}

return myQueue.remove(0);

}

11

Exceptions (25 points)

1. (8 pts) Describe two differences between checked and unchecked exceptions.

• Checked Exceptions (2 pts each)
o subclass of Exception
o must be handled by programmer (either with try-catch block or declared in

method signature as thrown)
• Unchecked Exceptions (2 pts each)

o subclass of RuntimeException
o program will compile without explicit handling of unchecked exceptions

Award 1 pt partial credit for each other correct difference (no more than 2 differences per
exception type)

2. (8 pts) Change the divide method so that it throws an IllegalArgumentException
with an appropriate message if b is zero.

public static double divide(double a, double b) {

 if (b==0)
 throw new IllegalArgumentException(“cannot divide by 0”);

 return a / b;
}

-2 pts for no message, i.e. missing “cannot divide by 0”
-4 pts for incorrect syntax (missing new, etc.)
-2 pts discretionary (really useless message, etc.)

3. (9 pts) Change this method so that it catches the IllegalArgumentException thrown
by divide and prints the message “the divisor is zero” if it is thrown.
public static void printQuotient(double a, double b) {

 try {
 System.out.println(divide(a, b));
 } catch(IllegalArgumentException e) {
 System.out.println(“the divisor is zero”);
 }
}

+3 pts – used (or attempted to use) try-catch block
+2 pts – correct syntax of try-catch block
+2 pts – catches IllegalArgumentException
+2 pts – prints correct message (-1 if prints an incorrect msg)
12

I/O and Parsing (25 points)

1. (4 pts) In order to read and write files in Java, you should import which packages (choose all

that apply)?

 a) javax.swing (+1 pt for not choosing)
 b) java.util (+1 pt for not choosing)
 c) java.awt (+1 pt for not choosing)
 d) java.io (+1 pt for choosing)

2. (4 pts) To read from a character stream, you should use a class that extends which of the

following abstract classes (choose all that apply)?

 a) InputStream (+1 pt for not choosing)
 b) OutputStream (+1 pt for not choosing)
 c) Reader (+1 pt for choosing)
 d) Writer (+1 pt for not choosing)

3. (4 pts) To write to a byte stream, you should use a class that extends which of the following

abstract classes (choose all that apply)?

 a) InputStream (+1 pt for not choosing)
 b) OutputStream (+1 pt for choosing)
 c) Reader (+1 pt for not choosing)
 d) Writer (+1 pt for not choosing)

4. (13 pts) Complete the method sumInts below. It expects a String argument containing

integers separated by the @ character and should return the sum of those integers. For
example, when passed the String "34@1@100@5", it should return 140. You can
assume java.util.* has been imported. (Hint: use a StringTokenizer.)

public static int sumInts(String intString) {

 //4 pts for correct Tokenizer construction
 StringTokenizer st= new StringTokenizer(intString,”@”);

 ializing sum to 0; //2 pts for init
 int sum=0;

 //5 pts for semantically correct loop

while (st.hasMoreTokens()) {
 sum += Integer.parseInt(st.nextToken())

}

//2 pts for cor

 return sum;
rect return type (must be int)

}

13

Swing (15 points)

1. (4 pts) To create graphical interfaces in Java, you should import which packages (choose all

that apply)?

 a) java.util (+1 pt for not choosing)
 b) java.awt.event (+1 pt for choosing)

c) javax.swing (+1 pt for choosing)
 d) java.io (+1 pt for not choosing)

2. (2 pts) Which corner of the screen has the pixel coordinates (0, 0)?

 a) Top-left (+2 pts, no partial credit)
 b) Top-right

c) Bottom-left
 d) Bottom-right

3. (3 pts) Name one Layout Manager and briefly describe how it lays out its components.

14

Either describe FlowLayout or BorderLayout. Other answers may be valid and should
be checked in API.

o FlowLayout

o Lays components out from left to right, top to bottom. (full credit for this
explanation or a logically equivalent one)

o BorderLayout
o Lays components out in five zones: North South Center East West

4. (6 pts, 1 pt for each correct match) Match the following Swing component with what it is
used for:

Component Use

1. JFrame B A) Generated when a JButton is clicked

2. JComponent D B) An application window

3. JLabel F C) Provides space for the user to type into

4. JPanel E D) All the Swing components inherit from this class

5. JTextField C E) An intermediate container

6. ActionEvent A F) Displays text that the user cannot edit

15

APPENDIX: Specifications of Selected Java Classes

public abstract class InputStream extends Object
 int available()

 Returns the number of bytes that can be read (or skipped over) from this input
stream without blocking by the next caller of a method for this input stream.

 void close()
 Closes this input stream and releases any system resources associated with the
stream.

 void mark(int readlimit)
 Marks the current position in this input stream.

 boolean markSupported()
 Tests if this input stream supports the mark and reset methods.

abstract
 int

read()
 Reads the next byte of data from the input stream.

 int read(byte[] b)
 Reads some number of bytes from the input stream and stores them into the
buffer array b.

 int read(byte[] b, int off, int len)
 Reads up to len bytes of data from the input stream into an array of bytes.

 void reset()
 Repositions this stream to the position at the time the mark method was last
called on this input stream.

 long skip(long n)
 Skips over and discards n bytes of data from this input stream.

public abstract class OutputStream extends Object
 void close()

 Closes this output stream and releases any system resources associated with
this stream.

 void flush()
 Flushes this output stream and forces any buffered output bytes to be written
out.

 void write(byte[] b)
 Writes b.length bytes from the specified byte array to this output stream.

 void write(byte[] b, int off, int len)
 Writes len bytes from the specified byte array starting at offset off to this
output stream.

abstract
 void

write(int b)
 Writes the specified byte to this output stream.

http://java.sun.com/j2se/1.4.2/docs/api/java/io/InputStream.html#available()
http://java.sun.com/j2se/1.4.2/docs/api/java/io/InputStream.html#close()
http://java.sun.com/j2se/1.4.2/docs/api/java/io/InputStream.html#mark(int)
http://java.sun.com/j2se/1.4.2/docs/api/java/io/InputStream.html#markSupported()
http://java.sun.com/j2se/1.4.2/docs/api/java/io/InputStream.html#read()
http://java.sun.com/j2se/1.4.2/docs/api/java/io/InputStream.html#read(byte[])
http://java.sun.com/j2se/1.4.2/docs/api/java/io/InputStream.html#read(byte[], int, int)
http://java.sun.com/j2se/1.4.2/docs/api/java/io/InputStream.html#reset()
http://java.sun.com/j2se/1.4.2/docs/api/java/io/InputStream.html#skip(long)
http://java.sun.com/j2se/1.4.2/docs/api/java/io/OutputStream.html#close()
http://java.sun.com/j2se/1.4.2/docs/api/java/io/OutputStream.html#flush()
http://java.sun.com/j2se/1.4.2/docs/api/java/io/OutputStream.html#write(byte[])
http://java.sun.com/j2se/1.4.2/docs/api/java/io/OutputStream.html#write(byte[], int, int)
http://java.sun.com/j2se/1.4.2/docs/api/java/io/OutputStream.html#write(int)

16

public abstract class Reader extends Object
abstract

 void
close()
 Close the stream.

 void mark(int readAheadLimit)
 Mark the present position in the stream.

 boolean markSupported()
 Tell whether this stream supports the mark() operation.

 int read()
 Read a single character.

 int read(char[] cbuf)
 Read characters into an array.

abstract
 int

read(char[] cbuf, int off, int len)
 Read characters into a portion of an array.

 boolean ready()
 Tell whether this stream is ready to be read.

 void reset()
 Reset the stream.

 long skip(long n)
 Skip characters.

public abstract class Writer extends Object
abstract

 void
close()
 Close the stream, flushing it first.

abstract
 void

flush()
 Flush the stream.

 void write(char[] cbuf)
 Write an array of characters.

abstract
 void

write(char[] cbuf, int off, int len)
 Write a portion of an array of characters.

 void write(int c)
 Write a single character.

 void write(String str)
 Write a string.

 void write(String str, int off, int len)
 Write a portion of a string.

http://java.sun.com/j2se/1.4.2/docs/api/java/io/Reader.html#close()
http://java.sun.com/j2se/1.4.2/docs/api/java/io/Reader.html#mark(int)
http://java.sun.com/j2se/1.4.2/docs/api/java/io/Reader.html#markSupported()
http://java.sun.com/j2se/1.4.2/docs/api/java/io/Reader.html#read()
http://java.sun.com/j2se/1.4.2/docs/api/java/io/Reader.html#read(char[])
http://java.sun.com/j2se/1.4.2/docs/api/java/io/Reader.html#read(char[], int, int)
http://java.sun.com/j2se/1.4.2/docs/api/java/io/Reader.html#ready()
http://java.sun.com/j2se/1.4.2/docs/api/java/io/Reader.html#reset()
http://java.sun.com/j2se/1.4.2/docs/api/java/io/Reader.html#skip(long)
http://java.sun.com/j2se/1.4.2/docs/api/java/io/Writer.html#close()
http://java.sun.com/j2se/1.4.2/docs/api/java/io/Writer.html#flush()
http://java.sun.com/j2se/1.4.2/docs/api/java/io/Writer.html#write(char[])
http://java.sun.com/j2se/1.4.2/docs/api/java/io/Writer.html#write(char[], int, int)
http://java.sun.com/j2se/1.4.2/docs/api/java/io/Writer.html#write(int)
http://java.sun.com/j2se/1.4.2/docs/api/java/io/Writer.html#write(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4.2/docs/api/java/io/Writer.html#write(java.lang.String, int, int)
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html

17

public class StringTokenizer extends Object implements Enumeration
StringTokenizer(String str)
 Constructs a string tokenizer for the specified string.
StringTokenizer(String str, String delim)
 Constructs a string tokenizer for the specified string.
StringTokenizer(String str, String delim, boolean returnDelims)
 Constructs a string tokenizer for the specified string.

 int countTokens()
 Calculates the number of times that this tokenizer's nextToken method can be
called before it generates an exception.

 boolean hasMoreElements()
 Returns the same value as the hasMoreTokens method.

 boolean hasMoreTokens()
 Tests if there are more tokens available from this tokenizer's string.

 Object nextElement()
 Returns the same value as the nextToken method, except that its declared
return value is Object rather than String.

 String nextToken()
 Returns the next token from this string tokenizer.

 String nextToken(String delim)
 Returns the next token in this string tokenizer's string.

http://java.sun.com/j2se/1.4.2/docs/api/java/util/StringTokenizer.html#StringTokenizer(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/StringTokenizer.html#StringTokenizer(java.lang.String, java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/StringTokenizer.html#StringTokenizer(java.lang.String, java.lang.String, boolean)
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/StringTokenizer.html#countTokens()
http://java.sun.com/j2se/1.4.2/docs/api/java/util/StringTokenizer.html#hasMoreElements()
http://java.sun.com/j2se/1.4.2/docs/api/java/util/StringTokenizer.html#hasMoreTokens()
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/StringTokenizer.html#nextElement()
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/StringTokenizer.html#nextToken()
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/StringTokenizer.html#nextToken(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html

MIT OpenCourseWare
http://ocw.mit.edu

EC.S01 Internet Technology in Local and Global Communities
Spring 2005-Summer 2005

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

