
MIT OpenCourseWare
http://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

11/16/2008

1

Concurrency

Rob Miller
Fall 2008

© Robert Miller 2008

Concurrency
Multiple computations running at the same time

Concurrency is everywhere, whether we like it or not

Memory

Concurrency is useful, too

Network

Multiple processors in a computer
(or multiple cores in a single chip)

Multiple computers in a network

y ,
• Splitting up a computation into concurrent pieces is often faster
• Many apps must handle multiple simultaneous users (e.g. web sites)
• Even single-user applications are better with concurrency (e.g. Eclipse

compiling your Java code in the background while you’re editing it)

© Robert Miller 2008

Models for Concurrent Programming
Shared Memory

Analogy: two processors in a computer, sharing the same physical memory

Concurrent modules A and B

Message Passing
Analogy: two computers in a network communicating by network

A B

Shared memory

interact by reading & writing shared
state in memory

Analogy: two computers in a network, communicating by network
connections

A B
A and B interact by sending
messages to each other through
a communication channel

© Robert Miller 2008

Shared Memory Example
Four customers using cash machines simultaneously

Shared memory model – each cash machine reads and writes the account
balance directly

A B C DCash
machines

deposit $100
to account 1

withdraw $100
from account 2

deposit $100
to account 1

get balance
of account 1

Shared memoryBank $50 $200 $50

account 1 account 2 account 3

© Robert Miller 2008

11/16/2008

2

Race Condition
Suppose A and C run at the same time

get balance $50
add deposit + $100
write back total $150

get balance $50
add deposit + $100
write back total $150

A C

Neither answer is right!

This is an example of a race condition
A race condition means that the correctness of the program depends on
the relative timing of events in concurrent computations
• “A is in a race with C”
Some interleavings of events may be OK, e.g.:
but other interleavings produce wrong answers

get balance $50
add deposit + $100
write back total $150

A

but other interleavings produce wrong answers

Correctness of a concurrent
program should not depend on
accidents of timing

Race conditions are nasty bugs -- may be rarely observed, hard to
reproduce, hard to debug, but may have very serious effects

get balance $150
add deposit + $100
write back total $250

C

© Robert Miller 2008

Synchronization
A and C need to synchronize with each other

Locks are a common synchronization mechanism
Holding a lock means “I’m changing this; don’t touch it right now”
Suppose C acquires the lock first; then A must wait to read and write the Suppose C acquires the lock first; then A must wait to read and write the
balance until C finishes and releases the lock
Ensures that A and C are synchronized, but B can run independently on a
different account (with a different lock)

A B C DCash
machines

Shared memoryBank $50 $200 $50

account 1 account 2 account 3

C B (free)

waiting for lock
waiting for lock

lock holder
© Robert Miller 2008

Deadlocks
Suppose A and B are making simultaneous transfers

A transfer between accounts needs to lock both accounts, so that money
can’t disappear from the system
A and B each acquire the lock on the “from” accountA and B each acquire the lock on the from account
Now each must wait for the other to give up the lock on the “to” account
Stalemate! A and B are frozen,
and the accounts are locked up.

“Deadly embrace”
Deadlock occurs when concurrent
modules are stuck waiting for each

A B
transfer $100
from account 1
to account 2

transfer $200
from account 2
to account 1

other to do something
A deadlock may involve more than
two modules (e.g., a cycle of
transfers among N accounts)
You can have deadlock without
using locks – example later

Shared
memory

account 1 account 2

A B

© Robert Miller 2008

Lock Granularity
Preventing the deadlock

One solution is to change the locking granularity – e.g. use one lock on
the entire bank, instead of a lock on each account

Choosing lock granularity is hard

$50 $200 $50 $50 $200 $50

one lock per account one lock for the whole bank

g g y
If locking is too coarse, then you lose concurrency (e.g. only one cash
machine can run at a time)
If locking is too fine, then you get race conditions and/or deadlocks
Easy to get this wrong

© Robert Miller 2008

11/16/2008

3

Message Passing Example
Modules interact by sending messages to each other

Incoming requests are placed in a queue to be handled one at a time
Sender doesn’t stop working while waiting for an answer to its request; it
handles more requests from its own queuehandles more requests from its own queue
Reply eventually comes back as another message

A B C D
deposit $100
to account 1

withdraw $100
from account 2

deposit $100
to account 1

get balance
of account 1

get bal

Account 1
bal: $50

Account 2
bal: $200

Account 3
bal: $50

dep $100

dep $100

wdrw $100

g
queue for
Account 1

Accounts are
now modules,
not just memory locations

© Robert Miller 2008

Message Passing Has the Same Risks
Message passing doesn’t eliminate race conditions

Suppose the account state machine supports get-balance and withdraw
operations (with corresponding messages)
Can Alice and Bob always stay out of the OVERDRAWN state?Can Alice and Bob always stay out of the OVERDRAWN state?

Alice Bob
get-balance
if balance > $75,
withdraw $75

get-balance
if balance > $50,
withdraw $50

Account
b l $100

OK OVERDRAWN

withdraw
withdraw

get-
balance

Lesson: need to carefully choose the atomic (indivisible) operations of the
state machine – withdraw-if-sufficient-funds would be better

Message-passing can have deadlocks too
Particularly when using finite queues that can fill up

bal: $100 balance

© Robert Miller 2008

Concurrency Is Hard to Test
Poor coverage

Recall our notions of coverage
• all states, all transitions, or all paths through a state machine

Given two concurrent state machines (with N states and M states) the Given two concurrent state machines (with N states and M states), the
combined system has N x M states (and many more transitions and paths)
As concurrency increases, the state space explodes, and achieving sufficient
coverage becomes infeasible

Poor reproducibility
Transitions are nondeterministic, depending on relative timing of events
that are strongly influenced by the environment
• Delays can be caused by other running programs, other network traffic,

operating system scheduling decisions, variations in processor clock
speed, etc.

Test driver can’t possibly control all these factors
So even if state coverage were feasible, the test driver can’t reliably
reproduce particular paths through the combined state machine

© Robert Miller 2008

Use Message Passing in 6.005
We’ll focus on message passing, not shared memory

Locking strategy for shared-memory paradigm is hard to get right
Message-passing paradigm often aligns directly with the real-world
workflow of a problemworkflow of a problem
But message passing is less suited to some problems, e.g. a big shared data
structure

© Robert Miller 2008

11/16/2008

4

Threads
A thread is a locus of control (i.e. program counter + stack, representing
a position in a running program)
• Simulates a fresh processor running the same program in a different

place
A process always has at least one thread (the main thread)
Threads can share any memory in the process, as long as they can get a
reference to it
Threads must set up message passing explicitly (e.g. by creating queues)

Process

T1 T2

Shared
memory

© Robert Miller 2007

Time Slicing
How can I have many concurrent threads with only one
or two processors in my computer?

When there are more threads than processors, concurrency is simulated
by time slicing (processor switches between threads)by time slicing (processor switches between threads)
Time slicing happens unpredictably and nondeterministically

T1 T2 T3
T1

T2

T3

T1
T2

a thread may
be paused and
resumed at
any time

© Robert Miller 2007

Threads in Java
A thread is represented by java.lang.Thread object

To define a thread, either override Thread or implement Runnable
T1 extends Thread R1 implements Runnable

Thread lifecycleThread lifecycle
Starting arguments can be given to the constructor
new T1(arg1, ...) new Thread(new R1(arg1, ...))

Thread is spawned by calling its start() method
New thread starts its life by calling its own run() method
Thread dies when run() returns or throws an uncaught exception

© Robert Miller 2007

Message Passing with Threads
Use a synchronized queue for message-passing between
threads

interface java.util.concurrent.BlockingQueue is such a queue

t

T1 T2
put

take

SOME FULL

T3put

put put

taketake

put

take

EMPTY

no take transition in EMPTY state, so a
thread that tries to take from an empty

ArrayBlockingQueue is a fixed-size queue that uses an array representation
LinkedBlockingQueue is a growable queue (no FULL state) using a linked-
list representation

© Robert Miller 2007

thread that tries to take from an empty
queue must block (wait) until it can

11/16/2008

5

Case Study: Photo Organizer
What happens when the UI displays a large album?

© Robert Miller 2008

Mouse and keyboard events are accumulated in an
event queue

Event loop reads an input event from the queue and dispatches it to
listeners on the view hierarchy

Concurrency in GUIs

listeners on the view hierarchy
In Java, the event loop runs on a special event-handling thread, started
automatically when a user interface object is created

Swing event-handling thread

Mouse

Keyboard event queue

Event loop

view hierarchy

Keyboard event queue

main thread

Main

© Robert Miller 2007

Java Swing Is Not Threadsafe
The view hierarchy is a big meatball of shared state

And there’s no lock protecting it at all
It’s OK to access user interface objects from the event-handling thread
(i.e., in response to input events)(i.e., in response to input events)
But the Swing specification forbids touching – reading or writing – any
Component objects from a different thread
• See “Threads and Swing”,

http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html
• The truth is that Swing’s implementation does have one big lock

(Component.getTreeLock()) but only some Swing methods use it (e.g.
layout)layout)

© Robert Miller 2007

Message Passing Via the Event Queue
The event queue is also a message-passing queue

To access or update Swing objects from a different thread, you can put a
message (represented as a Runnable object) on the event queue
SwingUtilities.invokeLater(new Runnable() { SwingUtilities.invokeLater(new Runnable() {

public void run() { content.add(thumbnail); ...} });
The event loop handles one of these pseudo-events by calling run()

Swing thread

Mouse

Keyboard

event queue

Event loop

Keyboard

main thread

main()
display thread

DisplayThread
© Robert Miller 2007

11/16/2008

6

Thread Safety
BlockingQueue is itself a shared state machine

But it’s OK to use from multiple threads because it has an internal lock
that prevents race conditions within the state machine itself
• So state transitions are guaranteed to be atomicSo state transitions are guaranteed to be atomic
• This is done by the Java synchronized keyword

Swing thread

BlockingQueue

BlockingQueue interface

EMPTY SOME FULL

put putput

take

put

BlockingQueue is therefore thread-safe (able to be called by multiple
threads safely without threat to its invariants)
HashSet is not thread-safe; neither is the Swing view hierarchy

DisplayThread
taketake take

take

© Robert Miller 2007

Other Thread-Safe Classes
Lists, Sets, and Maps can be made thread-safe by a
wrapper function

t = Collections.synchronizedSet(s) returns a thread-safe version of set s,
with a lock that prevents more than one thread from entering it at a time, with a lock that prevents more than one thread from entering it at a time,
forcing the others to block until the lock is free
So we could imagine synchronizing all our sets:
thumbnails = Collections.synchronizedSet(new HashSet<Thumbnail> ());

This doesn’t fix all race conditions!
Doesn’t help preserve invariants involving more than one data structure
thumbnails.add(t);

these operations need to be atomic together to avoid
content.add(t);

© Robert Miller 2007

these operations need to be atomic together, to avoid
breaking the rep invariant of PreviewPane
(that all thumbnails are children of content)

More Thread-Safe Classes
Objects that never change state are usually* thread-safe

INIT a, b, c, ...

all possible actions

Immutable objects never change state
• e.g., java.lang.String is immutable, so threads can share strings as much

as they like without fear of race conditions, and without any need for
locks or queues

p
on the object

* Caveat: some apparently immutable objects may have hidden state: e.g.
memoizing (caching) method return values.

© Robert Miller 2007

Summary
Concurrency

Multiple computations running simultaneously

Shared-memory & message-passing paradigms
Sh d d h i i h i lik l kShared memory needs a synchronization mechanism, like locks
Message passing synchronizes on communication channels, like queues

Pitfalls
Race when correctness of result depends on relative timing of events
Deadlock when concurrent modules get stuck waiting for each other

Design advice
Share only immutable objects between threads
Use blocking queues and SwingUtilities.invokeLater()

© Robert Miller 2008

