Lecture 1 Introduction and Peak Finding 6.006 Fall 2011

Lecture 1: Introduction and Peak Finding

Lecture Overview
e Administrivia
e Course Overview

e “Peak finding” problem — 1D and 2D versions

Course Overview
This course covers:

e Efficient procedures for solving problems on large inputs (Ex: U.S. Highway Map,
Human Genome)

e Scalability

e Classic data structures and elementary algorithms (CLRS text)
e Real implementations in Python

e Fun problem sets!

The course is divided into 8 modules — each of which has a motivating problem and problem
set(s) (except for the last module). Tentative module topics and motivating problems are
as described below:

1. Algorithmic Thinking: Peak Finding

2. Sorting & Trees: Event Simulation

3. Hashing: Genome Comparison

4. Numerics: RSA Encryption

5. Graphs: Rubik’s Cube

6. Shortest Paths: Caltech — MIT

7. Dynamic Programming: Image Compression

8. Advanced Topics

Lecture 1 Introduction and Peak Finding 6.006 Fall 2011

Peak Finder

One-dimensional Version

Position 2 is a peak if and only if b > @ and b > ¢. Position 9 is a peak if ¢ > h.

1 2 3 45 6 7 89
lalblcldle[f[a]n]i]

Figure 1: a-i are numbers
Problem: Find a peak if it exists (Does it always exist?)

Straightforward Algorithm

Start from left

might be peak

0(n) complexity worst case

Figure 2: Look at n/2 elements on average, could look at n elements in the worst case

What if we start in the middle? For the configuration below, we would look at n/2 elements.
Would we have to ever look at more than n/2 elements if we start in the middle, and choose
a direction based on which neighboring element is larger that the middle element?

n/2

~

Lecture 1 Introduction and Peak Finding 6.006 Fall 2011

Can we do better?

1 2 ...n/2-1n/2 n/2+1... n-1 n

look at n/2 position

Figure 3: Divide & Conquer

e If a[n/2] < a[n/2 — 1] then only look at left half 1...n/2 — — — 1 to look for peak
e Else if a[n/2] < a[n/2 + 1] then only look at right half n/2 4+ 1...n to look for peak

e Else n/2 position is a peak: WHY?

aln/2] > a[n/2—1]
aln/2] > a[n/2+1]
What is the complexity?
T(n)=T(n/2)+ o(1) =0(1)+...+06(1) (logy(n) times) = O(logy(n))
——

to compare a[n/2] to neighbors

In order to sum up the O(i)‘s as we do here, we need to find a constant that works for all.
If n = 1000000, ©(n) algo needs 13 sec in python. If algo is ©(logn) we only need 0.001 sec.

Argue that the algorithm is correct.

Two-dimensional Version

A
C
b a d
N rows
e
Y

<—— m columns—>»

Figure 4: Greedy Ascent Algorithm: ©(nm) complexity, ©(n?) algorithm if m = n

ais a 2D-peak iff a > b,a > d,a > c,a> e

Lecture 1 Introduction and Peak Finding

6.006 Fall 2011

12

—_

N
Ky
w

11

16

kY
N

10
L4

10

Figure 5: Circled value is peak.

Attempt # 1: Extend 1D Divide and Conquer to 2D

j=m/2

e Pick middle column j = m/2.

e Find a 1D-peak at ¢, J.

e Use (i,7) as a start point on row ¢ to find 1D-peak on row i.

Attempt #1 fails

Problem: 2D-peak may not exist on row %

10
14: 13 | 12
151 9 11
16 | 17 [19 | 20

End up with 14 which is not a 2D-peak.

Lecture 1

Introduction and Peak Finding

6.006 Fall 2011

Attempt # 2

e Pick middle column j = m/2

e Compare (i,5 —1),(4,7), (4,5 + 1)

Similarly for right

Find global maximum on column j at (4, 7)

Pick left columns of (i,7 — 1) > (3, j)

(,7) is a 2D-peak if neither condition holds <— WHY?

Solve the new problem with half the number of columns.

e When you have a single column, find global maximum and you‘re done.

Example of Attempt #2

go with
10| 8 | 10|10 10 |10 10
14 [13 [12 [1 12 | 11 11
150 9 | 11 |21 1 |21 @0
16 | 17 | 19 | 20 19 | 20 20

f

pick this column

17 global max
for this column

Complexity of Attempt #2

f

pick this column
19 global max
for this column

find 21

If T'(n,m) denotes work required to solve problem with n rows and m columns

T(n,m) = T(n,m/2)+ O(n) (to find global maximum on a column — (n rows))

T(n,m) = O(n)+...4+06(n)

= O(nlogm)=0(nlogn)ifm =n

logm

Question: What if we replaced global maximum with 1D-peak in Attempt #27 Would that

work?

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

