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Menu 

• Priority Queues 
• Heaps 
• Heapsort 
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Priority Queue 
A data structure implementing a set S of elements, each 
associated with a key, supporting the following operations: 

increase_key(S, x, k) : 

insert element x into set S  
return element of  S with largest key 
return element of  S  with largest key and 
remove it from S 
increase the value of element x’ s key to 
new value k 

(assumed to be as large as current value) 

insert(S, x) : 
max(S) : 

extract_max(S) :  
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Heap 

• Implementation of a priority queue 
• An array, visualized as a nearly complete binary tree 
• Max Heap Property: The key of a node is  ≥  than the keys of 
its children 
  (Min Heap defined analogously) 
 

All my arrays start at index 1 
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Heap as a Tree 

root of tree:    first element in the array, corresponding to i = 1 
parent(i) =i/2: returns index of node's parent 
left(i)=2i:        returns index of node's left child 
right(i)=2i+1: returns index of node's right child 

16 

14 10 

8 7 9 3 

2 4 1 

16 14 10 8 7 9 3 2 4 1 

1 2 3 4 5 6 7 8 9 10 

1 

2 3 

4 
5 6 7 

8 9 10 

No pointers required!  Height of a binary heap is O(lg n) 5



Operations with Heaps 

insert, extract_max, heapsort  

produce a max-heap from an unordered 
array 

correct a single violation of the heap 
property in a subtree at its root 

build_max_heap : 

max_heapify : 

Heap Operations 
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Max_heapify 

• Assume that the trees rooted at left(i) and right(i) 

are max-heaps 

• If element A[i] violates the max-heap property, correct 
violation by “trickling” element A[i] down the tree, 
making the subtree rooted at index i a max-heap 
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Max_heapify (Example) 

Node 10 is the left child of node 5 but is drawn to the right for convenience 
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Max_heapify (Example) 

9



Max_heapify (Example) 

Time=? O(log n) 
10



Max_Heapify Pseudocode 

l = left(i) 
r = right(i) 
if (l <= heap-size(A) and A[l] > A[i]) 
     then largest = l     else largest = i 
if (r <= heap-size(A) and A[r] > A[largest]) 
     then largest = r 

if largest = i 
     then exchange A[i] and A[largest] 
             Max_Heapify(A, largest) 
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Build_Max_Heap(A) 

Converts  A[1…n] to a max heap 

Build_Max_Heap(A):  
 for i=n/2 downto 1 
  do Max_Heapify(A, i) 

Time=? O(n log n) via simple analysis 

Why start at n/2?   
 
Because elements A[n/2 + 1 … n] are all leaves of the tree 
2i > n, for i > n/2 + 1 
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Build_Max_Heap(A) Analysis 

Converts  A[1…n] to a max heap 

Build_Max_Heap(A):  
 for i=n/2 downto 1 
  do Max_Heapify(A, i) 

Observe however that Max_Heapify takes O(1) for 
time for nodes that are one level above the leaves, and 
in general, O(l) for the nodes that are l levels above the 
leaves.  We have n/4 nodes with level 1, n/8 with level 2, 
and so on till we have one root node that is lg n levels 
above the leaves. 
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Build_Max_Heap(A) Analysis 

Converts  A[1…n] to a max heap 

Build_Max_Heap(A):  
 for i=n/2 downto 1 
  do Max_Heapify(A, i) 

Total amount of work in the for loop can be summed as: 
      n/4 (1 c) + n/8 (2 c) + n/16 (3 c) + … + 1 (lg n c) 
Setting n/4 = 2k and simplifying we get: 
      c 2k( 1/20 + 2/21 + 3/22 + … (k+1)/2k ) 
The term is brackets is bounded by a constant! 
 
This means that Build_Max_Heap is O(n) 14



Build-Max-Heap Demo 
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Build-Max-Heap Demo 
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Build-Max-Heap 
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Heap-Sort 

Sorting Strategy: 

1. Build Max Heap from unordered array; 
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Heap-Sort 

Sorting Strategy: 

1. Build Max Heap from unordered array; 

2. Find maximum element A[1]; 

3. Swap elements A[n] and A[1]:  
  now max element is at the end of the array! 
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Heap-Sort 

Sorting Strategy: 

1. Build Max Heap from unordered array; 

2. Find maximum element A[1]; 

3. Swap elements A[n] and A[1]:  
  now max element is at the end of the array! 
 4. Discard  node n from heap  
   (by decrementing heap-size variable) 

20



Heap-Sort 

Sorting Strategy: 

1. Build Max Heap from unordered array; 

2. Find maximum element A[1]; 

3. Swap elements A[n] and A[1]:  
  now max element is at the end of the array! 
 4. Discard  node n from heap  
   (by decrementing heap-size variable) 
5. New root may violate max heap property, but its 
children are max heaps. Run max_heapify to fix this. 
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Heap-Sort 

Sorting Strategy: 

1. Build Max Heap from unordered array; 

2. Find maximum element A[1]; 

3. Swap elements A[n] and A[1]:  
  now max element is at the end of the array! 
 4. Discard  node n from heap  
   (by decrementing heap-size variable) 
5. New root may violate max heap property, but its 
children are max heaps. Run max_heapify to fix this. 

6. Go to Step 2 unless heap is empty. 
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Heap-Sort Demo 

Swap A[10] and A[1] 

Max_heapify(A,1) 

23



Heap-Sort Demo 

Swap A[9] and A[1] 
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Heap-Sort Demo 
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Heap-Sort Demo 

Swap A[8] and A[1] 
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Heap-Sort 

Running time: 

after n iterations the Heap is empty 
every iteration involves a swap and a max_heapify 
operation; hence it takes O(log n) time 

Overall O(n log n) 
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