
6.006- Introduction to

Algorithms

Lecture 4
1

Courtesy of MIT Press. Used with permission.

Menu

• Priority Queues
• Heaps
• Heapsort

2

Priority Queue
A data structure implementing a set S of elements, each
associated with a key, supporting the following operations:

increase_key(S, x, k) :

insert element x into set S
return element of S with largest key
return element of S with largest key and
remove it from S
increase the value of element x’ s key to
new value k

(assumed to be as large as current value)

insert(S, x) :
max(S) :

extract_max(S) :

3

Heap

• Implementation of a priority queue
• An array, visualized as a nearly complete binary tree
• Max Heap Property: The key of a node is ≥ than the keys of
its children
 (Min Heap defined analogously)

All my arrays start at index 1

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

1

2 3

4
5 6 7

8 9 10

4

Heap as a Tree

root of tree: first element in the array, corresponding to i = 1
parent(i) =i/2: returns index of node's parent
left(i)=2i: returns index of node's left child
right(i)=2i+1: returns index of node's right child

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

1

2 3

4
5 6 7

8 9 10

No pointers required! Height of a binary heap is O(lg n) 5

Operations with Heaps

insert, extract_max, heapsort

produce a max-heap from an unordered
array

correct a single violation of the heap
property in a subtree at its root

build_max_heap :

max_heapify :

Heap Operations

6

Max_heapify

• Assume that the trees rooted at left(i) and right(i)

are max-heaps

• If element A[i] violates the max-heap property, correct
violation by “trickling” element A[i] down the tree,
making the subtree rooted at index i a max-heap

7

Max_heapify (Example)

Node 10 is the left child of node 5 but is drawn to the right for convenience
8

Max_heapify (Example)

9

Max_heapify (Example)

Time=? O(log n)
10

Max_Heapify Pseudocode

l = left(i)
r = right(i)
if (l <= heap-size(A) and A[l] > A[i])
 then largest = l else largest = i
if (r <= heap-size(A) and A[r] > A[largest])
 then largest = r

if largest = i
 then exchange A[i] and A[largest]
 Max_Heapify(A, largest)

11

Build_Max_Heap(A)

Converts A[1…n] to a max heap

Build_Max_Heap(A):
 for i=n/2 downto 1
 do Max_Heapify(A, i)

Time=? O(n log n) via simple analysis

Why start at n/2?

Because elements A[n/2 + 1 … n] are all leaves of the tree
2i > n, for i > n/2 + 1

12

Build_Max_Heap(A) Analysis

Converts A[1…n] to a max heap

Build_Max_Heap(A):
 for i=n/2 downto 1
 do Max_Heapify(A, i)

Observe however that Max_Heapify takes O(1) for
time for nodes that are one level above the leaves, and
in general, O(l) for the nodes that are l levels above the
leaves. We have n/4 nodes with level 1, n/8 with level 2,
and so on till we have one root node that is lg n levels
above the leaves.

13

Build_Max_Heap(A) Analysis

Converts A[1…n] to a max heap

Build_Max_Heap(A):
 for i=n/2 downto 1
 do Max_Heapify(A, i)

Total amount of work in the for loop can be summed as:
 n/4 (1 c) + n/8 (2 c) + n/16 (3 c) + … + 1 (lg n c)
Setting n/4 = 2k and simplifying we get:
 c 2k(1/20 + 2/21 + 3/22 + … (k+1)/2k)
The term is brackets is bounded by a constant!

This means that Build_Max_Heap is O(n) 14

Build-Max-Heap Demo

15

Build-Max-Heap Demo

16

Build-Max-Heap

17

Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;

18

Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;

2. Find maximum element A[1];

3. Swap elements A[n] and A[1]:
 now max element is at the end of the array!

19

Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;

2. Find maximum element A[1];

3. Swap elements A[n] and A[1]:
 now max element is at the end of the array!
 4. Discard node n from heap
 (by decrementing heap-size variable)

20

Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;

2. Find maximum element A[1];

3. Swap elements A[n] and A[1]:
 now max element is at the end of the array!
 4. Discard node n from heap
 (by decrementing heap-size variable)
5. New root may violate max heap property, but its
children are max heaps. Run max_heapify to fix this.

21

Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;

2. Find maximum element A[1];

3. Swap elements A[n] and A[1]:
 now max element is at the end of the array!
 4. Discard node n from heap
 (by decrementing heap-size variable)
5. New root may violate max heap property, but its
children are max heaps. Run max_heapify to fix this.

6. Go to Step 2 unless heap is empty.

22

Heap-Sort Demo

Swap A[10] and A[1]

Max_heapify(A,1)

23

Heap-Sort Demo

Swap A[9] and A[1]

24

Heap-Sort Demo

25

Heap-Sort Demo

Swap A[8] and A[1]

26

Heap-Sort

Running time:

after n iterations the Heap is empty
every iteration involves a swap and a max_heapify
operation; hence it takes O(log n) time

Overall O(n log n)

27

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

