
Lecture 7 Linear-Time Sorting 6.006 Fall 2011

Lecture 7: Linear-Time Sorting

Lecture Overview

• Comparison model

• Lower bounds

– searching: Ω(lg n)

– sorting: Ω(n lg n)

• O(n) sorting algorithms for small integers

– counting sort

– radix sort

theorem
proof
counterexample

Lower Bounds

Claim

• searching among n preprocessed items requires Ω(lg n) time

=⇒ binary search, AVL tree search optimal

• sorting n items requires Ω(n lg n)

=⇒ mergesort, heap sort, AVL sort optimal

. . . in the comparison model

Comparison Model of Computation

• input items are black boxes (ADTs)

• only support comparisons (<,>,≤, etc.)

• time cost = # comparisons

Decision Tree

Any comparison algorithm can be viewed/specified as a tree of all possible comparison

outcomes & resulting output, for a particular n:

• example, binary search for n = 3:

1

Lecture 7 Linear-Time Sorting 6.006 Fall 2011

 A[1] < x?

 A[0] < x? A[2] < x?

NO YES

NO NO YESYES

 x ≤A[0] A[2] < x A[0] < x ≤ A[1] A[1] < x ≤ A[2]

• internal node = binary decision

• leaf = output (algorithm is done)

• root-to-leaf path = algorithm execution

• path length (depth) = running time

• height of tree = worst-case running time

In fact, binary decision tree model is more powerful than comparison model, and lower

bounds extend to it

Search Lower Bound

• # leaves ≥ # possible answers ≥ n (at least 1 per A[i])

• decision tree is binary

• =⇒ height ≥ lg Θ(n) = lg n±︸ Θ(1)

lg

︷︷
Θ(1)

︸
Sorting Lower Bound

• leaf specifies answer as permutation: A[3] ≤ A[1] ≤ A[9] ≤ . . .

• all n! are possible answers

2

Lecture 7 Linear-Time Sorting 6.006 Fall 2011

• # leaves ≥ n!

=⇒ height ≥ lg n!

= lg(1 · 2 · · · (n− 1) · n)

= lg 1 + lg 2 + · · ·+ lg(n− 1) + lg n
n

=
∑

lg i
i=1
n

≥ lg

i=

∑
i

n/2

n

≥
i=

∑ n
lg

2
n/2

=lg

︸︷︷︸
n−1

n n
= lg n

2
− = Ω(n lg n)

2

• in fact lg n! = n lg n−O(n) via Sterling’s Formula:

n
!
√ n

n ∼ 2πn
()

=⇒ lg n! ∼ n lg n− (lg e)n+ 1︸ lg n+ 1 lg(2π)
e 2 ︷︷ 2

O(n)

︸
Linear-time Sorting

If n keys are integers (fitting in a word) ∈ 0, 1, . . . , k − 1, can do more than compare them

• =⇒ lower bounds don’t apply

• if k = nO(1), can sort in O(n) time

OPEN: O(n) time possible for all k?

Counting Sort

L = array of k empty lists

lists

}
O(k)

— linked or Python

for j in range n: O(n)

L[k︸ey(A[j])︷︷ ︸].append(A[j]) → O(1)


random access using integer key



output = []

 O(
∑

i(1 + |L[i]|)) = O(k + n)

for i in range k:

output.extend(L[i])


3

Lecture 7 Linear-Time Sorting 6.006 Fall 2011

Time: Θ(n+ k) — also Θ(n+ k) space

Intuition: Count key occurrences using RAM output <count> copies of each key in order

. . . but item is more than just a key

CLRS has cooler implementation of counting sort with counters, no lists — but time bound

is the same

Radix Sort

• imagine each integer in base b

=⇒ d = logb k digits ∈ {0, 1, . . . , b− 1}

• sort (all n items) by least significant digit → can extract in O(1) time

• · · ·

• sort by most significant digit → can extract in O(1) time

sort must be stable: preserve relative order of items with the same key

=⇒ don’t mess up previous sorting

For example:

3
4
6
8
4
7
3

2
5
5
3
3
2
5

9
7
7
9
6
0
5

7
3
4
4
6
3
8

2
5
3
5
5
2
3

0
5
6
7
7
9
9

7
3
4
8
3
4
6

2
2
3
3
5
5
5

0
9
6
9
5
7
7

3
3
4
4
6
7
8

2
5
3
5
5
2
3

9
5
6
7
7
0
9

sort sorted sorted sorted

• use counting sort for digit sort

– =⇒ Θ(n+ b) per digit

– =⇒ Θ((n+ b)d) = Θ((n+ b) logb k) total time

– minimized when b = n

– =⇒ Θ(n logn k)

– = O(nc) if k ≤ nc

4

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

