Lecture 7 Linear-Time Sorting 6.006 Fall 2011

Lecture 7: Linear-Time Sorting

Lecture Overview

e Comparison model
e Lower bounds

— searching: Q(lgn)
— sorting: Q(nlgn)

e O(n) sorting algorithms for small integers

— counting sort

— radix sort

Lower Bounds

theorem
proof
counterexample

Claim

e searching among n preprocessed items requires (lgn) time
— binary search, AVL tree search optimal

e sorting n items requires Q(nlgn)
= mergesort, heap sort, AVL sort optimal

...in the comparison model

Comparison Model of Computation
e input items are black boxes (ADTSs)
e only support comparisons (<, >, <, etc.)

e time cost = # comparisons

Decision Tree

Any comparison algorithm can be viewed/specified as a tree of all possible comparison

outcomes & resulting output, for a particular n:

e example, binary search for n = 3:

Lecture 7 Linear-Time Sorting 6.006 Fall 2011

Al1] <x?

N‘O/ \Y‘ES
A[0] < x? A[2] < x?

Ny \ YES NO / YES

x <A[0] A0l < x<A[M] | |A[M]l<x<A[2] A[2] < x

internal node = binary decision

leaf = output (algorithm is done)

root-to-leaf path = algorithm execution

path length (depth) = running time
e height of tree = worst-case running time

In fact, binary decision tree model is more powerful than comparison model, and lower
bounds extend to it

Search Lower Bound
e # leaves > # possible answers > n (at least 1 per A[i])

e decision tree is binary

e — height > 1gO(n) =1gn+6(1)
———v
lg©(1)

Sorting Lower Bound

e leaf specifies answer as permutation: A[3] < A[1] < A[9] < ...

e all n! are possible answers

Lecture 7 Linear-Time Sorting 6.006 Fall 2011

o # leaves > n!

=—> height > Ign!
= lg(1-2---(n—1)-n)
= lgl+lg2+---+lgn—1)+1gn

= anlgi
i=1
Z gt

i=n/2
" n
lo —
2. g
i=n/2 ~~
=lgn—1

v

v

= glgn— g = Q(nlgn)

e in fact Ign! = nlgn — O(n) via Sterling’s Formula:

n
n! ~ 27m<2> = lgn! ~nlgn—(Ige)n + Llgn + $1g(27)
e

O(n)
Linear-time Sorting
If n keys are integers (fitting in a word) € 0,1,...,k — 1, can do more than compare them

e — lower bounds don’t apply

o if K =n®W can sort in O(n) time
OPEN: O(n) time possible for all k7

Counting Sort
L = array of k empty lists O(k)
— linked or Python lists
for j in range n: O(n)
Likey(Alj])].append(A[j]) — O(1)
———
random access using integer key

output = || O(X,(1+ |LIi])) = Ok +n)
for ¢ in range k:
output.extend(L[i])

Lecture 7 Linear-Time Sorting 6.006 Fall 2011

Time: O(n + k) — also O(n + k) space

Intuition: Count key occurrences using RAM output <count> copies of each key in order
... but item is more than just a key

CLRS has cooler implementation of counting sort with counters, no lists — but time bound
is the same
Radix Sort

e imagine each integer in base b
— d = log k digits € {0,1,...,b—1}

e sort (all n items) by least significant digit — can extract in O(1) time
. ..

e sort by most significant digit — can extract in O(1) time
sort must be stable: preserve relative order of items with the same key
—> don’t mess up previous sorting
For example:

3 2|9 7120 7112 0 3 29
4 5|7 315|5 3[(12 9 3 505
6 5|7 4 |36 4113 6 4 3 6
8 3(o| = a|5|[7| —=>|8]|3 9|—>|4 5 7
4 316 6 |5||7 35 5 6 57
7 210 31219 41|5 7 7 20
3 5|5 8 13(|9 65 7 8 3 9

sort sorted sorted sorted

e use counting sort for digit sort

— = O(n+b) per digit
— = O((n+b)d) =0O((n+0b)log, k) total time

minimized when b =n

= O(nlog, k)
= O(ne) if k <n°

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

