
Lecture 11 Numerics I 6.006 Fall 2011

Lecture 11: Numerics I

Lecture Overview

• Irrationals

• Newton’s Method ( (a), 1/b)

• High precision multiply

√
←

Irrationals:

Pythagoras discovered that a square’s diagonal and its side are incommensurable, i.e.,
could not be expressed as a ratio - he called the ratio “speechless”!

1
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√2

Figure 1: Ratio of a Square’s Diagonal to its Sides.

Pythagoras worshipped numbers
“All is number”

Irrationals were a threat!

Motivating Question: Are there hidden patterns in irrationals?
√

2 = 1. 414 213 562 373 095

048 801 688 724 209

698 078 569 671 875

Can you see a pattern?
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Digression

Catalan numbers:
Set P of balanced parentheses strings are recursively defined as

• λ ∈ P (λ is empty string)

• If α, β ∈ P , then (α)β ∈ P

Every nonempty balanced paren string can be obtained via Rule 2 from a unique α, β
pair.
For example, (()) ()() obtained by ( ︸︷︷︸() ) ()()

α

︸︷︷︸
β

Enumeration

Cn: number of balanced parentheses strings with exactly n pairs of parentheses
C0 = 1 empty string

Cn+1? Every string with n+ 1 pairs of parentheses can be obtained in a unique way
via rule 2.

One paren pair comes explicitly from the rule.
k pairs from α, n− k pairs from β

n

Cn+1 =
∑

Ck n
k

· Cn−k
=0

≥ 0

C0 = 1 C1 = C 2
0 = 1 C2 = C0C1 + C1C0 = 2 C3 = · · · = 5

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440,
9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020,
91482563640, 343059613650, 1289904147324, 4861946401452, 18367353072152,
69533550916004, 263747951750360, 1002242216651368
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Newton’s Method

Find root of f(x) = 0 through successive approximation e.g., f(x) = x2 − a

xi

xi+1

y = f(x)

Figure 2: Newton’s Method.

Tangent at (xi, f(xi)) is line y = f(xi)+f ′(xi) · (x−xi) where f ′(xi) is the derivative.
xi+1 = intercept on x-axis

f(x
xi+1 = xi − i)

f ′(xi)

Square Roots

f(x) = x2 − a
a

(χ 2 χ
i a) i +

χ
χ i
i+1 = χi

−− =
2χi 2

Example

χ0 = 1.000000000 a = 2

χ1 = 1.500000000

χ2 = 1.416666666

χ3 = 1.414215686

χ4 = 1.414213562

Quadratic convergence, ] digits doubles. Of course, in order to use Newton’s method,
we need high-precision division. We’ll start with multiplication and cover division in
Lecture 12.
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High Precision Computation
√

2 to d-digit precision: 1︸.414213562373 · · ·
d digits

Want integer b10d
√

2c =
√
b 2 ·

︷︷
102dc - in

︸
tegral part of square root

Can still use Newton’s Method.

High Precision Multiplication

Multiplying two n-digit numbers (radix r = 2, 10)
0 ≤ x, y < rn

x = x1 · rn/2 + x0 x1 = high half

y = y1 · rn/2 + y0 x0 = low half

0 ≤ x n/
0, x1 < r 2

0 ≤ y0, y1 < rn/2

z = x · y = x n
1y1 · r + (x0 · y1 + x1 · y0)r

n/2 + x0 · y0

4 multiplications of half-sized ]’s =⇒ quadratic algorithm θ(n2) time

Karatsuba’s Method

log2n log2n

4T(n/2)
4log n nlog 4

2 2= n2=

3T(n/2)
3log n nlog 3

2 2=

Figure 3: Branching Factors.
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Let

z0 = x0 · y0

z2 = x1 · y1

z1 = (x0 + x1) · (y0 + y1)− z0 − z2

= x0y1 + x1y0

z = z2 · rn + z1 · rn/2 + z0

There are three multiplies in the above calculations.

T (n) = time to multiply twon-digit]′s

= 3T((n/2) + θ(n)

= θ nlog23
)

= θ
(
n1.5849625···

This is better than θ(n2). Python does this, and more (see

)
Lecture 12).

Fun Geometry Problem

A

B

C D
1000,000,000,000

1

Figure 4: Geometry Problem.

BD = 1

What is AD?

AD = AC − CD = 500, 000, 000, 000−
√

500, 000, 000, 0002 − 1

a

Let’s calculate AD to a million places. (This assumes

︸
we ha

︷︷
ve high-precision

︸
di-

vision, which we will cover in Lecture 12.) Remarkably, if we evaluate the length
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to several hundred digits of precision using Newton’s method, the Catalan numbers
come marching out! Try it at:
http://people.csail.mit.edu/devadas/numerics_demo/chord.html.

An Explanation

This was not covered in lecture and will not be on a test. Let’s start by looking at
the power series of a real-valued function Q.

Q(x) = c0 + c1x+ c 2
2x + c 3

3x + . . . (1)

Then, by ordinary algebra, we have:

1 + xQ(x)2 = 1 + c2x+ (c 2 3
0 0c1 + c1c0)x + (c0c2 + c1c1 + c2c0)x + . . . (2)

Now consider the equation:

Q(x) = 1 + xQ(x)2 (3)

For this equation to hold, the power series of Q(x) must equal the power series of
1+xQ(x)2. This happens only if all the coefficients of the two power series are equal;
that is, if:

c0 = 1 (4)

c1 = c20 (5)

c2 = c0c1 + c1c0 (6)

c3 = c0c2 + c1c1 + c2c0 (7)

etc. (8)

In other words, the coefficients of the function Q must be the Catalan numbers!
We can solve for Q using the quadratic equation:

1
√

Q(x) =
± 1− 4x

(9)
2x

Let’s use the negative square root. From this formula for Q, we find:
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10−12 ·Q(10−24 1
√

1 4 10−24

) = 10−12 ± − ·· (10)
2 · 10−24

= 500000000000
√
− 5000000000002 − 1 (11)

From the original power-series expression for Q, we find:

10−12 ·Q(10−24) = c010−12 + c110−36 + c 60
210− + c310−84 + . . . (12)

Therefore, 500000000000
√
− 5000000000002 − 1 should contain a Catalan number in

every twenty-fourth position, which is what we observed.
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