
Lecture 17 Shortest Paths III: Bellman-Ford 6.006 Fall 2011

Lecture 17: Shortest Paths III:

Bellman-Ford

Lecture Overview

• Review: Notation

• Generic S.P. Algorithm

• Bellman-Ford Algorithm

– Analysis

– Correctness

Recall:

path p = < v0, v1, . . . , vk >

(v1, vi+1) ∈ E 0
k 1

≤ i < k
−

w(p) =
∑

w(vi, vi+1)
i−0

Shortest path weight from u to v is δ(u, v). δ(u, v) is ∞ if v is unreachable from u,

undefined if there is a negative cycle on some path from u to v.

u v

-ve

Figure 1: Negative Cycle.

1

Lecture 17 Shortest Paths III: Bellman-Ford 6.006 Fall 2011

Generic S.P. Algorithm

d [v]
Initialize: for v ∈ V :

← ∞
Π [v] ← NIL

d[S]← 0

Main: repeat

select edge (u, v) [somehow]

if d[v] > d[u] + w(u, v) :

“Relax” edge (u, v)  d[v]← d[u] + w(u, v)

π[v]← u

until you can’t relax any more edges or you’re tired or . . .

Complexity:

Termination: Algorithm will continually relax edges when there are negative cycles

present.

0
v

1 3 4

-1

u

d[u]

1 2 1

1 -4

0
-1
-2

2
1
0

etc

Figure 2: Algorithm may not terminate due to negative cycles.

Complexity could be exponential time with poor choice of edges.

2

Lecture 17 Shortest Paths III: Bellman-Ford 6.006 Fall 2011

v0 v1 v2 v3 v4 v5 v6

4 8 10 12 13 14
13

10 11 12

4 6 8 9 10
11

 (v0, v1)

 (v1, v2)
all of v2, vn

 (v0, v2)

 all of v2, vn

T(n) = θ(2n/2)

T(n) = 3 + 2T(n-2)

ORDER

Figure 3: Algorithm could take exponential time. The outgoing edges from v0 and v1
have weight 4, the outgoing edges from v2 and v3 have weight 2, the outgoing edges

from v4 and v5 have weight 1.

5-Minute 6.006

Figure 4 is what I want you to remember from 6.006 five years after you graduate!

Bellman-Ford(G,W,s)

Initialize ()

for i = 1 to |V | − 1

for each edge (u, v) ∈ E:
Relax(u, v)

for each edge (u, v) ∈ E
do if d[v] > d[u] + w(u, v)

then report a negative-weight cycle exists

At the end, d[v] = δ(s, v), if no negative-weight cycles.

Theorem:

If G = (V,E) contains no negative weight cycles, then after Bellman-Ford executes

d[v] = δ(s, v) for all v ∈ V .

3

Lecture 17 Shortest Paths III: Bellman-Ford 6.006 Fall 2011

T(n) = C1 + C2T(n - C3) T(n) = C1 + C2T(n / C3)

Exponential Bad Polynomial Good

if C2 > 1, trouble!
Divide & Explode

 C2 > 1 okay provided C3 > 1
 if C3 > 1
Divide & Conquer

Figure 4: Exponential vs. Polynomial.

Proof:

Let v ∈ V be any vertex. Consider path p = 〈v0, v1, . . . , vk〉 from v0 = s to vk = v

that is a shortest path with minimum number of edges. No negative weight cycles

=⇒ p is simple =⇒ k ≤ |V | − 1.

Consider Figure 6. Initially d[v0] = 0 = δ(s, v0) and is unchanged since no negative

cycles.

After 1 pass through E, we have d[v1] = δ(s, v1), because we will relax the edge

(v0, v1) in the pass, and we can’t find a shorter path than this shortest path. (Note

that we are invoking optimal substructure and the safeness lemma from Lecture 16

here.)

After 2 passes through E, we have d[v2] = δ(s, v2), because in the second pass we will

relax the edge (v1, v2).

After i passes through E, we have d[vi] = δ(s, vi).

After k ≤ |V | − 1 passes through E, we have d[vk] = d[v] = δ(s, v). �

Corollary

If a value d[v] fails to converge after |V | − 1 passes, there exists a negative-weight

cycle reachable from s.

Proof:

After |V |− 1 passes, if we find an edge that can be relaxed, it means that the current

shortest path from s to some vertex is not simple and vertices are repeated. Since this

cyclic path has less weight than any simple path the cycle has to be a negative-weight

cycle. �

4

Lecture 17 Shortest Paths III: Bellman-Ford 6.006 Fall 2011

B

5

A E

C D

4 -3

-1 2

2
13

∞ -1

∞

∞∞

0

1

1

3

8
2

6

5

4 7

4 2
2 3

End of pass 1

B

5

A E

C D

4 -3

-1 2

2
13

-1

1∞

∞2

0
1

1

3

8
2

6

5

4 7

1 -2
2 3

End of pass 2 (and 3 and 4)

Figure 5: The numbers in circles indicate the order in which the δ values are computed.

p:
S

v0

v1

v2

vk

v

δ (s, vi) =
δ (s, vi-1) + w (vi-1,vi)

Figure 6: Illustration for proof.

Longest Simple Path and Shortest Simple Path

Finding the longest simple path in a graph with non-negative edge weights is an NP-

hard problem, for which no known polynomial-time algorithm exists. Suppose one

simply negates each of the edge weights and runs Bellman-Ford to compute shortest

paths. Bellman-Ford will not necessarily compute the longest paths in the original

graph, since there might be a negative-weight cycle reachable from the source, and

the algorithm will abort.

Similarly, if we have a graph with negative cycles, and we wish to find the longest

simple path from the source s to a vertex v, we cannot use Bellman-Ford. The shortest

simple path problem is also NP-hard.

5

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

