Lecture 19 Dynamic Programming I of IV 6.006 Fall 2011

Lecture 19: Dynamic Programming I:
Memoization, Fibonacci, Shortest Paths, Guessing

Lecture Overview

e Memoization and subproblems
e Examples

— Fibonacci

— Shortest Paths

e Guessing & DAG View

Dynamic Programming (DP)
Big idea, hard, yet simple
e Powerful algorithmic design technique

e Large class of seemingly exponential problems have a polynomial solution (“only”)
via DP

e Particularly for optimization problems (min / max) (e.g., shortest paths)

* DP ~ “controlled brute force”

* DP = recursion + re-use

History

Richard E. Bellman (1920-1984)

Richard Bellman received the IEEE Medal of Honor, 1979. “Bellman ...explained that
he invented the name ‘dynamid programming’ to hide the fact that he was doing mathe-
matical research at RAND under a Secretary of Defense who ‘had a pathological fear and
hatred of the term, research’. He settled on the term ‘dynamic programming’ because it
would be difficult to give a ‘pejorative meaning’ and because ‘it was something not even a
Congressman could object to’ ” [John Rust 2006]

Fibonacci Numbers

Fr=KNn=1 F,=F_1+F, >

Goal: compute F,

Lecture 19 Dynamic Programming I of IV 6.006 Fall 2011

Naive Algorithm

follow recursive definition

fib(n):
if n <2: return f =1
else: return f = fib(n — 1) 4 fib(n — 2)
= Tn)=Tn—-1)4+T(n—-2)+0(1) > F, = "
> 2T (n — 2) + O(1) > 2"/2
EXPONENTIAL — BAD!

F

n

>
\
EDE ¥

Figure 1: Naive Fibonacci Algorithm.

Memoized DP Algorithm

Remember, remember

memo = { }
fib(n):
if n in memo: return memol[n]
else: if n <2:f=1
else: f = fib(n — 1)+ fib(n —2)
memo|n| = f
return f

Lecture 19 Dynamic Programming I of IV 6.006 Fall 2011

e — fib(k) only recurses first time called, V&

e — only n nonmemoized calls: k =n,n—1,...,1
e memoized calls free (O(1) time)

e —> O(1) time per call (ignoring recursion)

POLYNOMIAL — GOOD!

* DP ~ recursion + memoization
e memoize (remember) & re-use solutions to subproblems that help solve problem
— in Fibonacci, subproblems are Fy, Fs, ..., F,
* = time = # of subproblems - time/subproblem
e Fibonacci: # of subproblems is n, and time/subproblem is ©(1) = O(n) (ignore

recursion!).

Bottom-up DP Algorithm

fib = {} O(n)
for kin [1, 2, ..., n|:

ifh<2 f=1 o(1)

else: f = fib[k — 1] + fib[k — 2]

blk] = /
return fib[n]

/

e cxactly the same computation as memoized DP (recursion “unrolled”)

e in general: topological sort of subproblem dependency DAG

e practically faster: no recursion
e analysis more obvious

e can save space: just remember last 2 fibs = O(1)

[Sidenote: There is also an O(lgn)-time algorithm for Fibonacci, via different techniques]

Lecture 19 Dynamic Programming I of IV

6.006 Fall 2011

Shortest Paths

e Recursive formulation:
0(s,v) = min{w(u,v) + (s, u)|(u,v) € E}

e Memoized DP algorithm: takes infinite time if cycles!
in some sense necessary to handle negative cycles

©

Figure 2: Shortest Paths

e works for directed acyclic graphs in O(V + E)

effectively DFS/topological sort + Bellman-Ford round rolled into a single recursion

* Subproblem dependency should be acyclic

e more subproblems remove cyclic dependence:
dk(s,v) = shortest s — v path using < k edges

® recurrence:

Ok(s,v) = min{dg_1(s,u) + w(u,v)|(u,v) € E}
50(8,

<

) = oofors # v (base case)

0k(s,s) = Ofor any k (base case, if no negative cycles)

e Goal: §(s,v) = dy|—1(s,v) (if no negative cycles)
e memoize

e time: # subproblems - time/subproblem

VIV ow — =0(V?)
e actually O(indegree(v)) for o (s, v)
o — time = O(V)_ .y indegree(V)) = O(VE)
BELLMAN-FORD!

Lecture 19 Dynamic Programming I of IV 6.006 Fall 2011

Guessing
How to design recurrence

e want shortest s — v path

what is the last edge in path? dunno

guess it is (u,v)

path is shortest s — upath + edge (u,v)

by optimal substructure

cost is Ok—1(s,u) + w(u,v)
— —

another subproblem

to find best guess, try all (|| choices) and use best

* key: small (polynomial) # possible guesses per subproblem — typically this domi-
nates time/subproblem

* DP = recursion + memoization 4+ guessing

DAG view

time|

e like replicating graph to represent time

e converting shortest paths in graph — shortest paths in DAG

* DP = shortest paths in some DAG

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

