
Lecture 20 Dynamic Programming II of IV 6.006 Fall 2011

Lecture 20: Dynamic Programming II

Lecture Overview

• 5 easy steps

• Text justification

• Perfect-information Blackjack

• Parent pointers

Summary

* DP ≈ “careful brute force”

* DP ≈ guessing + recursion + memoization

* DP ≈ dividing into reasonable # subproblems whose solutions relate — acyclicly —

usually via guessing parts of solution.

* time = # subproblems × time/subproblem

treating
︸

recursiv
︷︷

e calls
︸

asO(1)

(usually mainly guessing)

• essentially an amortization

• count each subproblem only once; after first time, costs O(1) via memoization

* DP ≈ shortest paths in some DAG

5 Easy Steps to Dynamic Programming

1. define subproblems count # subproblems

2. guess (part of solution) count # choices

3. relate subproblem solutions compute time/subproblem

4. recurse + memoize time = time/subproblem · # sub-

problems

OR build DP table bottom-up

check subproblems acyclic/topological order

5. solve original problem: = a subproblem

OR by combining subproblem solutions =⇒ extra time

1

Lecture 20 Dynamic Programming II of IV 6.006 Fall 2011

Examples: Fibonacci Shortest Paths

subprobs: Fk δk(s, v) for v ∈ V, 0 ≤ k < |V |
for 1 ≤ k ≤ n = min s→ v path using k edges

subprobs: n V 2

≤

guess: nothing edge into v (if any)

choices: 1 indegree(v) + 1

recurrence: Fk = Fk 1 δk(s, v) = min δ (s, u) + w(u, v)− { k−1
+Fk−2 | (u, v) ∈ E}

time/subpr: Θ(1) Θ(1 + indegree(v))

topo. order: for k = 1, . . . , n for k = 0, 1, . . . |V | − 1 for v ∈ V
total time: Θ(n) Θ(V E)

+ Θ(V 2) unless efficient about indeg. 0

orig. prob.: Fn δ|V |−1(s, v) for v ∈ V
extra time: Θ(1) Θ(V)

Text Justification

Split text into “good” lines

• obvious (MS Word/Open Office) algorithm: put as many words that fit on first line,

repeat

• but this can make very bad lines

blah blah blah blah blah
b l a h vs. blah blah
reallylongword reallylongword

:) : <

Figure 1: Good vs. Bad Text Justification.

• Define badness(i, j) for line of words[i : j].

For example, ∞ if total length > page width, else (page width − total length)3.

• goal: split words into lines to min
∑

badness

1. subproblem = min. badness for suffix words[i :]

=⇒ # subproblems = Θ(n) where n = # words

2. guessing = where to end first line, say i : j

=⇒ # choices = n− i = O(n)

2

Lecture 20 Dynamic Programming II of IV 6.006 Fall 2011

3. recurrence:

• DP[i] = min(badness (i, j) +DP [j] for j in range (i+ 1, n+ 1))

• DP [n] = 0

=⇒ time per subproblem = Θ(n)

4. order: for i = n, n− 1, . . . , 1, 0

total time = Θ(n2)

i j

badness(i,j)

Figure 2: DAG.

5. solution = DP [0]

Perfect-Information Blackjack

• Given entire deck order: c0, c1, · · · cn−1

• 1-player game against stand-on-17 dealer

• when should you hit or stand? GUESS

• goal: maximize winnings for fixed bet $1

• may benefit from losing one hand to improve future hands!

1. subproblems: BJ(i) = best play of ci, . . . cn−

remaining
︸ ︷︷

cards
=⇒ # subproblems = n

︸1 where i is # cards “already played”

2. guess: how many times player “hits” (hit means draw another card)

=⇒ # choices ≤ n

3. recurrence: BJ(i) = max(

outcome ∈ {+1, 0,−1} + BJ(i + # cards used) O(n)

for # hits in 0, 1, . . . if valid play ∼ don’t hit after bust O(n)

3

Lecture 20 Dynamic Programming II of IV 6.006 Fall 2011

)

=⇒ time/subproblem = Θ(n2)

4. order: for i in reversed(range(n))

total time = Θ(n3)
n∑−1 n−∑i−O(1)

time is really Θ(n− i−#h) = Θ(n3) still
i=0 #h=0

5. solution: BJ(0)

detailed recurrence: before memoization (ignoring splits/betting)

BJ(i):

if n− i < 4: return 0 (not enough cards)

for p in range(2, n− i− 1): (# cards taken)
 {

player = sum(ci, ci+2, ci+4:i+p+2)
Θ(n)

if player > 21: (bust)

options.append(−1(bust) +BJ(i+ p+ 2))

break
Θ(n2)


 

in range(2, n− i− p
)

Θ(n) with care
 for d

 dealer = sum(c , p+d  i+1 ci+3, ci+p+2:i+)

 if dealer ≥ 17: break if dealer > 21: dealer = 0 (bust)

options.append(cmp(player, dealer) + BJ(i+ p+ d))

return max(options)



valid
plays

outcomes
+1

-1

0

Figure 3: DAG View

Parent Pointers

To recover actual solution in addition to cost, store parent pointers (which guess used at

each subproblem) & walk back

4

Lecture 20 Dynamic Programming II of IV 6.006 Fall 2011

• typically: remember argmin/argmax in addition to min/max

• example: text justification

(3)’ DP[i] = min(badness(i,j) + DP[i][0],j)

for j in range(i+1,n+1)

DP[n] = (0, None)

(5)’ i = 0

while i is not None:

start line before word i

i = DP[i][1]

• just like memoization & bottom-up, this transformation is automatic

no thinking required

5

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

