
Lecture 22 Dynamic Programming IV of IV 6.006 Fall 2011

Lecture 22: Dynamic Programming IV

Lecture Overview

• 2 kinds of guessing

• Piano/Guitar Fingering

• Tetris Training

• Super Mario Bros.

Review:

* 5 easy steps to dynamic programming

(a) define subproblems count # subproblems

(b) guess (part of solution) count # choices

(c) relate subproblem solutions compute time/subproblem

(d) recurse + memoize time = time/subproblem · # sub-

problems

OR build DP table bottom-up

check subproblems acyclic/topological order

(e) solve original problem: = a subproblem

OR by combining subproblem solutions =⇒ extra time

* 2 kinds of guessing:

(A) In (3), guess which other subproblems to use (used by every DP except Fibonacci)

(B) In (1), create more subproblems to guess/remember more structure of solution used

by knapsack DP

• effectively report many solutions to subproblem.

• lets parent subproblem know features of solution.

Piano/Guitar Fingering:

Piano

[Parncutt, Sloboda, Clarke, Raekallio, Desain, 1997]

[Hart, Bosch, Tsai 2000]

[Al Kasimi, Nichols, Raphael 2007] etc.

• given musical piece to play, say sequence of n (single) notes with right hand

1

Lecture 22 Dynamic Programming IV of IV 6.006 Fall 2011

• fingers 1, 2, . . . , F = 5 for humans

• metric d(f, p, g, q) of difficulty going from note p with finger f to note q with finger g

e.g., 1 < f < g & p > q =⇒ uncomfortable

stretch rule: p� q =⇒ uncomfortable

legato (smooth) =⇒ ∞ if f = g

weak-finger rule: prefer to avoid g ∈ {4, 5}
3→ 4 & 4→ 3 annoying ∼ etc.

First Attempt:

1. subproblem = min. difficulty for suffix notes[i :]

2. guessing = finger f for first note[i]

3. recurrence:

DP[i] = min(DP [i+ 1] + d(note[i], f, note[i+ 1], ?) for f · · ·)
→ not enough information!

Correct DP:

1. subproblem = min difficulty for suffix notes[i :] given finger f on first note[i]

=⇒ n · F subproblems

2. guessing = finger g for next note[i+ 1]

=⇒ F choices

3. recurrence:

DP [i, f] = min(DP [i+ 1, g] + d(note[i], f,note[i+ 1], g) for g in range(F))

DP[n, f] = 0

=⇒ Θ(F) time/subproblem

4. topo. order: for i in reversed(range(n)):

for f in 1, 2, . . . , F :

total time O(nF 2)

5. orig. prob. = min(DP[0, f] for f in 1, . . . , F)

(guessing very first finger)

2

Lecture 22 Dynamic Programming IV of IV 6.006 Fall 2011

}

(5) di�culty

�ngers

notes

Figure 1: DAG.

Guitar

Up to S ways to play same note! (where S is # strings)

• redefine “finger” = finger playing note + string playing note

• =⇒ F → F · S

Generalization:

Multiple notes at once e.g. chords

• input: notes[i] = list of ≤ F notes

(can’t play > 1 note with a finger)

• state we need to know about “past” now assignment of F fingers to
F

≤ F+1 notes/null

=⇒ (F + 1) such mappings

(1) n · (F + 1)F subproblems where (F + 1)F is how notes[i] is played

(2) (F + 1)F choices (how notes[i+ 1] played)

(3) n · (F + 1)2F total time

• works for 2 hands F = 10

• just need to define appropriate d

3

Lecture 22 Dynamic Programming IV of IV 6.006 Fall 2011

Figure 2: Tetris.

Tetris Training:

• given sequence of n Tetris pieces & an empty board of small width w

• must choose orientation & x coordinate for each

• then must drop piece till it hits something

• full rows do not clear

without the above two artificialities WE DON’T KNOW!

(but: if nonempty board & w large then NP-complete)

• goal: survive i.e., stay within height h

First Attempt:

1. subproblem = survive in suffix i:? WRONG

2. guessing = how to drop piece i =⇒ # choices = O(w)

3. recurrence: DP [i] = DP [i+ 1] ?! not enough information!

What do we need to know about prefix : i?

Correct:

• 1. subproblem = survive? in suffix i:

given initial column occupancies h0, h1, · · · , hw 1, call it h−
=⇒ # subproblems = O(n · hw)

• 3. recurrence: DP [i,h] = max(DP [i,m] for valid movesm of piece i inh)

=⇒ time per subproblem = O(w)

• 4. topo. order: for i in reversed(range(n)): for h · · ·
total time = O(nwhw) (DAG as above)

• 5. solution = DP [0,0]

(& use parent pointers to recover moves)

4

Lecture 22 Dynamic Programming IV of IV 6.006 Fall 2011

Super Mario Bros

Platform Video Game

• given entire level (objects, enemies, . . .) (← n)

• small w × h screen

• configuration

– screen shift (← n)

– player position & velocity (O(1)) (← w)

– object states, monster positions, etc. (← cw.·h)

– anything outside screen gets reset (← cw.·h)

– score (← S)

– time (← T)

• transition function δ: (config, action) → config’

nothing, ↑, ↓,←,→, B, A press/release

(1) subproblem: best score (or time) from config. C

=⇒ n · cw·h · S · T subproblems

(2) guess: next action to take from C

=⇒ O(1) choices

(3) recurrence:

DP (C) =

 C.score if on flag

 ∞ if C.dead or C.time = 0

max(DP (δ(C,A))) for A in actions

=⇒ O(1) time/subproblem

(4) topo. order: increasing time

(5) orig. prob.: DP(start config.)

• pseudopolynomial in S & T

• polynomial in n

exponential in w h• ·

5

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

