Lecture 24 Beyond 6.006 6.006 Fall 2011

Lecture 24: Parallel Processor Architecture &

Algorithms

Processor Architecture

Computer architecture has evolved:

Intel 8086 (1981): 5 MHz (used in first IBM PC)

Intel 80486 (1989): 25 MHz (became i486 because of a court ruling that prohibits the
trademarking of numbers)

Pentium (1993): 66 MHz
Pentium 4 (2000): 1.5 GHz (deep =~ 30-stage pipeline)
Pentium D (2005): 3.2 GHz (and then the clock speed stopped increasing)

Quadcore Xeon (2008): 3 GHz (increasing number of cores on chip is key to perfor-
mance scaling)

Processors need data to compute on:

P p
p p
slow
fast PN DRAM
SRAM

Problem: SRAM cannot support more than ~ 4 memory requests in parallel.

Lecture 24 Beyond 6.006 6.006 Fall 2011

$: cache P: processor

Most of the time program running on the processor accesses local or “cache” memory

Every once in a while, it accesses remote memory:

p data
S request
(addr)

data

N

Round-trip required to obtain data

Lecture 24 Beyond 6.006 6.006 Fall 2011

Research Idea: Execution Migration

When program running on a processor needs to access cache memory of another processor,
it migrates its “context” to the remote processor and executes there:

p migrate
S program
“context”

One-way trip for data access

Context = ProgramCounter + Registerkile 4+ ... (can be larger than data to be accessed)

fewKbits
Assume we know or can predict the access pattern of a program
mi,ma,. .., my (memory addresses)

plmy). plms)....plmy) (processor caches for each m;)

Example

P1 P2 P2 P1 P1 P3 P2
costmig (s, d) = distance(s,d) + L < load latency L is a function of context size
COStaccess (S, d) = 2 * distance(s, d)

if s == d, costs are defined to be 0

Lecture 24 Beyond 6.006 6.006 Fall 2011

Problem

Decide when to migrate to minimize total memory cost of trace For example:

local accesses

r1 1711

Example: P, P, P, P, P

Ds pz\
startat p, migrate migrate re%ote remote

to P, to P, aCcess access

\ Y /

costs

What can we use to solve this problem?
Dynamic Programming!
Dynamic Programming Solution

Program at p, initially, number of processors = @)

Subproblems?

Define) P(/:, p;) as cost of optimal solution for the prefix myq,...,my of memory accesses
when program starts at p; and ends up at p;.

DP(k,p;) + costaccess(Pj, P(Mk+1)) if p; # p(Mmp41)

DP(k+1,p;)= .
(Pj) { ;\/]N/.Qzl(DP(/",p;) + costmig(Pi, Pj)) if p; = p(Mmp+1)

Complexity?
o(N-Q) = O(NQ?)

no.of subproblems cost per subproblem

Q
\/

My research group is building a 128-processor Execution Migration Machine that uses a
migration predictor based on this analysis.

Lecture 24 Beyond 6.006 6.006 Fall 2011

Lecture 24: Research Areas and Beyond 6.006

Erik’s Main Research Areas

e computational geometry [6.850]

— geometric folding algorithms [6.849]

— self-assembly

data structures [6.851]

graph algorithms [6.899]

recreational algorithms [SP.268]

algorithmic sculpture

Geometric Folding Algorithms: [6.849], Videos Online

Two aspects: design and foldability

e design: algorithms to fold any polyhedral surface from a square of paper [Demaine,
Demaine, Mitchell (2000); Demaine & Tachi (2011)]

— bicolor paper = can 2-color faces
— OPEN: how to best optimize “scale-factor”

— e.g. best n x n checkerboard folding — recently improved from ~ n/2 —~ n/4
e foldability: given a crease pattern, can you fold it flat

— NP-complete in general Bern & Hayes (1996)
— OPEN: m x n map with creases specified as mountain/valley [Edmonds (1997)]
— just solved: 2 x n Demaine, Liu, Morgan (2011)

— hyperbolic paraboloid [Bauhaus (1929)] doesn’t exist [Demaine, Demaine, Hart,
Price, Tachi (2009)]

Lecture 24 Beyond 6.006 6.006 Fall 2011

— understanding circular creases

— any straight-line graph can be made by folding flat & one straight cut [Demaine,
Demaine, Lubiw (1998); Bern, Demaine, Eppstein, Hayes (1999)]

Self- Assembly

Geometric model of computation

glue e.g. DNA strands, each pair has strength
square tiles with glue on each side

Brownian motion: tiles/constructions — stick together if) glue strengths > temper-

ature

can build n x n square using O < lglglgn n) tiles [Rothemund & Winfree 2000] or using
O(1) tiles & O(lgn) “stages” algorithmic steps by the bioengineer [Demaine, Demaine,

Fekete, Ishaque, Rafalin, Schweller, Souvaine (2007)]

can replicate oo copies of given unknown shape using O(1) tiles and O(1) stages [Abel,
Benbernou, Damian, Demaine, Flatland, Kominers, Schweller (2010)]

Data Structures: [6.851], Videos Next Semester

There are 2 main categories of data structures

Integer data structures: store n integers in {0,1,---u — 1} subject to insert, delete,
predecessor, successor (on word RAM)

— hashing does exact search in O(1)

AVL trees do all in O(Ilgn)

O (Iglgu)/op van Emde Boas

O (15;“) /op fusion trees: Fredman & Willard

-0 (lglglg"n)/op min of above

Cache-efficient data structures

memory transfers happen in blocks (from cache to disk/main memory)

searching takes O(logp N) transfers (vs. lgn)
— sorting takes © (% log~ %) transfers

— possible even if you don’t know B & C'!

Lecture 24 Beyond 6.006 6.006 Fall 2011

CACHE DISK/MAIN
MEMORY

FAST SLOW

¢ blocks

CPU

_V-_J/\/\/\

block B

w
block B

(Almost) Planar Graphs: [6.889], Videos Online
e Dijkstra in O(n) time [Henzinger, Klein, Rao, Subramanian (1997)]

2
e Bellman-Ford in O nlg'n
lglgn

) time [Mozes & Wolff-Nilson (2010)]

e Many problems NP-hard, even on planar graphs. But can find a solution within 1 + ¢

factor of optimal, for any e [Baker 1994 & Others|:

Lecture 24 Beyond 6.006 6.006 Fall 2011

run BFS from any root vertex r

— delete every k layers

1 1
— for many problems, solution messed up by only 1+ z factor (= k= -)
€

connected components of remaining graph have < k layers. Can solve via DP

typically in ~ 2% - n time

Recreational Algorithms

e many algorithms and complexities of games [some in SP.268 and our book Games,
Puzzles € Computation (2009)]

2
n
e n X n X n Rubik’s Cube diameter is © bn [Demaine, Demaine, Eisenstat, Lubiw,
gn

Winslow (2011)]

e Tetris is NP-complete [Breukelaar, Demaine, Hohenberger, Hoogeboom, Kosters, Liben-
Nowell (2004)]

e balloon twisting any polyhedron [Demaine, Demaine, Hart (2008)]

e algorithmic magic tricks

Lecture 24 Beyond 6.006 6.006 Fall 2011

Algorithms Classes at MIT: (post 6.006)

e 6.046: Intermediate Algorithms

e 6.047: Computational Biology

e 6.854: Advanced Algorithms

e 6.850: Geometric Computing

e 6.849: Geometric Folding Algorithms

e 6.851: Advanced Data Structures

6.852: Distributed Algorithms

e 6.853: Algorithmic Game Theory
e 6.855: Network Optimization

e 6.856: Randomized Algorithms

e 6.857: Network and Computer Security

Other Theory Classes:

e 6.045: Automata, Computability, & Complexity

e 6.840: Theory of Computing

6.841: Advanced Complexity Theory
e 6.842: Randomness & Computation
e (6.845: Quantum Complexity Theory
e 6.440: Essential Coding Theory

e 6.441: Information Theory

Top 10 Uses of 6.006 Cushions

10. Sit on it: guaranteed inspiration in constant time
(bring it to the final exam)

9. Frisbee (after cutting it into a circle)*

8. Sell as a limited-edition collectible on eBay
(they’ll probably never be made again—at least $5)

7. Put two back-to-back to remove branding*
(so no one will ever know you took this class)

6. Holiday conversation starter... and stopper
(we don’t recommend re-gifting)

5. Asymptotically optimal acoustic paneling
(for practicing piano & guitar fingering DP)

4. Target practice for your next LARP*
(Live Action Role Playing)

3. Ten years from now, it might be all you'll
remember about 6.006
(maybe also this top ten list)

2. Final exam cheat sheet™

1. Three words: OkCupid profile picture

10

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	prelec24_v1
	lec24_v2
	extra_matter
	lec24_lastpg

