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FINAL EXAM

QUESTION & ANSWER BOOKLET 

Your Full Name: 

The exam is closed book, but 4 sheets of notes (8 sides) are allowed. 
Calculators and other aids will not be necessary and are not allowed. 

Check that this QUESTION & ANSWER BOOKLET has pages num-
bered up to 20. The booklet contains spaces for all relevant work and rea-
soning, and we’ll hand out scratch paper as needed for your rough work. 
The prompt given above each answer space is an abbreviated version of the 
full question, so read the full question, not just the prompt! 

Neat work and clear explanations count; show all relevant work and 
reasoning in the indicated spaces, because those spaces are all that we will 
be looking at in grading. 

There are 5 problems, for a total of 75 points. This roughly translates 
to your being able to spend about 2 minutes per point, on average, so don’t 
get too bogged down on a problem that is giving you inordinate trouble. 

Problem Your Score 

1 (10 points) 

2 (19 points) 

3 (17 points) 

4 (10 points) 

5 (19 points) 

Total (75 points) 
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Problem 1 (10 points) 
Suppose we are given a real and finite-energy (but otherwise arbitrary) 

DT signal w[n], with associated DTFT W (ejΩ). We want to approximate 
w[n] by another real, finite-energy DT signal y[n] that is bandlimited to 
the frequency range |Ω| < π/4 (within the usual [−π, π] interval for Ω); so 
Y (ejΩ) is zero for |Ω| ≥ π/4. Apart from this constraint on its bandwidth, 
we are free to choose y[n] as needed to get the best approximation. 

Suppose we measure the quality of approximation by the following sum-
of-squared-errors criterion: 

∞X 
E = (w[n] − y[n])2 . 

n=−∞ 

Our problem is then to minimize E by appropriate choice of the bandlimited 
y[n], given the signal w[n]. This problem leads you through to the solution. 

(a) (3 points) Express E in terms of a frequency-domain integral on the
interval |Ω| ≤ π that involves W (ejΩ) − Y (ejΩ).

(b) (5 points) Write your integral from (a) as a sum of integrals, one over
each of the following ranges: −π ≤ Ω ≤ −π/4, −π/4 < Ω < π/4, and
π/4 ≤ Ω ≤ π. Use this to deduce how Y (ejΩ) needs to be picked in
order to minimize E , and what the resulting minimum value of E is.
(Hint: Resist the temptation in this case to expand out |a − b|2, for
complex a and b, as |a|2 + |b|2 − ab∗ − a ∗b.)

(c) (2 points) Using your result in (b), write down an explicit formula for
the y[n] that minimizes E , expressing this y[n] as a suitable integral
involving W (ejΩ).

P∞1(a) (3 points) With E = (w[n] − y[n])2, express E in terms of n=−∞ 
a frequency-domain integral on the interval |Ω| ≤ π that involves 
W (ejΩ) − Y (ejΩ). 

E = 
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1(b) (5 points) Write your integral from 1(a) as a sum of integrals, one 
over each of the following ranges: −π ≤ Ω < −π/4, −π/4 ≤ Ω ≤ π/4, and 
π/4 < Ω ≤ π: 

Use this to deduce how Y (ejΩ) needs to be picked in order to minimize 
E (resist the temptation in this problem to expand out |a − b|2, for complex 
a and b, as |a|2 + |b|2 − ab∗ − a ∗b): 

Y (ejΩ) = 

Resulting minimum value of E = 

1(c) (2 points) Using your result in 1(b), write down an explicit formula 
for the y[n] that minimizes E , expressing this y[n] as a suitable integral 
involving W (ejΩ): 

y[n] = 
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Problem 2 (19 points) 

A continuous-time state-space model for the spread of fashion through 
a community takes the form 

d 
q1(t) = −γ q1(t)q2(t) + x(t)

dt

d 
q2(t) = γ q1(t)q2(t) − � q2(t)

dt

y(t) = η q2(t) . 

The state variable q1(t) denotes the number of people (approximated as a 
real number) susceptible to adopting the fashion at time t, and q2(t) denotes 
the number (again a real number) that have adopted the fashion at this time. 
In this model, the rate at which the fashion is adopted is proportional (with 
proportionality constant γ) to the product of the susceptible and fashionable 
populations. The constant � reflects the rate at which fashionable people 
outgrow/abandon the fashion. The quantity x(t) represents a control input 
that denotes the rate at which susceptibles are replenished (perhaps through 
advertising efforts) and y(t) is a measured output, proportional (with pro-
portionality constant η) to the number of fashionables. 

(a) (2 points) Suppose x(t) is held constant at the positive value x >
0. Show that there is precisely one equilibrium point, and determine
the corresponding equilibrium values q1 and q2 of the state variables, 
expressed in terms of the problem parameters. 

(b) (8 points) Write down the linearized model at this equilibrium point.
This model approximately governs the deviations qe1(t) = q1(t) − q1,
qe2(t) = q2(t) − q2, xe(t) = x(t) − x and ye(t) = y(t) − y when these are
sufficiently small.

As a check, for some choice of parameters in the original nonlinear 
model, your linearized model should take the form � � � � � � � � 

d 
dt 

eq1(t) eq2(t) = 
−3 
3 

−1 
0 

eq1(t) eq2(t) + 
1 
0 

ex(t) 
ey(t) = 

� 
0 0.1 

� � eq1(t) eq2(t) 
� 

. 
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What choice of γx, � and η yields the above numerical values? And 
which – if any – of the three 0 entries that are shown in this linearized 
model occur only for a particular combination of parameters? 

Use the linearized model with these specific numerical entries 
for the rest of this problem. 

(c) (4 points) Determine if the linearized system in (b) is: (i) reachable; (ii)
observable. You will get 2 points extra credit if you do this without
explicitly computing eigenvectors. Show all relevant reasoning and
computations.

(d) (5 points) Suppose we implement an output feedback of the form
xe(t) = g ye(t). Write down the resulting (linearized) closed-loop system
in the form

d 
qe(t) = Ac qe(t) ,

dt

and determine what choice of output feedback gain g, if any, will 
result in the eigenvalues of Ac being −1 and −2. 

d 
dt
q1(t) = −γ q1(t)q2(t) + x(t) 

d 
dt
q2(t) = γ q1(t)q2(t) − � q2(t) 

y(t) = η q2(t) . 

2(a) (2 points) Suppose x(t) = x > 0. Show that there is precisely one 
equilibrium point, and determine the equilibrium values q1 and q2 of the 
state variables: 

q1 = , q2 = 
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2(b) (8 points) Write down the linearized model at this equilibrium 
point. This model approximately governs the deviations qe1(t) = q1(t) − q1,
qe2(t) = q2(t) − q2, xe(t) = x(t) − x and ye(t) = y(t) − y when these are
sufficiently small. 

As a check, for some choice of parameters in the original nonlinear model, 
your linearized model should take the form � � � � � � � � 

d qe1(t) −3 −1 qe1(t) 1 
= + xe(t)

dt qe2(t) 3 0 qe2(t) 0 � � � � qe1(t)ye(t) = 0 0.1 . 
qe2(t) 

What choice of γx, �, and η yields the above numerical values? 

γx = , � = and η = 

And which – if any – of the three 0 entries that are shown in this linearized 
model occur only for a particular combination of parameters? 
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2(c) (4 points) Determine if the linearized system in 2(b) is: (i) reach-
able; (ii) observable. You will get 2 points extra credit if you do this 
without explicitly computing eigenvectors. Show all relevant reasoning 
and computations. 

(i) Reachability: 

(ii) Observability: 

7 



2(d) (5 points) Suppose we implement an output feedback of the form 
xe(t) = g ye(t). Write down the resulting (linearized) closed-loop system in 
the form 

d 
qe(t) = Ac qe(t) ,

dt 
and determine what choice of output feedback gain g, if any, will result in 
the eigenvalues of Ac being −1 and −2. 

Ac = 

g = 
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H(z), LMMSE predictor
x[n], measured               x[n + 1], prediction+ 2 ],	

M(z), minimum phase
w[n], white x[n], measured

Problem 3 (17 points) 

We have measurements of a WSS random process x[n] that is modeled as 
the output of a minimum-phase LTI system whose input is a white process 
w[n], with E{w2[n]} = 1. (Recall that a minimum-phase DT system is 
defined as stable, causal, and with a stable, causal inverse.) The situation is 
shown in the upper figure. 

Suppose the transfer function of the system above is 

γ z − (λ − γd )M(z) = + d = d , 
z − λ z − λ 

where γ 6 6= 0 and d = 0. You may also find it helpful to note that � � 
+ λ2 −2M(z) = d + γz−1 1 + λz−1 z + · · · . 

(a) (2 points) What is the expected value of x[n]? (No points unless you 
explain your reasoning fully!) 

(b) (2 points) What is the fluctuation spectral density Dxx(e
jΩ) of x[·], 

expressed in terms of the given quantities γ, λ, d? (It suffices to have 
a correct expression; you need not simplify your expression.) 
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(c) (3 points) Suppose y[·] is some other process that is jointly wide-sense 
stationary with x[·] (and hence with w[·] too, though we don’t ask 
you to explain why). Express Dyw(z) in terms of Dyx(z) and M(z) 
(and/or closely related quantities, if you think these are needed). 

We would like to pass the process x[n] through a stable LTI filter with 
system function H(z) that is chosen to make this filter the LMMSE estimator 
of x[n+2], i.e., the LMMSE two-step predictor, as shown in the lower figure 
on the preceding page. Denote the resulting estimate by xb [n + 2]. 

(d) (3 points) Suppose there are no constraints on the LTI filter H(z) be-
yond stability. Determine the optimum H(z) and draw a fully labeled 
sketch of the associated unit sample response h[n]. Also determine the 
associated MMSE, 

E{(x[n + 2] − xb [n + 2])2} . 

(e) (6 points) Suppose now that we constrain the filter H(z) to not only 
be stable but also causal. Again determine the optimum filter and 
the associated mean square error (explaining your reasoning!). Your 
answers will be expressed in terms of the given parameters, namely γ, 
λ, and d. 

(f) (1 point) Returning to the unit sample response of the optimal un-
constrained filter in (d), suppose you were to set all the negative-time 
values of that h[n] to 0, would you get the unit sample response of the 
optimal causal filter in (e)? 

3(a) (2 points) What is the expected value of x[n]? (No points unless 
you explain your reasoning fully!) 

E[x[n]] = 
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3(b) (2 points) What is the fluctuation spectral density Dxx(e
jΩ) of 

x[·], expressed in terms of the given quantities γ, λ, d? (It suffices to have a 
correct expression; you need not simplify your expression.) 

Dxx(e
jΩ) = 

3(c) (3 points) Suppose y[·] is some other process that is jointly wide-
sense stationary with x[·] (and hence with w[·] too, though we don’t ask 
you to explain why). Express Dyw(z) in terms of Dyx(z) and M(z) (and/or 
closely related quantities, if you think these are needed). 

Dyw(z) = 
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3(d) (3 points) Suppose there are no constraints on the LTI filter H(z) 
beyond stability. Determine the optimum H(z) and draw a fully labeled 
sketch of the associated unit sample response h[n]. Also determine the 
associated MMSE, E{(x[n + 2] − xb [n + 2])2} . 

H(z) = 

Associated MMSE = 

Plot of h[n]: 

3(e) Suppose now that we constrain the filter H(z) to not only be sta-
ble but also causal. Again determine the optimum filter and the associated 
mean square error (explaining your reasoning!). Your answers will be ex-
pressed in terms of the given parameters, namely γ, λ, and d. (Start work 
here, continue on next page.) 
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3(e) continued (6 points) 

H(z) = 

Associated MMSE = 

3(f) (1 point) Returning to the unit sample response of the optimal 
unconstrained filter in 3(d), suppose you were to set all the negative-time 
values of that h[n] to 0, would you get the unit sample response of the 
optimal causal filter in 3(e)? 
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Problem 4 (10 points) 

Suppose that 
X = S + W 

where S and W are independent Gaussian random variables with respective 

S , σ
2means µS , µW and respective variances σ 2 

W . 

(a) (3 points) Is X guaranteed to be a Gaussian random variable? (Be 
sure to state the reasoning behind your answer, otherwise you will lose 
points.) Also write down the mean and variance of X. 

(b) (6 points) Let sb(X) denote the LMMSE estimator of S from mea-
surement of X. Obtain an expression for this estimator, and for its 
associated mean square error, expressed in terms of the given param-
eters. 

(c) (1 point) Can the MMSE estimator do better in this case? (To get the 
point for this part, you will need to explain your answer.) 

4(a) (3 points) Is X guaranteed to be a Gaussian random variable? 
(Be sure to state the reasoning behind your answer, otherwise you will lose 
points.) Also write down the mean and variance of X. 

Is X guaranteed to be Gaussian? 

µX = , σ2 
X = 
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4(b) (6 points) Let sb(X) denote the LMMSE estimator of S from mea-
surement of X. Obtain an expression for this estimator, and for its associ-
ated mean square error, expressed in terms of the given parameters. 

sb(X) = 

MMSE = 

4(c) (1 point) Can the MMSE estimator do better in this case? (To get 
the point for this part, you will need to explain your answer.) 
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Problem 5 (19 points) 

A signal X[n] that we will be measuring for n = 1, 2, . . . , L is known to 
be generated according to one of the following two hypotheses: 

H0 : X[n] = W [n] holds with a priori probability P (H0) = p0 , 

H1 : X[n] = V [n] holds with a priori probability P (H1) = p1 = 1 − p0 . 

Here W [n] is a zero-mean i.i.d. Gaussian process with known constant 
variance σ2 at each time instant, i.e., the value at each time instant is W 
governed by the probability density function n 2 o1 w

fW (w) = √ exp − 
2σ2σW 2π W 

and the values at different times are independent of each other. Similarly, 
V [n] is a zero-mean Gaussian process, taking values that are independent 
at distinct times, but with a variance that changes in a known manner over 
time, so the variance at time n is known to be σ2 . We will find it notationally n

helpful in working through this problem to use the definition 

� �1 1 
ξ[n] = − . 

σ2 σ2 
W n 

Note that ξ[n] may be positive for some n but negative or zero for others, 
corresponding to having σW < σn, σW > σn or σW = σn respectively. 

(a) (5 points) Suppose we only have a measurement at n = 1, with X[1] = 
x[1]. Show that the decision rule for choosing between H0 and H1 with 
minimum probability of error, given this measurement, takes the form 

� �2 ‘H1 ’ 
>ξ[1] x[1] < γ 

‘H0 ’ 

for some appropriately chosen threshold γ. Specify this γ in terms of 
the problem parameters. 

(b) (5 points) With your result from (a), but now assuming ξ[1] > 0, sketch 
and label the two conditional densities—namely fX[1]|H (x|H0) and 
fX[1]|H (x|H1)—that govern X[1] under the two respective hypotheses. 
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Assuming that the two hypotheses are equally likely so p0 = p1,p
mark in the points ± γ/ξ[1] on the horizontal (i.e., x) axis, then shade 
in the region or regions whose total area yields the conditional proba-
bility P (‘H1 ’|H0), and express this conditional probability in terms of 
the standard Q function, Z ∞1 

Q(α) = √ e −ν
2/2 dν . 

2π α 

(c) (3 points) With the same situation as in (b), but with the hypotheses 
no longer restricted to be equally likely a priori, specify the range of 
values for p0 in which the optimal decision will always be ‘H1’, no 
matter what the measured value x[1]. 

(d) (6 points) Now suppose we have measurements at n = 1, 2, . . . , L, i.e., 
we know X[1] = x[1], X[2] = x[2], . . . , X[L] = x[L]. Determine the 
decision rule for minimum probability of error, writing it in a form 
that generalizes your result from (a). 

5(a) Suppose we only have a measurement at n = 1, with X[1] = x[1]. 
Show that the decision rule for choosing between H0 and H1 with minimum 
probability of error, given this measurement, takes the form 

� �2 ‘H1 ’ � 1 1 � 
>ξ[1] x[1] < γ , ξ[1] = − . 

σ2 σ2 
‘H0 ’ W 1 

for some appropriately chosen threshold γ. Specify this γ in terms of the 
problem parameters. (Start work here and continue on next page.) 
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5(a) continued (5 points) 

γ = 

5(b) (5 points) Assuming ξ[1] > 0, sketch and label fX[1]|H (x|H0) and p
fX[1]|H (x|H1). Assuming p0 = p1, carefully mark in the points ± γ/ξ[1] on 
the horizontal (i.e., x) axis, then shade in the region or regions whose total 
area yields the conditional probability P (‘H1 ’|H0), and express this condi-R ∞
tional probability in terms of the standard Q function, Q(α) = √1 e−ν

2/2 dν . α2π 

P (‘H1 ’|H0) = 
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5(c) (3 points) With the same situation as in 5(b), but with the hy-
potheses no longer restricted to be equally likely a priori, specify the range 
of values for p0 in which the optimal decision will always be ‘H1’, no matter 
what the measured value x[1]. 

Range of p0 for which we will always pick ‘H1’: 

5(d) Now suppose we have measurements at n = 1, 2, . . . , L, i.e., we 
know X[1] = x[1], X[2] = x[2], . . . , X[L] = x[L]. Determine the decision 
rule for minimum probability of error, writing it in a form that generalizes 
your result from 5(a). (Start your work here, continue on next page.) 
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5(d) continued (6 points) 

Decision rule: 

[Optional reading: For the special case in which V [n] = S[n] + W [n] , 
where S[n] is a zero-mean i.i.d. Gaussian process that is independent of 
W [·] and has variance σ2 [n], the decision rule from 5(d) can be written as a S 
comparison of the quantity 

LX
x[n] sbn(x[n]) (1) 

n=1 

with a fixed threshold, where sbn(X[n]) denotes the LMMSE estimator of 
S[n] from measurement of X[n] under hypothesis H1; this is the estimator 
you derived in Problem 4(b). This form of the decision rule is similar to 
what we obtained in the case of a deterministic signal.] 

Thanks for taking 6.011. Enjoy the summer, and if you’re gradu-
ating and leaving, all good wishes for your life beyond MIT! 
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